The Distributed Ontology, Model and Specification Language (DOL) Day 2: Basic Structuring with DOL

Oliver Kutz¹ Till Mossakowski²

¹Free University of Bozen-Bolzano, Italy ²University of Magdeburg, Germany

Tutorial at ESSLLI 2016, Bozen-Bolzano, August 15 - 19

Summary of Day 1

On Day 1 we have:

- Explored the motivation behind DOL looking at several use-cases from ontology engineering
- Introduced the basic ideas and features of DOL
- Introduced some logics we will use during the week
- Introduced the tools to be used: Ontohub and HETS

Today

We will focus today on discussing in parallel use cases for all three logics and giving DOL syntax and semantics for:

- intended consequences (competency questions)
- model finding and refutation of lemmas
- extensions and conservative extensions
- signature morphisms and the satisfaction condition
- refinements / theory interpretations

Intended Consequences

Extensions

Distributed Ontology, Model and Specification Language (DOL)

Logical Consequence in Prop, FOL and OWL

Logic deals with what follows from what. J.A. Robinson: Logic, Form and Function.

Logical consequence = Satisfaction in a model is preserved:

$$\varphi_1,\ldots,\varphi_n\models\psi$$

All models of the premises $\varphi_1, \ldots, \varphi_n$ are models of the conclusion ψ . Formally: $M \models \varphi_1$ and \ldots and $M \models \varphi_n$ together imply $M \models \psi$. More general form:

$$\Phi \models \psi$$
 (Φ may be infinite)

 $M \models \varphi$ for all $\varphi \in \Phi$ implies $M \models \psi$.

Countermodels in Prop, FOL and OWL

Given a question about logical consequence over Σ -sentences,

$$\Phi \stackrel{?}{\models} \psi$$

a countermodel is a Σ -model M with

$$M \models \Phi$$
 and $M \not\models \psi$

A countermodel shows that $\Phi \models \psi$ does not hold.

Intended Consequences in Propositional Logic

logic Propositional

spec JohnMary =

- . sunny /\ weekend => john_tennis %(when_tennis)%
- . john_tennis => mary_shopping %(when_shopping)%
- . saturday %(it_is_saturday)%
- . sunny %(it_is_sunny)%
- . mary_shopping %(mary_goes_shopping)% %
implied

end

Full specification at
https://ontohub.org/esslli-2016/Propositional/
leisure_structured.dol

A Countermodel

- logic Propositional
- spec Countermodel =

 - . sunny
 - . not weekend
 - . not john_tennis
 - . not mary_shopping
 - . saturday

end

This specification has exactly one model, and hence can be seen as a syntactic description of this model.

Kutz, Mossakowski

Repaired Specification

logic Propositional

spec JohnMary =

- . sunny /\ weekend => john_tennis %(when_tennis)%
- . john_tennis => mary_shopping %(when_shopping)%
- . saturday %(it_is_saturday)%
- . sunny %(it_is_sunny)%
- . saturday => weekend %(sat_weekend)%
- . mary_shopping %(mary_goes_shopping)% %implied
 end

Intended Consequences in FOL

```
logic CASL.FOL=
spec BooleanAlgebra =
  sort Flem
  ops 0,1 : Elem;
       __ cap __ : Elem * Elem -> Elem, assoc, comm, unit 1;
       __ cup __ : Elem * Elem -> Elem, assoc, comm, unit 0;
  forall x,y,z:Elem
  . x cap (x cup y) = x %(absorption_def1)%
  . x cup (x cap y) = x %(absorption_def2)%
   x \, cap \, 0 = 0
                                %(zeroAndCap)%
  x \, cup \, 1 = 1
                                %(oneAndCup)%
  x \operatorname{cap}(y \operatorname{cup} z) = (x \operatorname{cap} y) \operatorname{cup}(x \operatorname{cap} z)
                                  %(distr1_BooleanAlgebra)%
  x \operatorname{cup}(y \operatorname{cap} z) = (x \operatorname{cup} y) \operatorname{cap}(x \operatorname{cup} z)
                                  %(distr2_BooleanAlgebra)%
  . exists x' : Elem . x cup x' = 1 / x cap x' = 0
                                  %(inverse_BooleanAlgebra)%
                                  %(idem_cup)% %implied
   x cup x = x
  x cap x = x
                                  %(idem_cap)% %implied
end
```

https://ontohub.org/esslli-2016/FOL/OrderTheory_structured.dol

Intended Consequences in OWL

```
logic OWL
ontology Family1 =
  Class: Person
  Class: Woman SubClassOf: Person
  ObjectProperty: hasChild
  Class: Mother
         EquivalentTo: Woman and hasChild some Person
  Individual: mary Types: Woman Facts: hasChild
                                                  iohn
  Individual: iohn
  Individual: mary
       Types: Annotations: Implied "true"^^xsd:boolean
              Mother
```

end

https://ontohub.org/esslli-2016/OWL/Family_structured.dol

A Countermodel

Repaired Ontology

```
logic OWL
ontology Family2 =
  Class: Person
  Class: Woman SubClassOf: Person
  ObjectProperty: hasChild
  Class: Mother
         EquivalentTo: Woman and hasChild some Person
  Individual: mary Types: Woman Facts: hasChild
                                                  john
  Individual: john Types: Person
  Individual: marv
       Types: Annotations: Implied "true"^^xsd:boolean
              Mother
```

end

Extensions

Structuring Using Extensions

logic Propositional spec JohnMary_TBox = %% general rules

- . sunny /\ weekend => john_tennis %(when_tennis)%
- . john_tennis => mary_shopping %(when_shopping)%
- . saturday => weekend %(sat_weekend)%

end

spec JohnMary_ABox = %% specific facts

JohnMary_TBox then

- . saturday %(it_is_saturday)%
- . sunny %(it_is_sunny)%
- . mary_shopping %(mary_goes_shopping)% %**implied**

end

Implied Extensions in Prop

logic Propositional spec JohnMary_variant = props sunny, weekend, john_tennis, mary_shopping, saturday %% declaration of signature sunny /\ weekend => john_tennis %(when_tennis)% john_tennis => mary_shopping %(when_shopping)% . saturday => weekend %(sat_weekend)% then . saturday %(it_is_saturday)% . sunny

then %implies

%(it_is_sunny)%

. mary_shopping

```
%(mary_goes_shopping)%
```

end

Implied Extensions in OWL

```
ontology Family1 =
  Class: Person
  Class: Woman SubClassOf: Person
  ObjectProperty: hasChild
  Class: Mother
     EquivalentTo: Woman and hasChild some Person
  Individual: john Types: Person
  Individual: mary Types: Woman Facts: hasChild john
then %implies
  Individual: mary Types: Mother
end
```

Conservative Extensions in Prop

```
logic Propositional
spec Animals =
  props bird, penguin, living
  . penguin => bird
  . bird => living
then %cons
  prop animal
  . bird => animal
  . animal => living
```

end

In the extension, no "new" facts about the "old" signature follow.

A Non-Conservative Extension

```
spec Animals =
    props bird, penguin, living
    . penguin => bird
then %% not a conservative extension
    prop animal
    . bird => animal
    . animal => living
and
```

end

In the extension, "new" facts about the "old" signature follow, namely

```
. bird => living
```

A Conservative Extension in FOL

```
logic CASL.FOL=
spec PartialOrder =
 sort Elem
  pred __leq__ : Elem * Elem
  . forall x:Elem. x leg x %(refl)%
  . forall x,y:Elem. x leg y /\ y leg x => x = y (antisym)
  . forall x,y,z:Elem. x leq y /\ y leq z => x leq z
                                                   %(trans)%
end
spec TotalOrder = PartialOrder then
                                               %(dichotomy)%
  . forall x,y:Elem. x leq y \/ y leq x
then %cons
 pred __ < __ : Elem * Elem</pre>
  . forall x,y:Elem. x < y \iff (x \log y / not x = y)
                                                   %(<-def)%
```

end

A Conservative Extension in OWL

logic OWL
ontology Animals1 =
 Class: LivingBeing
 Class: Bird SubClassOf: LivingBeing
 Class: Penguin SubClassOf: Bird
then %cons
 Class: Animal SubClassOf: LivingBeing
 Class: Bird SubClassOf: Animal
end

A Nonconservative Extension in OWL

logic OWL
ontology Animals2 =
 Class: LivingBeing
 Class: Bird
 Class: Penguin SubClassOf: Bird
then %% not a conservative extension
 Class: Animal SubClassOf: LivingBeing
 Class: Bird SubClassOf: Animal
end

Signature Morphisms and the Satisfaction Condition

Distributed Ontology, Model and Specification Language (DOL)

2016-08-16 24

Signature morphisms in propositional logic

Definition

Given two propositional signatures Σ_1, Σ_2 a signature morphism is a function $\sigma : \Sigma_1 \to \Sigma_2$. (Note that signatures are sets.)

Definition

A signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ induces a sentence translation Sen $(\Sigma_1) \to \text{Sen}(\Sigma_2)$, by abuse of notation also denoted by σ , defined inductively by

- $\sigma(p) = \sigma(p)$ (the two σ s are different...)
- $\sigma(\perp) = \perp$
- $\sigma(\top) = \top$

•
$$\sigma(\phi_1 \wedge \phi_2) = \sigma(\phi_1) \wedge \sigma(\phi_2)$$

• etc.

Model reduction in propositional logic

Definition

A signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ induces a model reduction function

$$_|_{\sigma}: \mathsf{Mod}(\Sigma_2) \to \mathsf{Mod}(\Sigma_1).$$

Given $M \in Mod(\Sigma_2)$ i.e. $M : \Sigma_2 \rightarrow \{T, F\}$, then $M|_{\sigma} \in Mod(\Sigma_1)$ is defined as

$$M|_{\sigma}(p) := M(\sigma(p))$$

for all $p \in \Sigma_1$, i.e.

$$M|_{\sigma} = M \circ \sigma$$

If $M'|_{\sigma} = M$, then M' is called a σ -expansion of M.

Satisfaction condition in propositional logic

Theorem (Satisfaction condition)

Given a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$, $M_2 \in Mod(\Sigma_2)$ and $\phi_1 \in Sen(\Sigma_1)$, then:

$$M_2 \models_{\Sigma_2} \sigma(\phi_1)$$
 iff $M_2|_{\sigma} \models_{\Sigma_1} \phi_1$

("truth is invariant under change of notation.")

Proof.

By induction on ϕ_1 .

Signature Morphisms in FOL

Definition

Given signatures $\Sigma = (S, F, P), \Sigma' = (S', F', P')$ a signature morphism $\sigma : \Sigma \to \Sigma'$ consists of

• a map
$$\sigma^{s}: S \to S$$

• a map
$$\sigma_{w,s}^{F}: F_{w,s} \to F_{\sigma^{S}(w),\sigma^{S}(s)}'$$
 for each $w \in S^{*}$ and each $s \in S$

• a map
$$\sigma^{P}_{w}: P_{w} o P'_{\sigma^{S}(w)}$$
 for each $w \in S^{*}$

Model Reduction in FOL

Definition

Given a signature morphism $\sigma:\Sigma\to\Sigma'$ and a Σ' -model M', define $M=M'|_\sigma$ as

• $M_s = M'_{\sigma^S(s)}$

•
$$f_{w,s}^{W} = \sigma_{w,s}^{U}(t)_{\sigma^{S}(w),\sigma^{S}(s)}^{W}$$

•
$$p_{w,s}^M = \sigma_w^P(p)_{\sigma^S(w)}^{M'}$$

Sentence Translation in FOL

Definition

Given a signature morphism $\sigma : \Sigma \to \Sigma'$ and $\phi \in \text{Sen}(\Sigma)$ the translation $\sigma(\phi)$ is defined inductively by:

$$\sigma(f_{w,s}(t_1 \dots t_n)) = \sigma_{w,s}^F(f_{\sigma(w),\sigma(s)})(\sigma(t_1) \dots \sigma(t_n))$$

$$\sigma(t_1 = t_2) = \sigma(t_1) = \sigma(t_2)$$

$$\sigma(p_w(t_1 \dots t_n)) = \sigma_w^P(p)_{\sigma^S(w)}(\sigma(t_1) \dots \sigma(t_n))$$

$$\sigma(\phi_1 \wedge \phi_2) = \sigma(\phi_1) \wedge \sigma(\phi_2) \quad \text{etc.}$$

$$\sigma(\forall x : s.\phi) = \forall x : \sigma^S(s).(\sigma \uplus x)(\phi)$$

$$\sigma(\exists x : s.\phi) = \exists x : \sigma^S(s).(\sigma \uplus x)(\phi)$$

where $(\sigma \uplus x) : \Sigma \uplus \{x : s\} \to \Sigma' \uplus \{x : \sigma(s)\}$ acts like σ on Σ and maps x : s to $x : \sigma(s)$.

First-order Logic in DOL: Satisfaction Revisited

Definition (Satisfaction of sentences)

$$M \models t_1 = t_2 \text{ iff } M(t_1) = M(t_2)$$

$$M \models p_w(t_1 \dots t_n) \text{ iff } (M(t_1), \dots M(t_n)) \in p_w^M$$

$$M \models \phi_1 \land \phi_2 \text{ iff } M \models \phi_1 \text{ and } M \models \phi_2$$

$$M \models \forall x : s.\phi \text{ iff for all } \iota\text{-expansions } M' \text{ of } M, M' \models \phi$$

where $\iota : \Sigma \hookrightarrow \Sigma \uplus \{x : s\}$ is the inclusion.

$$M \models \exists x : s.\phi \text{ iff there is a } \iota\text{-expansion } M' \text{ of } M \text{ such that } M' \models \phi$$

Satisfaction Condition in FOL

Theorem (satisfaction condition)

For a signature morphism $\sigma: \Sigma \to \Sigma', \phi \in Sen(\Sigma), M' \in Mod(\Sigma')$:

$$M'|_{\sigma}\models\phi$$
 iff $M'\models\sigma(\phi)$

Proof.

For terms, prove $M'|_{\sigma}(t) = M'(\sigma(t))$. Then use induction on ϕ . For quantifiers, use a bijective correspondence between ι -expansions M_1 of $M'|_{\sigma}$ and ι' -expansions M'_1 of M'.

$$M'|_{\sigma} \qquad \Sigma \xrightarrow{\sigma} \Sigma' \qquad M'$$

$$\int_{\iota}^{\iota} \qquad \int_{\iota'}^{\iota'} \downarrow'$$

$$M_{1} \qquad \Sigma \uplus \{x:s\} = \Sigma_{1} \xrightarrow{\sigma \uplus x} \Sigma'_{1} = \Sigma' \uplus \{x:\sigma(s)\} \qquad M'_{1}$$

Signature Morphisms in OWL

Definition

Given two DL signatures $\Sigma_1 = (C_1, R_1, I_1)$ and $\Sigma_2 = (C_2, R_2, I_2)$ a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ consists of three functions

•
$$\sigma^C : \mathbf{C}_1 \to \mathbf{C}_2$$

•
$$\sigma^R : \mathbf{R}_1 \to \mathbf{R}_2$$

•
$$\sigma': \mathbf{I}_1 \to \mathbf{I}_2.$$

Sentence Translation in OWL

Definition

Given a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ and a Σ_1 -sentence ϕ , the translation $\sigma(\phi)$ is defined by inductively replacing the symbols in ϕ along σ .

Model Reduction in OWL

Definition

Given a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ and a Σ_2 -model \mathcal{I}_2 , the σ -reduct of \mathcal{I}_2 along σ is the Σ_1 -model $\mathcal{I}_1 = \mathcal{I}_2|_{\sigma}$ defined by

- $\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$ • $A^{\mathcal{I}_1} = \sigma^{\mathcal{C}}(A)^{\mathcal{I}_2}$, for $A \in \mathbf{C}_1$ • $R^{\mathcal{I}_1} = \sigma^{\mathcal{R}}(R)^{\mathcal{I}_2}$, for $R \in \mathbf{R}_1$
- $a^{\mathcal{I}_1} = \sigma^{I}(a)^{\mathcal{I}_2}$, for $a \in I_1$

Satisfaction Condition in OWL

Theorem (satisfaction condition)

Given
$$\sigma: \Sigma_1 \to \Sigma_2$$
, $\phi_1 \in Sen(\Sigma_1)$ and $\mathcal{I}_2 \in Mod(\Sigma_2)$,

$$\mathcal{I}_2|_{\sigma}\models\phi_1 \quad \textit{iff} \quad \mathcal{I}_2\models\sigma(\phi_1)$$

Proof.

Let $\mathcal{I}_1 = \mathcal{I}_2|_{\sigma}$. Note that \mathcal{I}_1 and \mathcal{I}_2 share the universe: $\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$. First prove by induction over concepts *C* that

$$\mathcal{C}^{\mathcal{I}_1} = \sigma(\mathcal{C})^{\mathcal{I}_2}.$$

Then the satisfaction condition follows easily.

Kutz, Mossakowski

2016-08-16 36

Theory Morphisms in Prop, FOL, OWL

Definition

A theory morphism $\sigma : (\Sigma_1, \Gamma_1) \to (\Sigma_2, \Gamma_2)$ is a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ such that

for $M \in Mod(\Sigma_2, \Gamma_2)$, we have $M|_{\sigma} \in Mod(\Sigma_1, \Gamma_1)$

Extensions are theory morphisms:

 (Σ,Γ) then $(\Delta_{\Sigma},\Delta_{\Gamma})$

leads to the theory morphism

$$(\Sigma,\Gamma) \xrightarrow{\iota} (\Sigma \cup \Delta_{\Sigma}, \iota(\Gamma) \cup \Delta_{\Gamma})$$

Proof: $M \models \iota(\Gamma) \cup \Delta_{\Gamma}$ implies $M|_{\iota} \models \Gamma$ by the satisfaction condition.

Interpretations

Interpretations (views, refinements)

- interpretation name : O_1 to $O_2 = \sigma$
- σ is a signature morphism (if omitted, assumed to be identity)
- expresses that σ is a theory morphism $\mathcal{O}_1
 ightarrow \mathcal{O}_2$

```
logic CASL.FOL=
spec RichBooleanAlgebra =
  BooleanAlgebra
then %def
  pred __ <= __ : Elem * Elem;</pre>
  forall x,y:Elem
  . x <= y <=> x cap y = x %(leq_def)%
end
interpretation order_in_BA :
  PartialOrder to RichBooleanAlgebra
end
```

Recall Family Ontology

```
logic OWL
ontology Family2 =
  Class: Person
  Class: Woman SubClassOf: Person
  ObjectProperty: hasChild
  Class: Mother
         EquivalentTo: Woman and hasChild some Person
  Individual: mary Types: Woman Facts: hasChild
                                                  john
  Individual: john Types: Person
  Individual: marv
       Types: Annotations: Implied "true"^^xsd:boolean
              Mother
```

end

Interpretation in OWL

```
logic OWL
ontology Family_alt =
  Class: Human
  Class: Female
 Class: Woman EquivalentTo: Human and Female
  ObjectProperty: hasChild
  Class: Mother
         EquivalentTo: Female and hasChild some Human
end
```

interpretation i : Family_alt to Family2 = Human |-> Person, Female |-> Woman end

Interpretations

Criterion for Theory Morphisms in Prop, FOL, OWL

Theorem

A signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ is a theory morphism $\sigma : (\Sigma_1, \Gamma_1) \to (\Sigma_2, \Gamma_2)$ iff

$$\Gamma_2 \models_{\Sigma_2} \sigma(\Gamma_1)$$

Proof.

By the satisfaction condition.

Implied extensions (in Prop, FOL, OWL)

The extension must not introduce new signature symbols:

 (Σ,Γ) then $(\emptyset,\Delta_{\Gamma})$

This leads to the theory morphism

$$(\Sigma, \Gamma) \xrightarrow{\iota} (\Sigma, \Gamma \cup \Delta_{\Gamma})$$

The implied extension is well-formed if

That is, implied extensions are about logical consequence.

Conservative Extensions (in Prop, FOL, OWL)

Definition

A theory morphism $\sigma : T_1 \to T_2$ is consequence-theoretically conservative (ccons), if for each $\phi_1 \in \text{Sen}(\Sigma_1)$

 $T_2 \models \sigma(\phi_1) \text{ implies } T_1 \models \phi_1.$

(no "new" facts over the "old" signature)

Definition

A theory morphism $\sigma : T_1 \to T_2$ is model-theoretically conservative (mcons), if for each $M_1 \in Mod(T_1)$, there is a σ -expansion

 $M_2 \in Mod(T_2)$ with $(M_2)|_{\sigma} = M_1$

A General Theorem

Theorem

In propositional logic, FOL and OWL, if $\sigma : T_1 \rightarrow T_2$ is mcons, then it is also ccons.

Proof.

Assume that $\sigma : T_1 \to T_2$ is mcons. Let ϕ_1 be a formula, such that $T_2 \models_{\Sigma_2} \sigma(\phi_1)$. Let M_1 be a model $M_1 \in Mod(T_1)$. By assumption there is a model $M_2 \in Mod(T_2)$ with $M_2|_{\sigma} = M_1$. Since $T_2 \models_{\Sigma_2} \sigma(\phi_1)$, we have $M_2 \models \sigma(\phi_1)$. By the satisfaction condition $M_2|_{\sigma} \models_{\Sigma_1} \phi_1$. Hence $M_1 \models \phi_1$. Altogether $T_1 \models_{\Sigma_1} \phi_1$.

Some prerequisites

Theorem (Compactness theorem for propositional logic)

If $\Gamma \models_{\Sigma} \phi$, then $\Gamma' \models_{\Sigma} \phi$ for some finite $\Gamma' \subseteq \Gamma$

Proof.

Logical consequence \models_{Σ} can be captured by provability \vdash_{Σ} . Proofs are finite.

Definition

Given a model $M \in Mod(\Sigma)$, its theory Th(M) is defined by

$$Th(M) = \{ \varphi \in Sen(\Sigma) \mid M \models_{\Sigma} \varphi \}$$

In Prop, the converse holds

Theorem

In propositional logic, if $\sigma: T_1 \rightarrow T_2$ is ccons, then it is also mcons.

Proof.

Assume that $\sigma : T_1 \to T_2$ is ccons. Let M_1 be a model $M_1 \in Mod(T_1)$. Assume that M_1 has no σ -expansion to a T_2 -model. This means that $T_2 \cup \sigma(Th(M_1)) \models \bot$. Hence by compactness we have $T_2 \cup \sigma(\Gamma) \models \bot$ for a finite $\Gamma \subseteq Th(M_1)$. Let $\Gamma = \{\phi_1, \ldots, \phi_n\}$. Thus $T_2 \cup \sigma(\{\phi_1, \ldots, \phi_n\}) \models \bot$ and hence $T_2 \models \sigma(\phi_1) \land \ldots \land \sigma(\phi_n) \to \bot$. This means $T_2 \models \sigma(\phi_1 \land \ldots \land \phi_n \to \bot)$. By assumption $T_1 \models \phi_1 \land \ldots \land \phi_n \to \bot$. Since $M_1 \in Mod(T_1)$ and $M_1 \models \phi_i$ $(1 \le i \le n)$, also $M_1 \models \bot$. Contradiction!

A Counterexample in ALC (ccons, not mcons)

- Class: Array
- Class: Integer DisjointWith: Array

end

In OWL.SROIQ, this is not even ccons!

A Counterexample in FOL (ccons, not mcons)

Definitional Extensions (in Prop, FOL, OWL)

Definition

A theory morphism $\sigma : T_1 \to T_2$ is definitional, if for each $M_1 \in Mod(T_1)$, there is a unique σ -expansion

 $M_2 \in \operatorname{Mod}(T_2)$ with $(M_2)|_{\sigma} = M_1$

```
logic Propositional
spec Person =
    props person, male, female
then %def
    props man, woman
    . man <=> person /\ male
    . woman <=> person /\ female
```

end

Definitional Extensions: Example in OWL

logic OWL
ontology Person =
 Class: Person
 Class: Female
then %def
 Class: Woman EquivalentTo: Person and Female
end

Summary of DOL Syntax for Extensions

• *O*₁ then %mcons *O*₂, *O*₁ then %mcons *O*₂: model-conservative extension

• each O_1 -model has an expansion to O_1 then O_2

• O_1 then %ccons O_2 : consequence-conservative extension

• O_1 then $O_2 \models \varphi$ implies $O_1 \models \varphi$, for φ in the language of O_1

- O_1 then %def O_2 : definitional extension
 - each O_1 -model has a unique expansion to O_1 then O_2
- O_1 then % implies O_2 : implied extension
 - like %mcons, but O_2 must not extend the signature

Scaling it to the Web

• OMS can be referenced directly by their URL (or IRI)

<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/ pizza.owl>

• Prefixing may be used for abbreviation

 if you not have done so already, clone the ESSLLI repository on ontohub.org: git clone git://ontohub.org/esslli-2016.git

- if you not have done so already, clone the ESSLLI repository on ontohub.org: git clone git://ontohub.org/esslli-2016.git
- Look at the theories

- if you not have done so already, clone the ESSLLI repository on ontohub.org: git clone git://ontohub.org/esslli-2016.git
- Look at the theories
- (Dis)prove theorems (both with Hets and on Ontohub.org)

- if you not have done so already, clone the ESSLLI repository on ontohub.org: git clone git://ontohub.org/esslli-2016.git
- Look at the theories
- (Dis)prove theorems (both with Hets and on Ontohub.org)
- Write some theory on your own, add intended consequences and prove them