
COMPUTATIONAL
SEMANTICS: DAY 5
Johan Bos
University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics
• Day 1: Exploring Models
• Day 2: Meaning Representations
• Day 3: Computing Meanings with DCG
• Day 4: Computing Meanings with CCG
• Day 5: Drawing Inferences and Meaning Banking

Drawing Inferences
• By now we know how to produce semantic
representations for natural language expressions

• But how can we use them to automate the
process of drawing inferences?

Proof-Theoretical Semantics

Proofs

Models

Lexical
Semantics

Compositional
Semantics

Discourse
Semantics

Inductive Inference
Abductive
Inference

Deductive
Inference

Abductive reasoning (Abduction)
Guessing for an explanation...

 The dog is wet.

? It’s raining outside.
? It jumped in the pool.

Inductive reasoning (Induction)
Making generalizations...

This dog has four legs.
That dog has four legs.
And that one. And this one.
And that one too.
All dogs have four legs.

Inductive reasoning (Induction)
Making generalizations...

This dog has four legs.
That dog has four legs.
And that one. And this one.
And that one too.
All dogs have four legs.

Deductive reasoning (Deduction)
Drawing conclusions from a set of premises

Every dog jumped in the pool.
Fido is a dog.
Fido jumped in the pool.

The three inference tasks

The Querying Task

The Consistency Checking Task

The Informativeness Checking Task

The three inference tasks

The Querying Task

model checker

The Consistency Checking Task

theorem prover + model builder

The Informativeness Checking Task
theorem prover + model builder

But hey, isn’t first-order logic...
• Yes indeed, first-order logic is undecidable.

In fact, it is semi-decidable.

• But what does this mean?
Can we do anything about this?
Are we in trouble?

No general algorithmic solution
• We already dealt with the querying task (Lecture 1/2)
•  The consistency/informativeness

checking tasks are undecidable

• But there are partial solutions
to be explored:
•  use theorem provers for negative tests
•  use model builders for positive tests

Controlling Inference
ex

pr
es

si
ve

 p
ow

er

higher-order logic

second-order logic

first-order logic (predicate logic)

description logics
modal logics

¬ ∧
 → v

discourse
representation

structure

undecidable

propositional logic

∀x
 ∃x

λx λP

∀P ∃P

[] <>

semi-decidable

decidable

Theorem Proving

•  The task of checking whether a formula (or a set of
formulas) is a validity (a theorem), or put differently,
checking whether that formula is true in all models

 
 Input: formula 
 Output: proof (if you’re lucky)

•  Theorem proving serves to check whether input is

inconsistent and uninformative! 
 
(i.e., recognizing textual entailment)

Example 1: Steve
Steve visited only Bologna.
Steve visited Bologna and Pisa.

 inconsistent

Example 2: Bush
“... when there's more trade, there's more commerce."

George W. Bush, at the Summit of the Americas in Quebec City,
April 21, 2001 (source: Language Log 24/10/2004)

not
informative

Theorem Proving vs Model Building
•  Theorem provers check for logical validity

•  Is a formula φ true in all possible situations?
•  Output: proof
•  Useful for: detecting contradictory and non-informative texts

• Model builders check for satisfiability
•  Is a formula φ true in at least one situation?
•  Output: model
•  Useful for: detecting consistent and informative texts

Example 3: James
James visited Rome.
James visited only Rome.

consistent

informative

The Yin and Yang of Inference

Theorem Proving and Model Building
function as opposite forces

Inference

Proofs

Models

Lexical
Semantics

Compositional
Semantics

Discourse
Semantics

Theorem
Proving

Finding consistent and
informative sentences

Finding inconsistencies
and tautologies

Model
Building

Consistency/Informativeness checking
• ψ is inconsistent wrt φ1... φn means

that (φ1 ∧ ... ∧ φn)à ¬ψ is valid

• ψ is uninformative wrt φ1... φn means
that (φ1 ∧ ... ∧ φn)à ψ is valid

 Validity is defined in terms of models:
 a valid formula is one that is satisfied in all models

 But there are infinitely many models...

Proof Methods
• Recall the method of truth tables

•  it doesn’t scale up
•  and can’t be extended to first-order logic

•  In this lecture we will look at two specific
methods: semantic tableau and resolution

• We will first look at how this is done for
propositional logic. Why?

Because it is a lot simpler than first-order logic!
(dealing with quantifiers and equality is a tricky business)

Propositional Tableaus
•  systematic syntactic check for answering the following

(semantic) question:

Suppose we are given a formula and a truth value
(true of false). Is is possible to find a model in which the
given formula has the given truth value?

•  If we had such a systematic check at our disposal, we
would be able to test formulas for validity. Why?

A formula is valid if and only if it is not possible to falsify it
in any model

A refutation proof method
• A formula is valid if and only if it is not possible to falsify it

in any model
•  If tableau can tell us that there is no way to build a model

that falsifies a formula, then this formula is valid
• So what we do is this:

 We show that a formula is valid by showing
 that all attempts to falsify it fail

The tableau system
• We will develop tableau expansion rules
•  They work by breaking down complex formulas into

their component formulas
• We will work through three examples. First example:

 p v ¬p

 This is clearly a validity. Why? Let’s try to falsify it.

T¬φ

Fφ

F¬φ

Tφ

The tableau expansion rules

T(φ∧ψ)

Tφ
Tψ

F(φ v	
 ψ)

Fφ
Fψ

F(φàψ)

Tφ
Fψ

F(φ∧ψ)

Fφ Fψ

T(φ	
 v	
 ψ)

Tφ Tψ

T(φàψ)

Fφ Tψ

Signed formulas
• We need a nice piece of notation. Here it is:

 Writing Fφ will mean that we want to falsify φ
 Writing Tφ will mean that we want to make φ true

•  T and F are called signs.
A formula preceded by a sign is called a signed formula.

Proving validity of p v ¬p
1.  F(p v ¬p)

How do you make a disjunction false?

Proving validity of p v ¬p
1.  F(p v ¬p) ✓
2.  Fp 1, Fv

3.  F¬p 1, Fv

This expansion rule is called Fv

The ✓ records the fact that we applied an expansion
rule to it (broke it into smaller pieces)

Proving validity of p v ¬p
1.  F(p v ¬p) ✓
2.  Fp 1, Fv

3.  F¬p 1, Fv ✓

4.  Tp 3, F¬

This expansion rule is called F¬

Proving validity of p v ¬p
1.  F(p v ¬p) ✓
2.  Fp 1, Fv

3.  F¬p 1, Fv ✓

4.  Tp 3, F¬

Two important observations about this tableau:

(1) It is rule-saturated. We can’t expand it further.
(2) It is closed. It contains contradictory wishes:
 we have to make p false (line 2) and we have to
 make p true (line 4)

Proving validity of p v ¬p
1.  F(p v ¬p) ✓
2.  Fp 1, Fv

3.  F¬p 1, Fv ✓

4.  Tp 3, F¬

It contains all (just one in this case) possibilities to falsify
p v ¬p. We fail to do this. Hence p v ¬p is valid. We call
this a closed tableau (or a tableau proof).

Proving validity of ¬(q∧r)à(¬q v ¬r)
1.  F¬(q∧r)à(¬q v ¬r)

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà

3.  F(¬q v ¬r) 1, Fà

Proving validity of ¬(q∧r)à(¬q v ¬r)

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv

5.  F ¬r 3, Fv

 Hey! Don’t we skip line 2?
 No we don’t. We’re free to apply the rules in any order.

Proving validity of ¬(q∧r)à(¬q v ¬r)

Proving validity of ¬(q∧r)à(¬q v ¬r)
1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv

6.  T q 4, F¬

Proving validity of ¬(q∧r)à(¬q v ¬r)
1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

Proving validity of ¬(q∧r)à(¬q v ¬r)
1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬

Proving validity of ¬(q∧r)à(¬q v ¬r)
1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬ ✓

9.  F q 8, F∧ 10.  F r 8, F∧

Can we further expand this tableau?

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬ ✓

9.  F q 8, F∧ 10.  F r 8, F∧

How many branches does this tableau contain?

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬ ✓

9.  F q 8, F∧ 10.  F r 8, F∧

Are all branches closed?

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬ ✓

9.  F q 8, F∧ 10.  F r 8, F∧

Branch 1:
closed (why?)

Are all branches closed?

1.  F¬(q∧r)à(¬q v ¬r) ✓
2.  T¬(q∧r) 1, Fà ✓

3.  F(¬q v ¬r) 1, Fà ✓

4.  F ¬q 3, Fv ✓

5.  F ¬r 3, Fv ✓

6.  T q 4, F¬

7.  T r 5, F¬

8.  F q∧r 2, T¬ ✓

9.  F q 8, F∧ 10.  F r 8, F∧

Branch 1:
closed (why?)

Branch 2:
closed (why?)

Nice so far, but ...
... what happens if the formula we are working
 which is not a validity?

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s)

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà

3.  F(r v s) 1, Fà

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà ✓

3.  F(r v s) 1, Fà

4.  Tp 2, T∧

5.  Tq 2, T∧	

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà ✓

3.  F(r v s) 1, Fà ✓

4.  Tp 2, T∧

5.  Tq 2, T∧	

6.  Fr 3, Fv
7.  Fs 3, Fv

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà ✓

3.  F(r v s) 1, Fà ✓

4.  Tp 2, T∧

5.  Tq 2, T∧	

6.  Fr 3, Fv
7.  Fs 3, Fv

Can we further expand this tableau?
How many (closed) branches are there?

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà ✓

3.  F(r v s) 1, Fà ✓

4.  Tp 2, T∧

5.  Tq 2, T∧	

6.  Fr 3, Fv
7.  Fs 3, Fv

Can we further expand this tableau? NO
How many (closed) branches are there? 1 (open)

Because we are able to falsify the formula, it is not a validity

Checking validity of (p∧q)à(r v s)
1.  F(p∧q)à(r v s) ✓
2.  T(p∧q) 1, Fà ✓

3.  F(r v s) 1, Fà ✓

4.  Tp 2, T∧

5.  Tq 2, T∧	

6.  Fr 3, Fv
7.  Fs 3, Fv

(p∧q)à(r v s) is false in a model
 where p is true, q is true, r is false, and s is false

Definitions
• A branch of a tableau is a closed branch if it contains

both Tφ and Fφ, where φ is some formula
• A branch that is not closed is called an open branch
• A tableau with all of its branches closed is

called a closed tableau
• A tableau with at least one open branch

is called an open tableau

Semantic Tableaux
•  The tableaux method can be used to check for validities

(try to falsify a formula, and show that this attempt fails in
all possible ways)

• But it can also be used to build a model, i.e. showing that
a formula is not a contradiction

•  These models can be useful for many applications ---
think of our image domain!

In sum: a tableaux system can be used both
 as a theorem prover and as a model builder

Proof Theory & Automated Reasoning
•  Investigate logical validity from a purely syntactic

perspective
• Various proof methods and theorem provers that

implement them
• Crucial:

 only make use of the syntactic
 structure of formulas

• Examples:
•  tableau methods (previous lecture)
•  resolution methods (this lecture)

Propositional Resolution
•  Introduce a second technique for checking the validity of

propositional formulas: the resolution method
•  It is, like tableau, purely symbolic
• But unlike tableau it uses only one rule (the resolution

rule), and needs preprocessing (conversion to CNF).

Conjunctive Normal Form (CNF)
•  positive literals (sentence symbols: p, q, r, s, ...)
•  negative literals (negated sentence symbols: ¬p, ¬q, ...)
•  literals: positive or negative literals
•  clause: a disjunction of literals
• CNF: a conjunction of clauses

 Example of a formula in CNF:

 (p v q) ∧ (r v ¬p v s) ∧ (q v ¬s)

Conjunctive Normal Form (CNF)
•  positive literals (sentence symbols: p, q, r, s, ...)
•  negative literals (negated sentence symbols: ¬p, ¬q, ...)
•  literals: positive or negative literals
•  clause: a disjunction of literals
• CNF: a conjunction of clauses

 Example of a formula in CNF:

 (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	

literals

Conjunctive Normal Form (CNF)
•  positive literals (sentence symbols: p, q, r, s, ...)
•  negative literals (negated sentence symbols: ¬p, ¬q, ...)
•  literals: positive or negative literals
•  clause: a disjunction of literals
• CNF: a conjunction of clauses

 Example of a formula in CNF:

 (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	

clauses

Key semantic observation: clause
•  To make a clause true, we have to make at least one of its

literals true (after all, a clause is a disjunction).
• Special case: the empty clause, written as []

The empty clause contains no literals.
Hence it is impossible to make at least one of them true.
Hence it is impossible to make the empty clause true.

Key semantic observation: CNF
•  For a formula in CNF to be true, all the clauses it contains

(all of the conjuncts) must be true.
• Hence, if a formula in CNF has the empty clause as one

of its conjuncts, it can never be true.

Conversion to CNF
• Given an arbitrary formula. How do we get it into CNF?

• One method (there are more):
•  first translate it to negation normal form (NNF)
•  then repeatedly apply the distributive and associative rules

• What is NNF?
•  It is a formula built out of literals, conjunction, and disjunction.

Conversion to NNF
• Rewrite ¬(φ∧ψ) as ¬φ v	
 ¬ψ
 and ¬(φ v ψ) as ¬φ ∧	
 ¬ψ

• Rewrite ¬(φ à ψ) as φ ∧	
 ¬ψ
 and φ à ψ as ¬φ v	
 ψ

• Rewrite ¬¬φ as φ

drive
negations
inwards

eliminate
implications

remove
double

negations

From NNF to CNF

• Rewrite θ v (φ∧ψ) as (θ v φ) ∧	
 (θ v ψ)
• Rewrite (φ∧ψ) v θ as (φ v θ) ∧	
 (ψ v θ)

• Rewrite (φ∧ψ) ∧ θ as φ ∧(ψ ∧ θ)
• Rewrite (φ v	
 ψ) v θ as φ v	
 (ψ v θ)

drive conjunction
outwards

(distribution rules)

move brackets
(associativity rules)

The CNF list of lists notation

 (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	

	

[[p,q],[r,¬p,s],[q,¬s]]	

clauses

Set CNF
The resolution algorithm assumes an input formula
in set CNF (also called clause sets):
• None of the clauses may contain a repeated literal
• No clause occurs more than once

Example: [[p,¬q,¬r],[r,q,r]] is not in set CNF. Why?

 But [[p,¬q,¬r],[r,q]] is.

(why does this make sense?)

More terminology
•  complementary pairs (resolvents)
•  complementary clauses

Say we have two clauses C and C’. If C contains a
positive literal (say r) and C’ its negation (¬r), then C and
C’ are complementary clauses. Moreover, r and ¬r are a
complementary pair (are resolvents)

The binary resolution rule
•  Input:

two complementary clauses
• Output:

one clause obtained by merging the two complementary
clauses while removing the resolvents

 [p1,...,pm, r ,pm+1,...,pn] [q1,...,qi, ¬r ,qi+1,...,qj]

 [p1,...,pm,pm+1,...,pn, q1,...,qi,qi+1,...,qj]

Why does this make sense?
p v q ¬q

 p

If ¬q is true, then q is false, so to make p v q true, p needs
to be true

Why does this make sense?
p v q ¬q v r

 p v r

It is impossible that both p and r are false (because in that
case, either p v q is false, or ¬q v r is false).

Example 1
Proof: (p v ¬p). I.e. try to falsify it.

¬(p v ¬p)
(¬p ∧ ¬¬p)
(¬p ∧ p)

[[p],[¬p]]
[[]]

Empty clause, hence proof.

Example 2
Proof: ¬(q∧r)à(¬q v ¬r)

¬(¬(q∧r)à(¬q v ¬r))
(¬(q∧r) ∧ ¬(¬q v ¬r))
(¬q v ¬r) ∧(q ∧ r)

[-q,-r],[q],[r]
[-r],[r]
[]

Moving to first-order logic
•  The tableaux expansion rules are defined for propositional

logic. What consequences does moving to FOL have?
1.  We need tableaux expansion rules for the universal and

existential quantifier (see Blackburn & Bos chapter 5)
2.  Non-deterministic aspects: the universal quantifier expansion

rule can be applied multiple times
3.  Skolem terms for the existential quantifier expansion rules
4.  Unification with occurs-check
5.  Expansion rules for the equality symbol

These directions go beyond the scope of this course. Instead, we will
have a look at off-the-shelf model builders

Which theorem provers?
Which model builders?

World Cup Automated Deduction
(annual event, CASC)

•  Best Theorem Provers
(Bliksem, Otter, Spass, Vampire)

•  Best Model Builders
(Mace, Paradox)

Off-the-shelf model builders
•  There are several model builders for first-order logic

available (free, easy to install and use)
•  In this course we will use the

model builder MACE-2, developed
by William McCune (1953--2011)

Using the model builder Mace-2
•  Downloads: http://www.cs.unm.edu/~mccune/mace2/

(It comes together with the (famous) theorem prover Otter)

•  The Blackburn & Bos software contains an interface to mace: it is
called callInference.pl

•  Example query:

?- callMB(some(X,and(woman(X),walk(X))),4,Model,Engine).
Model = model([d1],[f(0,c1,d1),f(1,woman,[d1]),f(1,walk,
[d1])]),
Engine = mace.

?- callMB(all(X,imp(woman(X),walk(X))),4,Model,Engine).
Model = model([d1],[f(1,woman,[]),f(1,walk,[])]),
Engine = mace.

More about Mace
• Mace builds finite models
•  There are models that are infinitely large; so model

builders such as mace try to build a model up to a given
domain size (the second argument of callMB/4)

• Model builders (obviously) don’t know anything about the
world!

?- callMB(some(X,and(man(X),woman(X))),4,Model,Engine).

Model = model([d1],[f(0,c1,d1),f(1,man,[d1]),f(1,woman,[d1])]),

Engine = mace.

Reflection
• What can we use theorem provers for?
• What can we use model builders for?
• Other uses of the model checker?

 General Purpose – Specific Applications

Logicians vs. Linguists

Suppose we got a theory Φ

Logician Linguist

Proof Φ

Model Φ

Proof ¬Φ

Model ¬Φ

Suppose we got a theory Φ

Logician Linguist

Proof Φ J
Model Φ

Proof ¬Φ

Model ¬Φ

Logicians vs. Linguists

Suppose we got a theory Φ

Logician Linguist

Proof Φ J L
Model Φ

Proof ¬Φ

Model ¬Φ

Logicians vs. Linguists

Suppose we got a theory Φ

Logician Linguist

Proof Φ J L
Model Φ L
Proof ¬Φ

Model ¬Φ

Logicians vs. Linguists

Suppose we got a theory Φ

Logician Linguist

Proof Φ J L
Model Φ L J
Proof ¬Φ

Model ¬Φ

Logicians vs. Linguists

Suppose we got a theory Φ

Logician Linguist

Proof Φ J L
Model Φ L J
Proof ¬Φ J L

Model ¬Φ L J

Logicians vs. Linguists

Logician vs. Linguists
Summing up:

•  The logician thinks in terms
of proofs and counter-models

•  The linguist thinks in terms of
models and counter-proofs

