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Computational Semantics 
• Day 1: Exploring Models 
• Day 2: Meaning Representations 
• Day 3: Computing Meanings with DCG 
• Day 4: Computing Meanings with CCG 
• Day 5: Drawing Inferences and Meaning Banking 



Drawing Inferences 
• By now we know how to produce semantic 
representations for natural language expressions 

• But how can we use them to automate the 
process of drawing inferences? 
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Abductive reasoning (Abduction) 
Guessing for an explanation... 
 
 
 
 
   The dog is wet. 
    
? It’s raining outside. 
? It jumped in the pool.    



Inductive reasoning (Induction) 
Making generalizations... 
 
 
This dog has four legs. 
That dog has four legs. 
And that one. And this one. 
And that one too. 
All dogs have four legs. 
 



Inductive reasoning (Induction) 
Making generalizations... 
 
 
This dog has four legs. 
That dog has four legs. 
And that one. And this one. 
And that one too. 
All dogs have four legs. 
 



Deductive reasoning (Deduction) 
Drawing conclusions from a set of premises 
 
Every dog jumped in the pool. 
Fido is a dog. 
Fido jumped in the pool. 



The three inference tasks 

 
The Querying Task  

 

 
The Consistency Checking Task 

 

 
The Informativeness Checking Task 

 



The three inference tasks 

 
The Querying Task 

model checker  

 
The Consistency Checking Task 

theorem prover + model builder 

 
The Informativeness Checking Task 
theorem prover + model builder 



But hey, isn’t first-order logic... 
• Yes indeed, first-order logic is undecidable.  

In fact, it is semi-decidable.  
 

• But what does this mean?  
Can we do anything about this?  
Are we in trouble? 



No general algorithmic solution 
• We already dealt with the querying task (Lecture 1/2) 
•  The consistency/informativeness  

checking tasks are undecidable 

• But there are partial solutions  
to be explored: 
•  use theorem provers for negative tests 
•  use model builders for positive tests  
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Theorem Proving 

•  The task of checking whether a formula (or a set of 
formulas) is a validity (a theorem), or put differently, 
checking whether that formula is true in all models 

 
       Input: formula 
    Output: proof (if you’re lucky) 
 
•  Theorem proving serves to check whether input is 

inconsistent and uninformative! 
 
(i.e., recognizing textual entailment) 

 



Example 1: Steve 
Steve visited only Bologna. 
Steve visited Bologna and Pisa. 

 inconsistent 



Example 2: Bush 
“... when there's more trade, there's more commerce."  
 
 
 
 
 
 
 
 
 
George W. Bush, at the Summit of the Americas in Quebec City,  
April 21, 2001 (source: Language Log 24/10/2004) 

not 
informative 



Theorem Proving vs Model Building 
•  Theorem provers check for logical validity 

•  Is  a formula φ true in all possible situations? 
•  Output: proof 
•  Useful for: detecting contradictory and non-informative texts 

• Model builders check for satisfiability 
•  Is  a formula φ true in at least one situation? 
•  Output: model 
•  Useful for: detecting consistent and informative texts 
 



Example 3: James 
James visited Rome. 
James visited only Rome. 

consistent 

informative 



The Yin and Yang of Inference 

Theorem Proving and Model Building  
function as opposite forces 



Inference 
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Finding inconsistencies  
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Consistency/Informativeness checking 
• ψ is inconsistent wrt φ1... φn means  

that   (φ1 ∧ ... ∧ φn)à ¬ψ   is valid 
 

• ψ is uninformative wrt φ1... φn means  
that   (φ1 ∧ ... ∧ φn)à ψ   is valid 
 

 
        Validity is defined in terms of models:  
        a valid formula is one that is satisfied in all models 
 
        But there are infinitely many models...  



Proof Methods 
• Recall the method of truth tables 

•  it doesn’t scale up  
•  and can’t be extended to first-order logic 

•  In this lecture we will look at two specific 
methods: semantic tableau and resolution 

• We will first look at how this is done for  
propositional logic. Why?  
 
Because it is a lot simpler than first-order logic! 
(dealing with quantifiers and equality is a tricky business) 



Propositional Tableaus 
•  systematic syntactic check for answering the following 

(semantic) question: 
 
Suppose we are given a formula and a truth value  
(true of false). Is is possible to find a model in which the 
given formula has the given truth value? 

•  If we had such a systematic check at our disposal, we 
would be able to test formulas for validity. Why? 
 
A formula is valid if and only if it is not possible to falsify it 
in any model 



A refutation proof method 
• A formula is valid if and only if it is not possible to falsify it 

in any model 
•  If tableau can tell us that there is no way to build a model 

that falsifies a formula, then this formula is valid 
• So what we do is this:  

  
    We show that a formula is valid by showing  
             that all attempts to falsify it fail 



The tableau system 
• We will develop tableau expansion rules  
•  They work by breaking down complex formulas into  

their component formulas 
• We will work through three examples. First example: 

 
  p v ¬p 
 
  This is clearly a validity. Why? Let’s try to falsify it. 



T¬φ 

Fφ 

F¬φ 

Tφ 

The tableau expansion rules 

  

T(φ∧ψ) 

Tφ 
Tψ 

F(φ v	
 ψ) 

Fφ 
Fψ 

F(φàψ) 

Tφ 
Fψ 

  

F(φ∧ψ) 

Fφ           Fψ 

T(φ	
 v	
 ψ) 

Tφ           Tψ 

T(φàψ) 

Fφ           Tψ 



Signed formulas 
• We need a nice piece of notation. Here it is: 

  Writing Fφ will mean that we want to falsify φ  
  Writing Tφ will mean that we want to make φ true 

•  T and F are called signs.  
A formula preceded by a sign is called a signed formula. 



Proving validity of   p v ¬p  
1.  F(p v ¬p) 

 
 
 
How do you make a disjunction false? 



Proving validity of   p v ¬p  
1.  F(p v ¬p)    ✓ 
2.  Fp              1, Fv 

3.  F¬p            1, Fv 
 
 
This expansion rule is called Fv 
 
The ✓ records the fact that we applied an expansion 
rule to it (broke it into smaller pieces) 
 



Proving validity of   p v ¬p  
1.  F(p v ¬p)    ✓ 
2.  Fp              1, Fv 

3.  F¬p            1, Fv  ✓ 

4.  Tp              3, F¬ 
 
 
This expansion rule is called F¬  
 
 
 



Proving validity of   p v ¬p  
1.  F(p v ¬p)    ✓ 
2.  Fp              1, Fv 

3.  F¬p            1, Fv  ✓ 

4.  Tp              3, F¬ 
 
 
Two important observations about this tableau:  
 
(1) It is rule-saturated. We can’t expand it further. 
(2) It is closed. It contains contradictory wishes: 
      we have to make p false (line 2) and we have to  
      make p true (line 4) 

 



Proving validity of   p v ¬p  
1.  F(p v ¬p)    ✓ 
2.  Fp              1, Fv 

3.  F¬p            1, Fv  ✓ 

4.  Tp              3, F¬ 
 
 
It contains all (just one in this case) possibilities to falsify 
p v ¬p. We fail to do this. Hence p v ¬p is valid. We call 
this a closed tableau (or a tableau proof). 



Proving validity of   ¬(q∧r)à(¬q v ¬r)   
1.  F¬(q∧r)à(¬q v ¬r)     



1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà 

3.  F(¬q v ¬r)                1, Fà  

 
 
 

Proving validity of   ¬(q∧r)à(¬q v ¬r)  



1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv 

5.  F ¬r                          3, Fv 

 
 
 
   Hey! Don’t we skip line 2?  
   No we don’t. We’re free to apply the rules in any order. 

Proving validity of   ¬(q∧r)à(¬q v ¬r)  



Proving validity of   ¬(q∧r)à(¬q v ¬r)  
1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv 

6.  T q                           4, F¬ 

 
 
 
 



Proving validity of   ¬(q∧r)à(¬q v ¬r)  
1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

 



Proving validity of   ¬(q∧r)à(¬q v ¬r)  
1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ 



Proving validity of   ¬(q∧r)à(¬q v ¬r)  
1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ ✓ 

9.  F q        8, F∧  10.  F r        8, F∧  



Can we further expand this tableau? 

1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ ✓ 

9.  F q        8, F∧  10.  F r        8, F∧  



How many branches does this tableau contain? 

1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ ✓ 

9.  F q        8, F∧  10.  F r        8, F∧  



Are all branches closed? 

1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ ✓ 

9.  F q        8, F∧  10.  F r        8, F∧  

Branch 1: 
closed (why?) 



Are all branches closed? 

1.  F¬(q∧r)à(¬q v ¬r)    ✓ 
2.  T¬(q∧r)                   1, Fà ✓ 

3.  F(¬q v ¬r)                1, Fà ✓ 

4.  F ¬q                         3, Fv ✓ 

5.  F ¬r                          3, Fv ✓ 

6.  T q                           4, F¬ 

7.  T r                            5, F¬ 

8.  F q∧r                        2, T¬ ✓ 

9.  F q        8, F∧  10.  F r        8, F∧  

Branch 1: 
closed (why?) 

Branch 2: 
closed (why?) 



Nice so far, but ... 
... what happens if the formula we are working  
    which is not a validity? 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s) 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)    ✓ 
2.  T(p∧q)                1, Fà  

3.  F(r v s)                1, Fà  



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)    ✓ 
2.  T(p∧q)                1, Fà ✓ 

3.  F(r v s)                1, Fà  

4.  Tp                        2, T∧ 

5.  Tq                        2, T∧	
 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)     ✓ 
2.  T(p∧q)                 1, Fà ✓ 

3.  F(r v s)                 1, Fà ✓ 

4.  Tp                        2, T∧ 

5.  Tq                        2, T∧	
 
6.  Fr                         3, Fv 
7.  Fs                        3, Fv 
 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)     ✓ 
2.  T(p∧q)                 1, Fà ✓ 

3.  F(r v s)                 1, Fà ✓ 

4.  Tp                        2, T∧ 

5.  Tq                        2, T∧	
 
6.  Fr                         3, Fv 
7.  Fs                        3, Fv 
 

Can we further expand this tableau? 
How many (closed) branches are there? 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)     ✓ 
2.  T(p∧q)                 1, Fà ✓ 

3.  F(r v s)                 1, Fà ✓ 

4.  Tp                        2, T∧ 

5.  Tq                        2, T∧	
 
6.  Fr                         3, Fv 
7.  Fs                        3, Fv 
 

Can we further expand this tableau?              NO 
How many (closed) branches are there?        1 (open) 

Because we are able to falsify the formula, it is not a validity 



Checking validity of  (p∧q)à(r v s)  
1.  F(p∧q)à(r v s)     ✓ 
2.  T(p∧q)                 1, Fà ✓ 

3.  F(r v s)                 1, Fà ✓ 

4.  Tp                        2, T∧ 

5.  Tq                        2, T∧	
 
6.  Fr                         3, Fv 
7.  Fs                        3, Fv 
 

(p∧q)à(r v s)  is false in a model  
                       where p is true, q is true, r is false, and s is false  



Definitions 
• A branch of a tableau is a closed branch if it contains 

both Tφ and Fφ, where φ is some formula 
• A branch that is not closed is called an open branch 
• A tableau with all of its branches closed is  

called a closed tableau 
• A tableau with at least one open branch 

is called an open tableau 



Semantic Tableaux 
•  The tableaux method can be used to check for validities 

(try to falsify a formula, and show that this attempt fails in 
all possible ways) 

• But it can also be used to build a model, i.e. showing that 
a formula is not a contradiction 

•  These models can be useful for many applications --- 
think of our image domain! 
 
 
In sum: a tableaux system can be used both  
             as a theorem prover and as a model builder 



Proof Theory & Automated Reasoning 
•  Investigate logical validity from a purely syntactic 

perspective 
• Various proof methods and theorem provers that 

implement them 
• Crucial:  

              only make use of the syntactic  
              structure of formulas 

• Examples:  
•  tableau methods (previous lecture) 
•  resolution methods (this lecture) 



Propositional Resolution 
•  Introduce a second technique for checking the validity of 

propositional formulas: the resolution method 
•  It is, like tableau, purely symbolic  
• But unlike tableau it uses only one rule (the resolution 

rule), and needs preprocessing (conversion to CNF). 



Conjunctive Normal Form (CNF) 
•  positive literals (sentence symbols: p, q, r, s, ...) 
•  negative literals (negated sentence symbols: ¬p, ¬q, ...) 
•  literals: positive or negative literals 
•  clause: a disjunction of literals 
• CNF: a conjunction of clauses 
 
       Example of a formula in CNF: 
 
       (p v q) ∧ (r v ¬p v s) ∧ (q v ¬s)   



Conjunctive Normal Form (CNF) 
•  positive literals (sentence symbols: p, q, r, s, ...) 
•  negative literals (negated sentence symbols: ¬p, ¬q, ...) 
•  literals: positive or negative literals 
•  clause: a disjunction of literals 
• CNF: a conjunction of clauses 
 
       Example of a formula in CNF: 
 
       (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	
   

literals 



Conjunctive Normal Form (CNF) 
•  positive literals (sentence symbols: p, q, r, s, ...) 
•  negative literals (negated sentence symbols: ¬p, ¬q, ...) 
•  literals: positive or negative literals 
•  clause: a disjunction of literals 
• CNF: a conjunction of clauses 
 
       Example of a formula in CNF: 
 
       (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	
   

clauses 



Key semantic observation: clause 
•  To make a clause true, we have to make at least one of its 

literals true (after all, a clause is a disjunction). 
• Special case: the empty clause, written as [ ] 

 
The empty clause contains no literals.  
Hence it is impossible to make at least one of them true. 
Hence it is impossible to make the empty clause true. 



Key semantic observation: CNF 
•  For a formula in CNF to be true, all the clauses it contains 

(all of the conjuncts) must be true. 
• Hence, if a formula in CNF has the empty clause as one 

of its conjuncts, it can never be true. 



Conversion to CNF 
• Given an arbitrary formula. How do we get it into CNF? 

• One method (there are more):  
•  first translate it to negation normal form (NNF) 
•  then repeatedly apply the distributive and associative rules 

• What is NNF?  
•  It is a formula built out of literals, conjunction, and disjunction. 



Conversion to NNF 
• Rewrite      ¬(φ∧ψ)      as    ¬φ  v	
 ¬ψ  
        and      ¬(φ v ψ)     as    ¬φ ∧	
 ¬ψ  

• Rewrite      ¬(φ à ψ)    as    φ ∧	
 ¬ψ  
        and          φ à ψ     as    ¬φ v	
 ψ 

• Rewrite          ¬¬φ         as    φ  

drive 
negations 
inwards 

eliminate 
implications 

remove 
double 

negations 



From NNF to CNF  

• Rewrite      θ v (φ∧ψ)      as    (θ v φ) ∧	
 (θ v ψ) 
• Rewrite      (φ∧ψ) v θ      as    (φ v θ) ∧	
 (ψ v θ) 

• Rewrite      (φ∧ψ) ∧ θ      as   φ ∧(ψ ∧ θ) 
• Rewrite      (φ v	
 ψ) v θ      as   φ  v	
 (ψ v θ) 

drive conjunction 
outwards 

(distribution rules) 

move brackets 
(associativity rules) 



The CNF list of lists notation 
 
 (p v q) ∧	
 (r	
 v	
 ¬p	
 v	
 s)	
 ∧	
 (q	
 v	
 ¬s)	
 
	
 

[[p,q],[r,¬p,s],[q,¬s]]	
   

clauses 



Set CNF 
The resolution algorithm assumes an input formula  
in set CNF (also called clause sets): 
• None of the clauses may contain a repeated literal 
• No clause occurs more than once 

 
 

Example:  [[p,¬q,¬r],[r,q,r]] is not in set CNF. Why? 
 
           But [[p,¬q,¬r],[r,q]] is. 

(why does this make sense?) 



More terminology 
•  complementary pairs (resolvents) 
•  complementary clauses 

 
 
 
Say we have two clauses C and C’. If C contains a 
positive literal (say r) and C’ its negation (¬r), then C and 
C’ are complementary clauses. Moreover, r and ¬r are a 
complementary pair (are resolvents) 



The binary resolution rule 
•  Input:  

two complementary clauses 
• Output:  

one clause obtained by merging the two complementary 
clauses while removing the resolvents 

 
      [p1,...,pm, r ,pm+1,...,pn]   [q1,...,qi, ¬r ,qi+1,...,qj] 
 
 
   
           [p1,...,pm,pm+1,...,pn, q1,...,qi,qi+1,...,qj]       



Why does this make sense? 
p v q           ¬q 
-------------------- 
          p 
 
 
If ¬q is true, then q is false, so to make p v q true, p needs 
to be true 



Why does this make sense? 
p v q           ¬q v r 
------------------------ 
          p v r 
 
 
It is impossible that both p and r are false (because in that 
case, either p v q is false, or ¬q v r is false).  



Example 1 
Proof: (p v ¬p).  I.e. try to falsify it. 
 
¬(p v ¬p) 
(¬p ∧ ¬¬p) 
(¬p ∧ p) 
 
[[p],[¬p]] 
[[]] 
 
Empty clause, hence proof. 



Example 2 
Proof:  ¬(q∧r)à(¬q v ¬r) 
 
¬(¬(q∧r)à(¬q v ¬r)) 
(¬(q∧r) ∧ ¬(¬q v ¬r)) 
(¬q v ¬r) ∧(q ∧ r) 
 
[-q,-r],[q],[r] 
[-r],[r] 
[] 
 
 
 



Moving to first-order logic 
•  The tableaux expansion rules are defined for propositional 

logic. What consequences does moving to FOL have? 
1.  We need tableaux expansion rules for the universal and 

existential quantifier (see Blackburn & Bos chapter 5) 
2.  Non-deterministic aspects: the universal quantifier expansion 

rule can be applied multiple times 
3.  Skolem terms for the existential quantifier expansion rules 
4.  Unification with occurs-check 
5.  Expansion rules for the equality symbol 

 
These directions go beyond the scope of this course. Instead, we will 
have a look at off-the-shelf model builders 





Which theorem provers?  
Which model builders? 

World Cup Automated Deduction  
(annual event, CASC) 

•  Best Theorem Provers  
(Bliksem, Otter, Spass, Vampire) 

•  Best Model Builders  
(Mace, Paradox) 



Off-the-shelf model builders 
•  There are several model builders for first-order logic 

available (free, easy to install and use) 
•  In this course we will use the  

model builder MACE-2, developed  
by William McCune (1953--2011) 
  



Using the model builder Mace-2 
•  Downloads: http://www.cs.unm.edu/~mccune/mace2/ 

(It comes together with the (famous) theorem prover Otter) 

•  The Blackburn & Bos software contains an interface to mace: it is 
called callInference.pl 
 

•  Example query: 

?- callMB(some(X,and(woman(X),walk(X))),4,Model,Engine). 
Model = model([d1],[f(0,c1,d1),f(1,woman,[d1]),f(1,walk,
[d1])]), 
Engine = mace. 
 
?- callMB(all(X,imp(woman(X),walk(X))),4,Model,Engine). 
Model = model([d1],[f(1,woman,[]),f(1,walk,[])]), 
Engine = mace. 
 



More about Mace 
• Mace builds finite models  
•  There are models that are infinitely large; so model 

builders such as mace try to build a model up to a given 
domain size (the second argument of callMB/4) 

• Model builders (obviously) don’t know anything about the 
world! 
 
?- callMB(some(X,and(man(X),woman(X))),4,Model,Engine). 

Model = model([d1],[f(0,c1,d1),f(1,man,[d1]),f(1,woman,[d1])]), 

Engine = mace. 

 
 



Reflection 
• What can we use theorem provers for? 
• What can we use model builders for? 
• Other uses of the model checker? 

 
 
 
 
           General Purpose – Specific Applications 



Logicians vs. Linguists 

Suppose we got a theory Φ 

Logician Linguist 

Proof Φ 

Model Φ 

Proof ¬Φ 

Model ¬Φ 
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Logician vs. Linguists 
Summing up: 

•  The logician thinks in terms  
of proofs and counter-models 

•  The linguist thinks in terms of  
models and counter-proofs 


