
COMPUTATIONAL
SEMANTICS: DAY 3
Johan Bos
University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics
• Day 1: Exploring Models
• Day 2: Meaning Representations
• Day 3: Computing Meanings
• Day 4: Drawing Inferences
• Day 5: Meaning Banking

Questions after yesterday’s lecture
• Quantifier scope
•  The I function

Questions: Quantifier Scope

•  Is there a difference between  
∀x∃y LOVE(x,y) and ∃y∀x LOVE(x,y) ?

The satisfaction definition

Questions: IgF

•  The horrible IgF (can’t even typeset it properly in ppt)

•  This is a function from terms to entities in the domain
• Recall that terms can be variables or contants
• So basically this function catches two birds with one

stone: 
 
Suppose t is a term.  
If t is a variable, then  
 we use the assignment function g: I(t)=g(t) 
If t is a constant, then 
 we use the interpretation function F: I(t)=F(t)

segmentation

POS-tagging

syntactic structure

Semantic Analysis Pipeline

morphological parsing

syntactic parsing

semantic parsing

inference

parts of speech

tokenised text

semantic representation

Natural Language Descriptions
 TRUE DESCRIPTIONS
•  A white rabbit is eating a carrot.
•  A rabbit with a carrot.
•  A rabbit is nibbling on a carrot.
•  A rabbit holding a carrot in its mouth.
•  A carrot is being eaten by a rabbit.

 FALSE DESCRIPTIONS
•  A rabbit without a carrot.
•  A brown rabbit is eating an orange carrot.
•  Two rabbits are sharing a carrot.
•  A carrot is holding a white rabbit.
•  A rabbit with orange flowers.

Natural Language Descriptions
 TRUE DESCRIPTIONS
• 
• 

 FALSE DESCRIPTIONS
• 
• 

Natural Language Descriptions
 TRUE DESCRIPTIONS
• 
• 

 FALSE DESCRIPTIONS
• 
• 

Description guidelines
•  Try to include at least two entities in your description
• Only describe the situation, not what is around it

i.e., not “a girl is looking into a camera”
• Don’t use relative positional information

i.e., not “a cat is standing left of a dog”

Goal
• Build first-order meaning representations from natural

language descriptions, using the vocabulary of non-logical
symbols used in the models

• We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way
of constructing meaning representation

Goal
• Build first-order meaning representations from natural

language descriptions, using the vocabulary of non-logical
symbols used in the models

• We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way
of constructing meaning representation

• Note:
recent attempts with neural networks skip syntactic
analysis entirely!

Goal
• Build first-order meaning representations from natural

language descriptions, using the vocabulary of non-logical
symbols used in the models

• We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way
of constructing meaning representation

• We will have a closer look at two grammar formalisms:
•  phrase structure grammar (DCG)
•  combinatory categorial grammar (CCG) TOMORROW

Definite Clause Grammars (Prolog)
s	 -‐-‐>	 np,	 vp.	
np	 -‐-‐>	 det,	 n.	
vp	 -‐-‐>	 tv,	 np.	
vp	 -‐-‐>	 iv.	
vp	 -‐-‐>	 av,	 vp.	
	
det	 -‐-‐>	 [a].	 det	 -‐-‐>	 [the].	 det	 -‐-‐>	 [every].	
np	 -‐-‐>	 [someone].	 np	 -‐-‐>	 [somebody].	
av	 -‐-‐>	 [is].	 av	 -‐-‐>	 [are].	
n	 -‐-‐>	 [cat].	 n	 -‐-‐>	 [dog].	
tv	 -‐-‐>	 [eats].	 tv	 -‐-‐>	 [eating].	

Ordinary clauses in Prolog!
Terminals are in square brackets.

Left-recursive rules not allowed.

Adding constraints
•  aspectual features (VP):

•  prp (present participle)
•  pap (past participle)
•  inf (infinitival)
•  pss (passive)

• mood features (S):
•  dcl (declarative)
•  int (interrogative)

•  agreement features (NP):
•  sg (singular)
•  pl (plural)

Definite Clause Grammars with Features
s	 -‐-‐>	 np,	 vp.	
np	 -‐-‐>	 det,	 n.	
vp([F])	 -‐-‐>	 tv([F]),	 np.	
vp([F])	 -‐-‐>	 iv([F]).	
vp([M])	 -‐-‐>	 av([M,A]),	 vp([A]).	
	
det	 -‐-‐>	 [a].	 det	 -‐-‐>	 [the].	 det	 -‐-‐>	 [every].	
np	 -‐-‐>	 [someone].	 np	 -‐-‐>	 [somebody].	
av([dcl,prp])	 -‐-‐>	 [is].	 av([dcl,prp])	 -‐-‐>	 [are].	
n	 -‐-‐>	 [cat].	 n	 -‐-‐>	 [dog].	
tv([dcl])	 -‐-‐>	 [eats].	 tv([prp])	 -‐-‐>	 [eating].	

Here we use lists to be able to add

more features. Order is important!

Eliminating left-recursive rules
• DCG can’t handle left-recursive grammars

(because of Prolog’s top-down search strategy it risks
 to go in an infinite loop)

•  The simple cases of left recursion (direct left recursion)
can be eliminated from a DCG

•  These cases are of the form (X is a non-terminal, Y and Z
are terminal or non-terminal categories):

 X	 -‐-‐>	 X,	 Y.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 -‐-‐>	 Z,	 X’.	
	 X	 -‐-‐>	 Z.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X’	 -‐-‐>	 [].	

•  	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X’	 -‐-‐>	 Y,	 X’.	

	

left-recursive DCG schema

left-recursion eliminated by
introducing new category and
empty production

Example: italian

np	 -‐-‐>	 det,	 n.	
n	 -‐-‐>	 n,	 adj.	
n	 -‐-‐>	 adj,	 n.	
	
det	 -‐-‐>	 [una].	 	 	 det	 -‐-‐>	 [la].	
n	 -‐-‐>	 [casa].	 	 	 	 n	 -‐-‐>	 [cosa].	
adj	 -‐-‐>	 [bella].	 adj	 -‐-‐>	 [nuova].	

Provide DCG analyses
 TRUE DESCRIPTIONS
•  A white rabbit is eating a carrot.
•  A rabbit with a carrot.
•  A rabbit is nibbling on a carrot.
•  A rabbit holding a carrot in its mouth.
•  A carrot is being eaten by a rabbit.

 FALSE DESCRIPTIONS
•  A rabbit without a carrot.
•  A brown rabbit is eating an orange carrot.
•  Two rabbits are sharing a carrot.
•  A carrot is holding a white rabbit.
•  A rabbit with orange flowers.

YOU GET A
PARSER

FOR FREE
WITH

PROLOG!

NOT SURE IT IS
A PARSER I

WANT TO USE

Non-logical symbols

• Concepts (WordNet)
• Relations (spatial relations only) 

 
part of -> s_part_of 
touch -> s_touch 
near -> s_near 
support -> s_support 

•  Inferences
•  support implies touch
•  near implies not touch and not part of
•  touch implies not part of

The big question

• How can we associate a natural language description
like “every cat is drinking milk” with its first-order
translation:  
 ∀x[n_cat_1(x) à ∃y [n_milk_1(y) & s_near(x,y)]]?

• Moreover: how can we do this in a systematic way? 
We want to make our method scalable to other kinds of
natural language expressions, including those that we
have never seen before!

Another example

Someone is holding a melon. 
 
∃x [n_person_1(x) &  
 ∃y [n_melon_2(y) &  
 ∃z [n_hand_1(z) &  
 s_part_of(z,x) &  
 s_supports(z,y)]]]
 
 

Next

• We will have a look at DCG the again
• But now we will specify the lexical semantics
• And we show how composition works
• But first, more about compositionality

Compositionality
• We assume that the meaning representation of a

sentence is composed out of the (partial) meaning
representations of its parts (i.e., the words)

•  This principle is known as compositionality, often
misattributed to Frege [Janssen 2012]

Frege

Compositionality
• We assume that the meaning representation of a

sentence is composed out of the (partial) meaning
representations of its parts (i.e., the words)

•  This principle is known as compositionality, often
misattributed to Frege [Janssen 2012]

Frege Carnap

Compositionality

• Generally speaking, the motivation for compositionality
is not for principled, but for practical reasons

•  This follows an old wisdom, often attributed to Julius
Caesar, but probably from Philippus of Macedonia
(father of Alexander the Great): compositionality
implements the rule divide et impera [Janssen 2012]

Caesar Philippus

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ...
“cat” ≈ ...
“is” ≈ ...
“drinking” ≈ ...
“milk” ≈ ...

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ...
“cat” ≈ CAT(x)
“is” ≈ ...
“drinking” ≈ NEAR(x,y)
“milk” ≈ MILK(y)

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ∀x [...(x) à ...(x)]
“cat” ≈ CAT(x)
“is” ≈ ...
“drinking” ≈ NEAR(x,y)
“milk” ≈ MILK(y)

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ∀x [...(x) à ...(x)]
“cat” ≈ CAT(x)
“is” ≈ nothing?
“drinking” ≈ NEAR(x,y)
“milk” ≈ MILK(y)

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ∀x [...(x) à ...(x)]
“cat” ≈ CAT(x)
“is” ≈ nothing?
“drinking” ≈ NEAR(x,y)
“milk” ≈ MILK(y)

Decomposing

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ ∀x [...(x) à ...(x)]
“cat” ≈ CAT(x)
“is” ≈ nothing?
“drinking” ≈ NEAR(x,y)
“milk” ≈ ∃y [MILK(y) & ...(y)]

What do we observe?

• Open spaces for formulas (the ...), 
sometimes more than one!

• Variables need to be correctly bound, 
sometimes more than one!

• Some lexical items seem to have no  
“semantic contribution”

Partial formulas
We will add a couple of new operators to describe partial
formulas:

 λ @

•  The lambda operator λ signals missing information
The lambda binds variables (like the quantifiers) and is placed in
front of a formula (like the quantifiers)

•  The application operator @ indicates that two pieces of information
need to be combined

Adding lambdas and applications

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]]

“every” ≈ λpλq∀x [(p@x) à (q@x)]
“cat” ≈ λx CAT(x)
“is” ≈ λf f
“drinking” ≈ λy λx NEAR(x,y)
“milk” ≈ λp∃y [MILK(y) & (p@y)]

Higher order logic

•  lambda-bound variables can also range over non-
entities (i.e. properties and formulas)

•  this means that we have left the (relatively safe) domain
of first-order logic

• we will use the lambdas purely as a device to construct
formulas from smaller parts

•  it will provide us a way to control free and bound
variables

With a little help of syntactic structure

• Syntax (DCG, CCG, or something else) helps us to  
find out what combines with what

• Consider the following (simplified) DCG 
 
s à np vp det à [every] 
np à det n n à [cat] 
np à n n à [milk] 
vp à tv np av à [is] 
vp à av vp tv à [drinking] 

• Next step: add semantics

The semantics in the lexicon

det [sem: λpλq∀x[(p@x) à (q@x)]] à [every] 
n [sem: λx CAT(x)]à [cat] 
n [sem: λx MILK(x)]à [milk] 
av [sem: λf f]à [is] 
tv [sem: λxλy NEAR(x,y)]à [drinking] 

The semantics in the rules

s[sem: (X@Y)] à np[sem:X] vp[sem:Y] 
np[sem: (X@Y)]à det[sem:X] n[sem:Y] 
np [sem: ∃x(Y@x)]à n[sem:Y] 
vp [sem: λx(Y@(X@x))]à tv[sem:X] np[sem:Y] 
vp [sem: (X@Y)]à av[sem:X] vp[sem:Y] 

One picture says more than a thousand
words variables

Butch on his chopper

np à det: n

np

det n

“every” “cat”

np:[φ@ψ] à det:φ n:ψ

np:

det: n:

“every” “cat”

λpλq∀x[(p@x) à (q@x)] λy CAT(y)

[λpλq∀x[(p@x) à (q@x)] @ λy CAT(y)]

β-conversion
• Consider the application: (λxφ@ψ)

•  Here the functor is: λxφ
•  And the argument is: ψ

•  The process of replacing every free occurrence of x in φ
by ψ is called
 β-conversion
 (or β-reduction, or λ-conversion)

np:[φ@ψ] à det:φ n:ψ

np:

det: n:

“every” “cat”

λpλq∀x[(p@x) à (q@x)] λy CAT(y)

λq∀x[(λy CAT(y)@x) à (q@x)]

np:[φ@ψ] à det:φ n:ψ

np:

det: n:

“every” “cat”

λpλq∀x[(p@x) à (q@x)] λy CAT(y)

λq∀x[CAT(x) à (q@x)]

Demo
•  ~/doc/tea/ComputationalSemantics % cat esslligrammar.pl
•  ~/doc/tea/ComputationalSemantics % cat lexicon.pl
•  ~/doc/tea/ComputationalSemantics % cat semdcg.pl

•  [semdcg], s(Sem,[a,man,rides,a,bicycle],[]).

Exercise 1
• Not only sentences, also noun phrases.

Exercise 2
•  Look at the natural language statements associated with

the images in GRIM
• Pick a frequently occurring verb that is not in the lexicon

already
• Specify the lexical semantics of this verb in

a) no events (pre-Davidsonian)
b) Davidsonian
c) neo-Davidsonian
d) the spatial relations only

The Big Picture

Semantic
Parsing

Semantic
Parsing

Model
Extraction

Model
Checking

meaning

model

natural
language
statement

TRUE
or

FALSE

MONDAY

TODAY

Planet Semantics

Proofs

Models

Representations

Planet Semantics

Proof-Theoretic
Semantics

Model-Theoretic
Semantics

Representation of
Semantics

studies relation between
natural language and meanings studies relation between

meanings and meanings

studies relation between
meanings and situations

Proof-Theoretical Semantics

Proofs

Models

Lexical
Semantics

Compositional
Semantics

Discourse
Semantics

Inductive Inference
Abductive
Inference

Deductive
Inference

Computational Semantics
• Day 1: Exploring Models
• Day 2: Meaning Representations
• Day 3: Computing Meanings with DCG
• Day 4: Computing Meanings with CCG
• Day 5: Drawing Inferences and Meaning Banking

