The Distributed Ontology, Model and Specification Language (DOL) Day 5: Advanced Concepts and Applications

Oliver Kutz¹ Till Mossakowski²

¹Free University of Bozen-Bolzano, Italy ²University of Magdeburg, Germany

Tutorial at ESSLLI 2016, Bozen-Bolzano, August 15 - 19

On Day 4 we have looked at:

- Semantics of structured OMS
 - based on institutions
- Proofs in OMS
 - based on entailment systems

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Today				

We will close our introduction to DOL today by introducing several advanced features. These include:

- heterogeneity: working with multiple logical systems
- alignments, expressive bridge ontologies
- networks and combinations of networks
- refinements
- entailment, equivalences, queries

Heterogeneity: Working with Multiple Logical Systems

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Example 1:	DTV: Can	you use th	ese tools	
together?				

The OMG Date-Time Vocabulary (DTV) is a heterogenous^{*} ontology:

- SBVR: very expressive, readable for business users
- UML: graphical representation
- OWL DL: formal semantics, decidable
- Common Logic: formal semantics, very expressive

Benefit: DTV utilizes advantages of different languages

* heterogenous = components are written in different languages

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Example 2:	Relation	between	OWL and FOL	
ontologies				

Common practice: annotate OWL ontologies with informal FOL:

- Keet's mereotopological ontology [1],
- Dolce Lite and its relation to full Dolce [2],
- BFO-OWL and its relation to full BFO.

OWL gives better tool support, FOL greater expressiveness.

But: informal FOL axioms are not available for machine processing!

 C.M. Keet, F.C. Fernández-Reyes, and A. Morales-González. Representing mereotopological relations in OWL ontologies with ontoparts. In *Proc. of the ESWC'12*, vol. 7295 *LNCS*, 2012.
 C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Descriptve ontology for linguistic and cognitive engineering. http://www.loa.istc.cnr.it/D0LCE.html.

Institution comorphisms (embeddings, encodings)

Definition

- Let $\mathcal{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$ and $\mathcal{I}' = \langle \mathbf{Sign}', \mathbf{Sen}', \mathbf{Mod}', \langle \models_{\Sigma'}' \rangle_{\Sigma' \in |\mathbf{Sign}'|} \rangle$ be institutions. An institution comorphism $\rho \colon \mathcal{I} \to \mathcal{I}'$ consists of:
 - a functor $\Phi \colon \mathbf{Sign} \to \mathbf{Sign}';$
 - a (natural) family of maps $\alpha_{\Sigma} \colon \mathbf{Sen}(\Sigma) \to \mathbf{Sen}'(\Phi(\Sigma))$, and
- a (natural) family of functors $\beta_{\Sigma} \colon Mod'(\Phi(\Sigma)) \to Mod(\Sigma)$, such that for any $\Sigma \in |Sign|$, any $\varphi \in Sen(\Sigma)$ and any $M' \in Mod'(\Phi(\Sigma))$:

$$M' \models'_{\Phi(\Sigma)} \alpha_{\Sigma}(\varphi) \text{ iff } \beta_{\Sigma}(M') \models_{\Sigma} \varphi$$

[Satisfaction condition]

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Example	comorphism:	Prop to	CASL	
Translation	of signatures: Φ(Σ	Σ) = (S, F,	P) with	

- sorts: $S = \emptyset$
- function symbols: $F_{w,s} = \emptyset$
- predicate symbols $P_w = \begin{cases} \Sigma, & \text{if } w = \lambda \\ \emptyset, & \text{otherwise} \end{cases}$.

Translation of sentences:

$$\alpha_{\Sigma}(\varphi) = \varphi$$

Translation of models: For $M' \in Mod^{FOL}(\Phi(\Sigma))$ and $p \in \Sigma$ define

$$\beta_{\Sigma}(M')(p) := M'_p$$

The satisfaction condition is trivial.

Kutz, Mossakowski

Translation of signatures:

 $\Phi((C, R, I)) = (S, F, P)$ with

- sorts: $S = \{Thing\}$
- function symbols: $F = \{a: Thing \mid a \in I\}$
- predicate symbols $P = \{A: Thing \mid A \in \mathbf{C}\} \cup \{R: Thing \times Thing \mid R \in \mathbf{R}\}$

Concepts are translated as follows (depending on some variable *x*):

- $\alpha_x(A) = A(x)$
- $\alpha_x(\top) = \top$
- $\alpha_x(\perp) = \perp$
- $\alpha_x(\neg C) = \neg \alpha_x(C)$
- $\alpha_x(C \sqcap D) = \alpha_x(C) \land \alpha_x(D)$
- $\alpha_x(C \sqcup D) = \alpha_x(C) \lor \alpha_x(D)$
- $\alpha_x(\exists R.C) = \exists y \colon Thing.(R(x,y) \land \alpha_y(C))$
- $\alpha_x(\forall R.C) = \forall y \colon Thing.(R(x, y) \to \alpha_y(C))$

Refinements

Queries et al.

Conclusion

Translation of sentences

•
$$\alpha_{\Sigma}(C \sqsubseteq D) = \forall x \colon Thing. (\alpha_{x}(C) \rightarrow \alpha_{x}(D))$$

•
$$\alpha_{\Sigma}(a:C) = \alpha_{x}(C)[x \mapsto a]^{1}$$

•
$$\alpha_{\Sigma}(R(a,b)) = R(a,b)$$

 ${}^{1}t[x \mapsto a]$ means "in t, replace x by a".

Kutz, Mossakowski

Distributed Ontology, Model and Specification Language (DOL)

Translation of models

For
$$M' \in \text{Mod}^{FOL}(\Phi(\Sigma))$$
 define $\beta_{\Sigma}(M') := \mathcal{I} := (\Delta, \cdot^{\mathcal{I}})$ with $\Delta = |M'|_{Thing}$ and $A^{\mathcal{I}} = M'_A, a^{\mathcal{I}} = M'_a, R^{\mathcal{I}} = M'_R$.

Lemma

$$C^{\mathcal{I}} = \left\{ m \in M'_{Thing} | M' + \{ x \mapsto m \} \models \alpha_x(C) \right\}$$

Proof.

By induction over the structure of C.

•
$$A^{\mathcal{I}} = M'_A = \left\{ m \in M'_{Thing} | M' + \{x \mapsto m\} \models A(x) \right\}$$

• $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$
 $= {}^{I.H.} \Delta \setminus \{m \in M'_{\top} | M' + \{x \mapsto m\} \models \alpha_x(C)\}$
 $= \{m \in M'_{\top} | M' + \{x \mapsto m\} \models \neg \alpha_x(C)\}$ etc.

The satisfaction condition now follows easily.

A heterogeneous logical environment (\mathcal{HLE}) consists of

- a logic graph, consisting of institutions, institution comorphisms (translations) and institution morphisms (projections, see below),
- an OMS language graph, and
- support relations.

The support relations specify which language supports which logics and which serializations, and which language translation supports which logic translation or reduction.

Moreover, for each language we have a default selection of a logic and a serialization. There are also default translations.

Kutz, Mossakowski

Distributed Ontology, Model and Specification Language (DOL)

2016-08-19 15

<u>a</u> t	Ar.	$\sim a$	ar	- · ·
 ະເ	C 1 '	UΒ	.ei	L Y

Ontologies: An Initial Logic Graph

Heterogeneous Translations

Let ρ be an institution comorphism and ${\it O}$ an OMS. Then we have the OMS

 ${\cal O}$ with translation ρ

```
logic OWL
ontology Mereology =
 ObjectProperty: isPart0f
 ObjectProperty: isProperPartOf
  Characteristics: Asymmetric SubPropertyOf: isPartOf
 with translation OWL22CASL
then logic CASL : {
  forall x,y,z:Thing .
     isProperPartOf(x,y) / isProperPartOf(y,z)
       => isProperPartOf (x,z) }
  %% transitivity; can't be expressed in OWL together
   %% with asvmmetrv
```

Semantics of flattenable OMS (can be flattened to a basic OMS): (I, Σ, Ψ) (theory-level)

- I an institution
- Σ : a signature in *I*, also written Sig(O)
- Ψ : a set of Σ -sentences, also written Th(O)

Semantics of elusive OMS (= non-flattenable OMS): (I, Σ, \mathcal{M}) (model-level)

- I an institution
- Σ : a signature in *I*, also written Sig(O)
- \mathcal{M} : a class of Σ -models, also written Mod(O)

Semantics of heterogeneous translations
O flattenable Let
$$\llbracket O \rrbracket_{\Gamma}^{T} = (I, \Sigma, \Psi)$$

• homogeneous translation
 $\llbracket O$ with $\sigma : \Sigma \to \Sigma' \rrbracket_{\Gamma}^{T} = (I, \Sigma', \sigma(\Psi))$
• heterogeneous translation
 $\llbracket O$ with translation $\rho : I \to I' \rrbracket_{\Gamma}^{T} = (I', \rho^{Sig}(\Sigma), \rho^{Sen}(\Psi))$
O elusive Let $\llbracket O \rrbracket_{\Gamma}^{M} = (I, \Sigma, \mathcal{M})$
• homogeneous translation
 $\llbracket O$ with $\sigma : \Sigma \to \Sigma' \rrbracket_{\Gamma}^{M} = (I, \Sigma', \mathcal{M}')$
where $\mathcal{M}' = \{M \in Mod(\Sigma') \mid M|_{\sigma} \in \mathcal{M}\}$
• heterogeneous translation
 $\llbracket O$ with translation $\rho : I \to I' \rrbracket_{\Gamma}^{M} = (I', \rho^{Sig}(\Sigma), \mathcal{M}')$ where $\mathcal{M}' = \{M \in Mod(\Sigma') \mid \rho^{Mod}(M) \in \mathcal{M}\}$

Extended task

New Task:

• Are there any inbreds people in our KB?

Charles II of Spain

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
	· I I I I I I			

What is an inbred?

 \boldsymbol{u} is inbread iff there are \boldsymbol{x} \boldsymbol{y} \boldsymbol{z} such that

- x is a parent of u
- y is a parent of u
- $x \neq y$
- z is an ancestor of x
- z is an ancestor of y

Charles II of Spain

 \boldsymbol{u} is inbread iff there are \boldsymbol{x} \boldsymbol{y} \boldsymbol{z} such that

- x is a parent of u
- y is a parent of u
- $x \neq y$
- z is an ancestor of x
- z is an ancestor of y

DL has no variables \rightarrow switch language

Charles II of Spain

Extended task: switch of logic

```
logic OWL
ontology Genealogy =
    ObjectProperty: parentOf SubPropertyOf: ancestor
    ObjectProperty: ancestor
    ObjectProperty: ancestor Characteristics: Transitive
end
```

```
ontology Inbred =
  Genealogy with translation OWL22CASL
then logic CASL : {
  pred Inbred : Thing
  forall u:Thing
  . Inbred(u) <=> exists x,y,z:Thing .
     parentOf(x,u) /\ parentOf(y,u)
     /\ not x=y
     /\ ancestor(z,x) /\ ancestor(z,y) }
end
```

Extended task: entailment

```
ontology CharlesII_ABox =
   Individual: CharlesII ... %% Charles II ABox
end
```

```
logic CASL
ontology anyInbreds =
   { CharlesII_ABox with translation OWL22CASL
   and Inbred }
then %implies
   . exists x:Thing . Inbred(x)
end
```

```
Heterogeneity
                 Networks
                               Refinements
                                                Queries et al.
                                                                 Conclusion
A heterogeneous reduction
ontology Inbred_OWL =
  Genealogy
and
logic CASL : {
  sort Thing
  preds Inbred : Thing
         parentOf, ancestor : Thing*Thing
  forall u:Thing
   . Inbred(u) <=> exists x,y,z:Thing .
        parentOf(x,u)
     / parentOf(y,u)
     /\setminus not x=y
     / \ ancestor(z,x)
     /\ ancestor(z,y) } hide along OWL22CASL
end
```

This ontology imports first-order axioms only "on-the-fly". Overall, it stays an OWL ontology (in contrast to the Inbred ontology). 2016-08-19 27

Distributed Ontology, Model and Specification Language (DOL)

Institution morphisms (projections)

Definition

Let $\mathcal{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$ and $\mathcal{I}' = \langle \mathbf{Sign}', \mathbf{Sen}', \mathbf{Mod}', \langle \models_{\Sigma'}' \rangle_{\Sigma' \in |\mathbf{Sign}'|} \rangle$ be institutions. An institution morphism $\mu \colon \mathcal{I} \to \mathcal{I}'$ consists of:

- a functor μ^{Sign} : Sign \rightarrow Sign';
- $\bullet\,$ a natural transformation $\mu^{\it Sen}\colon \mu^{\it Sign}\,;\,{\rm Sen}'\to{\rm Sen},\,{\rm and}\,$
- a natural transformation μ^{Mod} : $\mathbf{Mod} \to (\mu^{Sign})^{op}$; \mathbf{Mod}' ,

such that for any signature $\Sigma \in |\mathbf{Sign}|$, any $\varphi' \in \mathbf{Sen}'(\mu^{Sign}(\Sigma))$ and any $M \in \mathbf{Mod}(\Sigma)$:

$$M \models_{\Sigma} \mu_{\Sigma}^{Sen}(\varphi') \text{ iff } \mu_{\Sigma}^{Mod}(M) \models'_{\mu^{Sign}(\Sigma)} \varphi' \\ [Satisfaction \ condition]$$

Example morphism: CASL to Prop

Translation of signatures: $\Phi((S, F, P)) = P_{\lambda}$.

Translation of sentences:

$$\alpha_{\Sigma}(\varphi) = \varphi$$

Translation of models: For $M' \in Mod^{FOL}(\Phi(\Sigma))$ and $p \in \Sigma$ define

$$\beta_{\Sigma}(M')(p) := M'_p$$

The satisfaction condition is trivial.

Translation of signatures:

 $\Phi(({s}, F, P)) = (C, R, I)$ with

- concepts: $\mathbf{C} = \{ C \mid C : s \in P \}$
- roles: $\mathbf{R} = \{ R \mid R : s \times s \in P \}$
- individuals $I = \{a \mid a \colon s \in F\}$

Translation of sentences and models:

same as for the comorphism $\mathcal{ALC} \rightarrow CASL$.

Also the satisfaction condition follows in the same way.

Semantics of (heterogeneous) reductions

Let
$$\llbracket O \rrbracket^M_{\Gamma} = (I, \Sigma, \mathcal{M})$$

- homogeneous reduction
 - $\begin{bmatrix} O \text{ reveal } \Sigma' \end{bmatrix}_{\Gamma}^{M} = (I, \Sigma', \mathcal{M}|_{\Sigma'}) \\ \begin{bmatrix} O \text{ hide } \Sigma' \end{bmatrix}_{\Gamma}^{M} = \begin{bmatrix} O \text{ reveal } \Sigma \setminus \Sigma' \end{bmatrix}_{\Gamma}^{M}$

• heterogeneous reduction $[O \text{ hide along } \rho: I \to I']_{\Gamma}^{M} = (I', \rho^{Sig}(\Sigma), \rho^{Mod}(\mathcal{M}))$

 $\mathcal{M}|_{\Sigma'}$ may be impossible to capture by a theory (even if \mathcal{M} is).

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Semantics c	of heteroge	neous appro	ximation	

Note: *O* must be flattenable! Let $\llbracket O \rrbracket_{\Gamma}^{T} = (I, \Sigma, \Psi).$

- homogeneous approximation
 [[O keep in Σ']]^T_Γ =(I, Σ', {φ ∈ Sen(Σ') | Ψ ⊨ φ})
 (note: any logically equivalent theory will also do)
 [[O forget Σ']]^T_Γ = [[O keep in Σ \ Σ']]^T_Γ
- heterogeneous approximation $\begin{bmatrix} O \text{ keep in } \Sigma' \text{ with } I' \end{bmatrix}_{\Gamma}^{T} = (I', \Sigma', \{\varphi \in \text{Sen}^{I'}(\Sigma') | \Psi \models \rho^{\text{Sen}}(\varphi)\})$ where $\rho : I' \to I$ is the inclusion and Σ' is such that $\rho^{\text{Sig}}(\Sigma') \subseteq \Sigma$ $\begin{bmatrix} O \text{ forget } \Sigma' \text{ with } I' \end{bmatrix}_{\Gamma}^{T} = \begin{bmatrix} O \text{ keep in } \Sigma \setminus \Sigma' \text{ with } I' \end{bmatrix}_{\Gamma}^{T}$

Networks and Their Combination

OMS networks (diagrams)

network N = $N_1, \ldots, N_m, O_1, \ldots, O_n, M_1, \ldots, M_p$ excluding $N'_1, \ldots, N'_i, O'_1, \ldots, O'_j, M'_1, \ldots, M'_k$

- N_i are other networks
- O_i are OMS (possibly prefixed with labels, like n: O)
- *M_i* are mappings (views, interpretations)
• combine N

- N is a network
- semantics is the (a) colimit of the diagram N

ontology AlignedOntology1 =
 combine N

```
ontology Source =
 Class: Person
 Class: Woman SubClassOf: Person
ontology Ontol =
 Class: Person Class: Bank
 Class: Woman SubClassOf: Person
interpretation I1 : Source to Onto1 =
   Person |-> Person, Woman |-> Woman
ontology Onto2 =
 Class: HumanBeing Class: Bank
 Class: Woman SubClassOf: HumanBeing
interpretation I2 : Source to Onto2 =
   Person |-> HumanBeing, Woman |-> Woman
ontology CombinedOntology =
  combine Source, Onto1, Onto2, I1, I2
```


Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Alignments				

- alignment *ld* card₁ card₂ : O₁ to O₂ = c₁,... c_n assuming SingleDomain | GlobalDomain | ContextualizedDomain
- card; is (optionally) one of 1, ?, +, *
- the c_i are correspondences of form sym_1 rel conf sym_2
 - *sym_i* is a symbol from *O_i*
 - rel is one of >, <, =, %, \ni , \in , \mapsto , or an Id
 - $\bullet\ conf$ is an (optional) confidence value between 0 and 1

Syntax of alignments follows the alignment API http://alignapi.gforge.inria.fr

alignment Alignment1 : { Class: Woman } to { Class: Person } =
 Woman < Person
end</pre>

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Alignment:	Example			

- ontology S = Class: Person
 Individual: alex Types: Person
 Class: Child
- ontology T = Class: HumanBeing Class: Male SubClassOf: HumanBeing Class: Employee

alignment A : S to T =
 Person = HumanBeing
 alex in Male
 Child < not Employee
 assuming GlobalDomain</pre>

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Networks,	revisited			

network N = $N_1, \ldots, N_m, O_1, \ldots, O_n, M_1, \ldots, M_p, A_1, \ldots, A_r$ excluding $N'_1, \ldots, N'_i, O'_1, \ldots, O'_j, M'_1, \ldots, M'_k$

- N_i are other networks
- O_i are OMS (possibly prefixed with labels, like n: O)
- *M_i* are mappings (views, equivalences)
- A_i are alignments

The resulting diagram N includes (institution-specific) W-alignment diagrams for each alignment A_i . Using **assuming**, assumptions about the domains of all OMS can be specified:

SingleDomain aligned symbols are mapped to each other GlobalDomain aligned OMS are relativized

ContextualizedDomain alignments are reified as binary relations

Class: Child SubClassOf: ¬ Employee Individual: alex Types: Male The colimit ontology of the diagram of the alignment above is:

ontology B = Class: Person_HumanBeing Class: Employee Class: Male SubClassOf: Person_HumanBeing Class: Child SubClassOf: ¬ Employee Individual: alex Types: Male, Person HumanBeing Framework: institutions like OWL, FOL, OMS are interpreted over the same domain

- model for A: (m₁, m₂) such that m₁(s) R m₂(t) for each s R t in A
- model for a diagram: family (m_i) of models such that (m_i, m_j) is a model for A_{ij}
- local models of O_j modulo a diagram: jth-projection on models of the diagram

Alignment of Bioportal Ontologies

```
logic OWL
%prefix(
  ontologies: <https://ontohub.org/bioportal/>
  obo: <http://purl.obolibrary.org/obo/> )%
alignment ZFA2MA : ontologies:ZFA to ontologies:MA =
%% ZFA: zebrafish anatomical ontology
%% MA: adult mouse anatomy
  obo: ZFA_{0005153} = obo: MA_{0000322}.
  obo: ZFA_{0001197} = obo: MA_{0000855}.
  obo: ZFA_{0000529} = obo: MA_{0000368}.
  obo:ZFA_0000413 = obo:MA_0002420,
  obo: ZFA_{0000816} = obo: MA_{0000344}.
  obo: ZFA_{0001114} = obo: MA_{0000023}.
  obo: ZFA_{000010} = obo: MA_{000010}.
  obo:ZFA_0000539 = obo:MA_0001017,
  obo:ZFA 0001101 = obo:MA 0002446
                                      end
ontology combination = %cons
  combine ZFA2MA
                    end
```

Alignment of Bioportal Ontologies

```
logic OWL
%prefix(
 ontologies: <https://ontohub.org/bioportal/>
  obo: <http://purl.obolibrary.org/obo/> )%
alignment ZFA2MA : ontologies:ZFA to ontologies:MA =
%% ZFA: zebrafish anatomical ontology
%% MA: adult mouse anatomy
 obo:synovial joint = obo:synovial joint,
 obo:pars intermedia = obo:pars intermedia,
 obo:kidney = obo:kidney,
 obo:gonad = obo:gonad,
 obo:oral epithelium = obo:oral epithelium,
 obo:head = obo:head.
 obo:cardiovascular system = obo:cardiovascular system,
 obo:locus coeruleus = obo:locus coeruleus,
 obo:gustatory system = obo:gustatory system end
ontology combination = %cons
  combine ZFA2MA
                   end
```

Alignment of Upper Ontologies

%prefix(gfo: <http://www.onto-med.de/ontologies/>
 dolce: <http://www.loa-cnr.it/ontologies/>
 bfo: <http://www.ifomis.org/bfo/>)%

logic OWL

alignment DolceLite2BF0 : dolce:DOLCE-Lite.owl to bfo:1.1 =
endurant = IndependentContinuant,
physical-endurant = MaterialEntity,
physical-object = Object, perdurant = Occurrent,
process = Process, quality = Quality,
spatio-temporal-region = SpatiotemporalRegion,
temporal-region = TemporalRegion, space-region = SpatialRegion

```
Networks
                              Refinements
                                             Queries et al.
                                                              Conclusion
Alignment of Upper Ontologies (cont'd)
alignment DolceLite2GF0 : dolce:DOLCE-Lite.owl to gfo:gfo.owl =
  particular = Individual, endurant = Presential,
  physical-object = Material_object,
  amount-of-matter = Amount_of_substrate.
  perdurant = Occurrent, quality = Property,
  time-interval = Chronoid, generic-dependent < necessary_for,</pre>
  part < abstract_has_part, part-of < abstract_part_of,</pre>
  proper-part < has_proper_part,</pre>
  proper-part-of < proper_part_of,</pre>
  generic-location < occupies,
  generic-location-of < occupied_by</pre>
alignment BF02GF0 : bfo:1.1 to gfo:gfo.owl =
 Entity = Entity, Object = Material_object,
 ObjectBoundary = Material_boundary, Role < Role ,</pre>
 Occurrent = Occurrent, Process = Process, Quality = Property
 SpatialRegion = Spatial_region,
 TemporalRegion = Temporal_region
```

Alignment of Upper Ontologies — Combination

ontology Space =
 combine BF02GF0, DolceLite2GF0, DolceLite2BF0

Distributed Ontology, Model and Specification Language (DOL)

Framework: different domains reconciled in a global domain

• model for a diagram: family (m_i) of models with equalizing function γ such that $(\gamma_i m_i, \gamma_j m_j)$ is a model for A_{ij}

Let O be an ontology, define its relativization \tilde{O} :

- concepts are concepts of O with a new concept \top_O ;
- roles and individuals are the same
- axioms:
 - each concept C is subsumed by \top_O ,
 - each individual *i* is an instance of \top_O ,
 - each role r has domain and range \top_O .

and the axioms of ${\it O}$ where the following replacement of concept is made:

- each occurrence of \top is replaced by \top_O ,
- each concept $\neg C$ is replaced by $\top_O \setminus C$, and
- each concept $\forall R.C$ is replaced by $\top_O \sqcap \forall R.C$.

where

ontology B =Class: Thing_S Class: Thing_T Class: Person_HumanBeing SubClassOf: Thing_S, Thing_T Class: Male Class: Employee Class: Child SubClassOf: Thing_T and \neg Employee Individual: alex Types: Male

ontology C = Class: ThingS Class: ThingT Class: Person_HumanBeing SubClassOf: ThingS, ThingC Class: Male SubClassOf: Person_HumanBeing Class: Employee SubClassOf: ThingT Class: Child SubClassOf: ThingS Class: Child SubClassOf: ThingT and ¬ Employee Individual: alex Types: Male, Person_HumanBeing

Contextualized semantics of diagrams

Framework: different domains related by coherent relations

such that

- r_{ij} is functional and injective,
- r_{ii} is the identity (diagonal) relation,
- r_{ji} is the converse of r_{ij} , and
- r_{ik} is the relational composition of r_{ij} and r_{jk}
- model for a diagram: family (m_i) of models with coherent relations (r_{ij}) such that $(m_i, r_{ji}m_j)$ is a model for A_{ij}

where \overline{B} modifies B as follows:

- r_{ij} are added to \overline{B} as roles with domain op_s and range op_t
- the correspondences are translated to axioms involving these roles:

•
$$s_i = t_j$$
 becomes $s_i r_{ij} t_j$

• $a_i \in c_j$ becomes $a_i \in \exists r_{ij}.c_j$

• . . .

• the properties of the roles are added as axioms in \overline{B}

Adding domain relations to the bridge

ontology $\overline{B} =$ Class: ThingS Class: ThingT ObjectPropery: r_{ST} Domain: ThingS Range: ThingT Class: Person EquivalentTo: r_{ST} some HumanBeing Class: Employee Class: Child SubClassOf: r_{ST} some \neg Employee Individual: alex Types: r_{ST} some Male

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Example:	contextua	alized semar	ntics	
		6-		

where

ontology C = Class: ThingS Class: ThingT ObjectPropery: r_{ST} Domain: ThingS Range: ThingT Class: Person EquivalentTo: r_{ST} some HumanBeing Class: Employee Class: Child SubClassOf: r_{ST} some \neg Employee Individual: alex Types: r_{ST} some Male, Person

Refinements

 $O_1 \rightsquigarrow O_2$

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Recall So	rting Exar	nple		
Informal spe	cification:			

To sort a list means to find a list with the same elements, which is in ascending order.

Formal requirements specification:

```
%right_assoc( __::__ )%
logic CASL.FOL=
spec PartialOrder =
  sort Flem
 pred __leq__ : Elem * Elem
  . forall x : Elem . x leg x %(refl)%
  . forall x, y : Elem . x leq y /\ y leq x => x = y (antisym)
  . forall x, y, z : Elem . x leq y /\ y leq z => x leq z %(trans)
end
spec List = PartialOrder then
  free type List ::= [] | __::__(Elem; List)
 pred __elem__ : Elem * List
  forall x,y:Elem; L,L1,L2:List
  . not x elem []
  . x elem (y :: L) <=> x=y \/ x elem L
end
```

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Sorting (c	cont'd)			
spec Abstra	actSort =			
List				
then %def				
preds is_	_ordered : L	.ist;		
рен	rmutation :	List * List		
op sorter	∽ : List->Li	st		
forall x	y:Elem; L,L	1,L2:List		
. is_orde	ered([])	-		
. is_orde	ered(x::[])			
. is_orde	ered(x::y::L	.) <=> x leq y	/\ is_ordered	(y::L)
. permuta	ation(L1,L2)	<=>		
·	(forall x:	Elem . x elem	L1 <=> x elem	L2)
. is_orde	ered(sorter(L))		
. permuta	ation(L,sort	er(L))		
end	-			

We want to show insert sort to enjoy these properties. Formal design specification:

```
spec InsertSort = List then
 ops insert : Elem*List -> List;
     insert sort : List->List
 vars x,y:Elem; L:List
  . insert(x,[]) = x::[]
  x = x = x = x
  . not x leq y => insert(x,y::L) = y::insert(x,L)
  . insert_sort([]) = []
  . insert_sort(x::L) = insert(x,insert_sort(L))
end
```



```
spec HaskellInsertSort =
insert :: Ord a => (a.[a]) -> [a]
insert(x,[1) = [x]
insert(x,y:l) = if x <= y then x:y:l</pre>
                    else y:insert(x,l)
insert sort :: Ord a => [a] -> [a]
insert_sort([]) = []
insert_sort(x:l) = insert(x,insert_sort(l))
end
```

We have the following refinement steps: AbstractSort \rightsquigarrow InsertSort \rightsquigarrow HaskellInsertSort

```
refinement R =
   AbstractSort
    refined to InsertSort
    refined via CASL2Haskell to HaskellInsertSort
end
```

Refinement of Natural Numbers

```
spec Monoid =
 sort Elem
 ops 0 : Elem;
         __+__ : Elem * Elem -> Elem, assoc, unit 0
end
spec NatWithSuc = %mono
 free type Nat ::= 0 | suc(Nat)
 op __+__ : Nat * Nat -> Nat, unit 0
 forall x , y : Nat . x + suc(y) = suc(x + y)
 op 1:Nat = suc(0)
end
spec Nat =
  NatWithSuc hide suc
end
```

```
Networks
                             Refinements
                                            Queries et al.
                                                            Conclusion
Refinement of Natural Numbers (cont'd)
refinement R1 =
 Monoid refined via sort Elem |-> Nat to Nat
end
refinement R2 =
 Nat refined via sort Nat |-> Bin to NatBin
end
refinement R3 =
 Monoid refined via sort Elem |-> Nat to
 Nat refined via sort Nat |-> Bin to NatBin
end
refinement R3' =
 Monoid refined via sort Elem |-> Nat to R2
end
refinement R3'' =
 Monoid refined via sort Elem |-> Nat to Nat then R2
end
```

```
refinement R3''' = R1 then R2
```

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Sample	Network			

```
spec Nat = ...
end
spec Int = Nat then ...
end
spec List = Nat then ...
end
network NatIntList = Nat, Int, List
end
```


Sample Refinement of Networks

```
spec NatBin = ...
end
spec IntBin = NatBin then ...
end
spec ArrayWithPointer = NatBin then ...
end
network NatIntListImpl = NatBin, IntBin, ArrayWithPointer
end
refinement NetRefine =
  NatIntList refined via
      R2,
      Int refined via sort Int |-> BinInt to IntBin,
      List via sort List |-> Array to ArrayWithPointer
    to NatIntListImpl
end
```


Entailments, Equivalences, Queries

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Entailments	5			

- entailment $Id = O_1$ entails O_2
- use case: Ontology entails competency questions

entailment e =

BF0_F0L entails { BF0_OWL with translation OWL2F0L }
end
Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Equivalence	S			

- equivalence $Id: O_1 \leftrightarrow O_2 = O_3$
- (fragment) OMS O₃ is such that O_i then %def O₃ is a definitional extension of O_i for i = 1, 2;
- this implies that O_1 and O_2 have model classes that are in bijective correspondence

equivalence e : algebra:BooleanAlgebra ↔ algebra:BooleanRing =

 $\begin{array}{l} x \wedge y \ = \ x \cdot y \\ x \vee y \ = \ x + y + x \cdot y \\ \neg x \ = \ 1 + x \\ x \cdot y \ = \ x \wedge y \\ x + y \ = \ (x \vee y) \ \land \ \neg (x \wedge y) \end{array}$

• cons-ext Id c : O_1 of O_2 for Σ

• O_1 is a module of O_2 with restriction signature Σ and conservativity c

c=%mcons every Σ -reduct of an O_1 -model can be expanded to an O_2 -model

 $\begin{array}{l} c = \% \text{ccons} \text{ every } \Sigma \text{-sentence } \varphi \text{ following from } O_2 \text{ already} \\ \text{ follows from } O_1 \end{array}$

This relation shall hold for any module O_1 extracted from O_2 using the **extract** construct.

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Queries				

DOL is a logical (meta) language

- focus on ontologies, models, specifications,
- and their logical relations: logical consequence, interpretations,

Queries are different:

- answer is not "yes" or "no", but an answer substitution
- query language may differ from language of OMS that is queried

Sample query languages

- conjunctive queries in OWL
- Prolog/Logic Programming
- SPARQL

New OMS declarations and relations:

query qname = select vars where sentence in OMS
 [along language-translation]
substitution sname : OMS1 to OMS2 = derived-symbol-map
result rname = sname_1, ..., sname_n for qname
 %% result is a substitution
New sentences (however, as structured OMS!):
apply(sname,sentence) %% apply substition
Open question: how to deal with "construct" queries?

Conclusion

Kutz, Mossakowski

Distributed Ontology, Model and Specification Language (DOL)

2016-08-19 77

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Conclusion				

- DOL is a meta language for (formal) ontologies, specifications and models (OMS)
- DOL covers many aspects of modularity of and relations among OMS ("OMS-in-the large")
- DOL is standardized at OMG
- you can help with joining the DOL discussion
 - see dol-omg.org

Heterogeneity	Networks	Refinements	Queries et al.	Conclusion
Challenges				

- What is a suitable abstract meta framework for non-monotonic logics and rule languages like RIF and RuleML? Are institutions suitable here? different from those for OWL?
- What is a useful abstract notion of query (language) and answer substitution?
- How to integrate TBox-like and ABox-like OMS?
- Can the notions of class hierarchy and of satisfiability of a class be generalised from OWL to other languages?
- How to interpret alignment correspondences with confidence other that 1 in a combination?
- Can logical frameworks be used for the specification of OMS languages and translations?
- Proof support for all of DOL

Thank you for your attention

In case of questions, contact us:

Oliver Kutz Oliver.Kutz@unibz.it

Till Mossakowski till@iks.cs.ovgu.de