

Description Logics: a nice family of logics Introduction Part 2: OWL & DLs

ESSLLI, 15 August 2016

Uli Sattler

sattler@cs.man.ac.uk School of Computer Science University of Manchester UK

Thomas Schneider

tschneider@informatik.uni-bremen.de Department of Computer Science University of Bremen Germany

Ontology Language - a Motivation

What's the Problem?

- Typical web page markup consists of:
 - Rendering information (e.g., font size and colour)
 - Hyper-links to related content
- Content is accessible to humans but not (easily) to computers...

Information we can see

- University of Manchester
 - The Business School
- Consultancy
 - Gain a broader perspective and solve complex business problems
- Commercialisation
 - From idea to marketplace -- bringing our ground-breaking inventions into the commercial world
- Manchester Business School
 - MBS is redefiing business education to meet the challenges of a fastevolving global landscape
- Recruit our graduates
 - Attend careers fairs or arrange your own dedicated event on campus
- Contact the Business Engagement Support Team
 - +44 161 275 2227
 - business@manchester.ac.uk

Information a computer can see...

Solution: XML markup with "meaningful" tags?

<university>+++ M●M�M■�≈ X■�M□■♋♦米□■♋● ◆□□●≏ →米≏M ***∭**∭ mso•so);; Here the d</address> <topic>۞ M % + + M □ *≦*♦≈ 6 Q M $\begin{array}{c} \bullet & & \\ & \bullet & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$ ◆₩**≏**₩ • M & ♦◘៣១&;៣፬• m◘■↗米◘Ѻ៣≏</topic> <topic>\\$`HO` QM□=M□+①●MM • <details>**+O →+ ◆ • m \mathbb{M} $\mathcal{O} \subseteq \mathbb{R}^{</details>} \dots </topic>$ <topic>ઋℋϘ ฦጢ□■ጢ□•₫●ጢጢ <details>**)(O - ++ ♦ $M \Omega \subseteq </details> ... </topic>$ → **((** M ● 55 ■ 4 1 1 1 ◾▥◈▥▥▯▣◉▣≏•∞◪ ◾◻▯•◷◙◙ •米■吻◷◻ੋ◻◻៣ਁഈ ••米♦೫៣ ◆ m ♠∎₭♠Щ♎_ॡ₭■₯♎◻Ѻጬ ♠ंᲚ╢ ♦∎X♦M ≏ • \bullet m m ★★M ♦■OOO #OON #OON

Contact> ♦ M • P=

But what about....?

<universitv>+++ ≈∞៣ ៣●៣◈៣■♦≈ 米■♦៣◻■छ♦米◻∎छ● ◆◻◻●≏ →米≏៣ ◆៣♂₥⊏ </university> <department> <address>♦‴M_⊡⊙♦□■ •⊙X&;X&;X ‴□♦M● moo•oo\\ H⊡ to V</address> <activity>⊅M ዄ升↔M □ ₽■ ♦≈M ◆~ ♠< <u>ک</u>وی¥ · ◆┈╖ · ╖ ●╖ ◇╖ ■◆┈ ́ ┼■◆╖ □■ⓒ� ┼□■ⓒ● · • □ံ● 吻□■╱╖ □╖■₥╖ ⊲♡ శ┈┼• □□╖ •♦┼ҧ┼□◆• ╖ ◇╖ *•``₩≏<u>`</u> = M ∂ ♦◻ጢ♋&;ጢ◻∙ カカ◻■↗╫◻ᄋጢ≏</activity> • \mathbb{M} $\mathcal{O} \subseteq \langle \text{details} \rangle = \langle \text{activity} \rangle$ <ầctivity>ઋ米Ϙ ฦሺ◻∎ሺ๋ם•₫●ሺሺ `♦∭ <details>**+O ++ ∭ີ ຄົ ⊡</details>... </activity> • ♦M•⊡ �XM♦■OOD #OKIM<contact>

Still the Machine only sees...

<\\\□■↗>♥♥♥▤□□▤ M●M�M■�▓ X■�M□■♋�光□■♋● ◆□□●≏ →X≏M I□≏♦™♦╫□■>╢꾓₀╫∙♦╢ � •米●● ◘□□�⊁≏M �≈m [€*©∧ ᢧᡒᠫᠣ᠋᠋᠋᠋᠋᠋᠋᠌᠌᠅᠓ᢆᡎᢀ᠓᠅᠓᠍ᢀ᠁᠂ᢣ᠍ᢀ᠓᠋᠍᠖᠅ᡝ᠋᠋ ᢀᡒᠫ᠊ᠣ᠋᠋᠋᠋᠋ ᢀᡶᠴᡔ᠓᠋ᢀ᠋᠋᠋᠆ᡔ᠓᠋᠓᠋᠓ᢂ᠓᠍᠕᠌᠉᠁ᢣ᠈᠋᠋᠋᠓᠈ᡧᢣᢢᢧᢣ᠋ᢩ᠆᠂᠓᠅᠓ ᠓&⊰≏᠋□□□ ♦◻៣១&;m ◘• m◻■↗米◻੦៣ ≏</米■♦◻◻≏♦m♦米◻■> <∙◻ጢ∽ở&;ጢ◻>ઋĤ◯ ฦጢ◻■ጢ⊡∙₫●ጢጢ── <∂)(**1**)<#`(**1**) ¢ ៣ಁ೫ಁ⊡</೫៌⊡>...</♪□ጢತ್ತ&_╢҃□> `♦≈m``•m•• &=□•• +=•m=+□□ □~ ♦≈m + <∂)(<u></u>)< M̃∂́⊡</∂́Ĥ□>...</•□Mౖॐ&M̃□> 00 ◆ m • • • • •

Jniversity inchester

Need to Add "Semantics"

shoulder_catches_during_movement shoulder_feels_like_it_will_slip_out_of_place shoulder_joint_feels_like_it_may_slip_out_of_place shoulder_joint_pain_better_after_rest shoulder_joint_ affected side Machine Processable shoulder_joint_ not shoulder_joint_ shoulder_joint_ Machine Understandable movement shoulder_joint_pain_first_appears_at_night shoulder_joint_pain_improved_by_medication shoulder_joint_pain_improves_during_exercise__returns_later shoulder_joint_pain_incr_by_raising_arm_above_shoulder_level shoulder_joint_pain_increased_by shoulder_joint_pain_increased_by_lifting should be init pain increased by maying arm across about

Four principles towards a Semantic Web of Data*

Principle 1: Give all things a name

"Now! *That* should clear up a few things around here!"

Principle 2: Relationships form a graph between things

Principle 3: The names are addresses on the Web

P1 + P2 + P3 = Giant Global Graph

Principle 4: Explicit, Formal Semantics

So we all agree on

MANCHESTER

- meaning of statements in this graph/ontology
- entailments of statements
 - hierarchies
 - query answers

Base ontology language on **description logic**!

Introduction to OWL

E. Shepard, Winnie-the-Pooh [A. A. Milne]

OWL is based on Description Logics

- precise semantics
- OWL is based on an extension of ALC
 - later more
- decades of research on
 - automated reasoning techniques
 - to base tool support on
 - to help domain expert with design, maintenance,...
 - *computational complexity* to understand trade-offs
 - model theory

OWL is a Web Ontology Language

- entity names are IRIs eg http://www.cs.man.ac.uk/~sattler/ontologies/WebST2016/RunningExample#Endocardium
- various web friendly syntaxes
 - RDF/XML
 - OWL/XML
 - ...
 - Manchester syntax
- import mechanism
- version mechanism
- annotations of
 - entities
 - axioms

• .

OWL Axioms - an Example

Inflammation SubClassOf Disease

HeartDisease EquivalentClass Disease and hasLoc some Heart

Endocarditis *EquivalentClass* Inflammation *and* hasLoc *some* Endocardium

- NCI Thesaurus
 - ~300K terms/classes
 - since 2000
 - since 2003 in OWL, monthly version, +800 terms/month
 - ...in OWL, published both
 - as a thesaurus ~ inferred concept hierarchy
 - in OWL, including underlying logical axioms, see BioPortal

OWL & DL via our Example

Inflammation	SubClassOf	Disease
Inflammation	⊑	Disease
HeartDisease	EquivalentClass	Disease and hasLoc some Heart
HeartDisease	≡	Disease ⊓ ∃hasLoc.Heart
Endocarditis	EquivalentClass	Inflammation <i>and</i> hasLoc <i>some</i> Endocardium
Endocarditis	≡	Inflammation ⊓ ∃hasLoc.Endocardium

OWL Manchester Syntax for ALC

OWL	DL
Class	Concept
Property	Role
A SubClassOf B	A ⊑ B
A EquivalentTo B	A ≡ B
Thing	Т
Nothing	T
not A	¬А
A and B	АпВ
A or B	AцB
R some A	эR.А
R only A	∀R.A

Example Axioms in Protégé:

Inflammation		Disease
HeartDisease	≡	Disease ⊓ ∃hasLoc.Heart
Endocarditis	≡	Inflammation ¬
		∃hasLoc.Endocardium

untitled-ontology-27 (http://www.semanticweb.org/sattler/ontologies/2016/6/untitled-ontology-27) : [/Users/sattler/Parkhaus/Su...

Protégé

Inflammation SubClassOf Disease

HeartDisease EquivalentClass Disease and hasLoc some Heart

Endocarditis EquivalentClass Inflammation and hasLoc some Endocardium

Protégé is an OWL editor

- in its 5th version
- built on the OWL API
- with direct access to OWL reasoners
- see http://protege.stanford.edu/products.php

I.e., DL reasoners

OWL/DL reasoning

Semantics reminder: Entailments etc. (3)

Let O be an ontology, α an axiom, A, B concepts, b an individual name:

- O is **consistent** if there exists some model I of O
- O entails α (written $O \models \alpha$) if α is satisfied in all models of O
- A is satisfiable w.r.t. O if $O \models A \sqsubseteq \bot$
- b is an instance of A w.r.t. O (written $O \models b:A$) if $b' \in A'$ in every model I of O

Classifying O is a reasoning service consisting of

- 1. testing whether O is consistent; if yes, then
- 2. checking, for each pair *A*,*B* of concept names in $O \cup \{\top, \bot\}$ whether $O \models A \sqsubseteq B$
- 3. checking, for each individual name *b* and concept name *A* in *O*, whether $O \models b:A$

...returning the result in a suitable form: O's inferred class hierarchy

...let's see that in action: Protégé

OWL Reasoners and Protégé

- OWL reasoners
 - implement decision procedures for consistency/entailments, and classify ontologies
 - we will learn more about these this week
- Protégé
 - interacts with reasoners via the OWL API
 - shows results as
 - inferred class hierarchy where
 - unsatisfiable classes are red and you get a
 - warning (red triangle) if O is inconsistent
 - very helpful to work through example ontologies
 - download from http://protege.stanford.edu/

Complete details about OWL

- here, we have concentrated on OWL for ALC, e.g., no
 - domain, range axioms
 - SubPropertyOf, InverseOf
 - datatype properties
 - ...

look others up:

- OWL is defined via a Structural Specification
 - http://www.w3.org/TR/owl2-syntax/
- also check out the OWL Primer
 - https://www.w3.org/TR/owl2-primer/

Thank You!