
ESSLLI Tutorial: Nonmonotonic Logic
Default Logic

Mathieu Beirlaen1 Christian Straßer1,2

August 25, 2016
1Institute for Philosophy II, Ruhr-University Bochum in

2Center for Logic and Philosophy of Science, Ghent University

Aims of this session

• learn about the basic ideas behind Reiter’s Default Logic
• learn about some of its shortcomings
• … and variants inspired by them

1/71

Default Logic - Basic Concepts

Default Logic - Basic Concepts

Warming up

Some References to Classical Articles

• A logic for default reasoning. Artificial Intelligence, 1–2(13).
Reiter (1980)

• A logical framework for default reasoning. Artificial
intelligence, 36(1), 27–47. Poole (1988)

• The effect of knowledge on belief: conditioning, specificity
and the lottery paradox in default reasoning. Artificial
Intelligence, 49(1-3), 281–307. Poole (1991)

• Considerations on default logic: an alternative approach.
Computational intelligence, 4(1), 1–16. Łukaszewicz (1988)

• Bridges from classical to nonmonotonic logic, chapter 4.
Makinson (2005)

2/71

Short Reminder: 1st order logic

Logical symbols

• quantifiers ∀,∃
• logical connectives ∧,∨,⊃,¬
• brackets
• variables

non-logical symbols

• predicate / relation symbols with specific arity
• function symbols with specific arity
• constants (0-ary functions)

3/71

Short Reminder: 1st order logic, special terminology

• terms: variables, f(t1, . . . , tn) where ti are terms
• atomic formula: P(t1, . . . , tn)
• formulas: ⟨∀, ∃,∧,∨,⊃,¬⟩ closure of atomic formulas
• free / bound variables
• sentence: formula without free variables
• instance of a formula φ: substitution of some free
variables for terms

• ground term: term without variables
• ground instance: instance that is a sentence (obtained by
substituting all free variables by ground terms)

Example
bird(Tweety) ⊃ flies(Tweety)

is a ground instance of
bird(x) ⊃ flies(x) 4/71

Default Logic - Basic Concepts

Defaults and Default Theories

What’s a default conditional

α(x)

prerequisite

: β1(x), . . . , βn(x)
γ(x)

where x = x1, . . . , xm, and α(x), β1(x), . . . , βn(x), γ(x) are
formulas whose free variables are among x1, . . . , xm.

Application of a default
The default is applied in order to derive the c-ground
instance of γ in case

• trigger: α(c) belongs to our set of beliefs
• justification: the set of our beliefs is consistent with each
βi(c)

5/71

What’s a default conditional

α(x)

prerequisite

: β1(x), . . . , βn(x)

justification

γ(x)

where x = x1, . . . , xm, and α(x), β1(x), . . . , βn(x), γ(x) are
formulas whose free variables are among x1, . . . , xm.

Application of a default
The default is applied in order to derive the c-ground
instance of γ in case

• trigger: α(c) belongs to our set of beliefs
• justification: the set of our beliefs is consistent with each
βi(c)

5/71

What’s a default conditional

α(x)

prerequisite

: β1(x), . . . , βn(x)

justification

γ(x)

conclusion
where x = x1, . . . , xm, and α(x), β1(x), . . . , βn(x), γ(x) are
formulas whose free variables are among x1, . . . , xm.

Application of a default
The default is applied in order to derive the c-ground
instance of γ in case

• trigger: α(c) belongs to our set of beliefs
• justification: the set of our beliefs is consistent with each
βi(c)

5/71

What’s a default conditional

α(x)

prerequisite

: β1(x), . . . , βn(x)

justification

γ(x)

conclusion
where x = x1, . . . , xm, and α(x), β1(x), . . . , βn(x), γ(x) are
formulas whose free variables are among x1, . . . , xm.
Application of a default
The default is applied in order to derive the c-ground
instance of γ in case

• trigger: α(c) belongs to our set of beliefs
• justification: the set of our beliefs is consistent with each
βi(c) 5/71

Default Theory

⟨∆

set of defaults

,Φ⟩

simple example

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• Φ = {bird(Tweety), cat(Sylvester)}

6/71

Default Theory

⟨∆

set of defaults

,Φ

set of ’facts’

⟩

simple example

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• Φ = {bird(Tweety), cat(Sylvester)}

6/71

Default Theory

⟨∆

set of defaults

,Φ

set of ’facts’

⟩

simple example

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• Φ = {bird(Tweety), cat(Sylvester)}

6/71

Types of defaults

Normal defaults

α(x) : γ(x)
γ(x)

Semi-Normal defaults

α(x) : β(x)
γ(x)

where β(x) ⊢ γ(x). E.g.,

α(x) : γ(x) ∧ β(x)
γ(x)

7/71

Types of defaults

Normal defaults

α(x) : γ(x)
γ(x)

Semi-Normal defaults

α(x) : β(x)
γ(x)

where β(x) ⊢ γ(x). E.g.,

α(x) : γ(x) ∧ β(x)
γ(x)

7/71

How to Reason with Default Theories

How to Reason with Default Theories

Determining Extensions

Idea: Apply iteratively modus ponens to
defaults. This way build step-wise an

extension (sets of beliefs that are obtained in
this way)

7/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:

1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:

1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:

1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)

2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}

• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))

• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.

• if Ξ = Cn(Ξ⋆): extension found .

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

run may be unsuccessful!

8/71

Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:
1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with

here the guess
is used!

Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .

run may be unsuccessful!

8/71

Problem Quasi-Induction – End-regulated
procedure: We have to guess and use our

guess when adding new defaults.

8/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}

• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})

• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ

• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached

• the only extension is Ξ.

9/71

Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.

9/71

Compact representation

Given a default theory ⟨∆,Φ⟩, Ξ is an extension iff
Ξ = Cn(

∪∞
i=1 Ξi) where

1. Ξ0 = Φ

2. Ξi+1 = Ξi ∪{
γ(c) | α(x) : β1(x),...βn(x)

γ(x) ∈ ∆,Ξi ⊢ α(c),¬β1(c), . . . ,¬βn(c) /∈ Ξ
}

10/71

How to Reason with Default Theories

Extensions and their existence

Let’s see: we could define that A is a
consequence of the default theory ⟨∆,Φ⟩ iff A

is in “its extension”.

But wait a sec, are extensions always unique?

10/71

The Nixon Diamond

Let T = ⟨∆,Φ⟩ where

• ∆ ={
quaker(x) : pacifist(x)

pacifist(x) , republican(x) : ¬pacifist(x)
¬pacifist(x)

}
• Φ =

{quaker(Nixon), republican(Nixon)}.

There are two extensions:
1. one that contains pacifist(Nixon),
2. and one that contains ¬pacifist(Nixon).

11/71

The Nixon Diamond

Let T = ⟨∆,Φ⟩ where

• ∆ ={
quaker(x) : pacifist(x)

pacifist(x) , republican(x) : ¬pacifist(x)
¬pacifist(x)

}
• Φ =

{quaker(Nixon), republican(Nixon)}.

There are two extensions:
1. one that contains pacifist(Nixon),
2. and one that contains ¬pacifist(Nixon).

11/71

… and, do they always exist?

11/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:

• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:

• γ(x) : ¬β(x)
¬β(x) is triggered and

justified
• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}

• our guess is wrong (similar
problems with other guesses)

12/71

Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)

12/71

Reflections about Extensions

• should there always be extensions?

• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?

• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?

• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?

• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

Reflections about Extensions

• should there always be extensions?
• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?

13/71

How to define the consequences of a default theory?

Two approaches:

Skeptical approach
⟨∆,Φ⟩ ⊢skp A iff A ∈

∩
Extensions(⟨∆,Φ⟩)

Credulous approach
⟨∆,Φ⟩ ⊢crd A iff A ∈

∪
Extensions(⟨∆,Φ⟩)

Question:
When is which approach useful?

14/71

How to define the consequences of a default theory?

Two approaches:

Skeptical approach
⟨∆,Φ⟩ ⊢skp A iff A ∈

∩
Extensions(⟨∆,Φ⟩)

Credulous approach
⟨∆,Φ⟩ ⊢crd A iff A ∈

∪
Extensions(⟨∆,Φ⟩)

Question:
When is which approach useful?

14/71

How to define the consequences of a default theory?

Two approaches:

Skeptical approach
⟨∆,Φ⟩ ⊢skp A iff A ∈

∩
Extensions(⟨∆,Φ⟩)

Credulous approach
⟨∆,Φ⟩ ⊢crd A iff A ∈

∪
Extensions(⟨∆,Φ⟩)

Question:
When is which approach useful?

14/71

How to define the consequences of a default theory?

Two approaches:

Skeptical approach
⟨∆,Φ⟩ ⊢skp A iff A ∈

∩
Extensions(⟨∆,Φ⟩)

Credulous approach
⟨∆,Φ⟩ ⊢crd A iff A ∈

∪
Extensions(⟨∆,Φ⟩)

Question:
When is which approach useful?

14/71

Alternative Approaches to Reiter’s

Alternative Approaches to Reiter’s

Makinson’s approach

• first: order ground instances of defaults in ∆: d1,d2, . . .
• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and
• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n ∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}

• else, abort: no extension with this ordering of defaults
• else let Ξn+1 = Ξn and ∆n+1 = ∆n

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach

15/71

• first: order ground instances of defaults in ∆: d1,d2, . . .

instead of
guessing

• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and
• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n ∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}

• else, abort: no extension with this ordering of defaults
• else let Ξn+1 = Ξn and ∆n+1 = ∆n

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach

15/71

• first: order ground instances of defaults in ∆: d1,d2, . . .

instead of
guessing

• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and

the order is used

• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n ∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}

• else, abort: no extension with this ordering of defaults
• else let Ξn+1 = Ξn and ∆n+1 = ∆n

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach

15/71

• first: order ground instances of defaults in ∆: d1,d2, . . .

instead of
guessing

• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and

the order is used

• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n

to check
consistency

∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}
• else, abort: no extension with this ordering of defaults

• else let Ξn+1 = Ξn and ∆n+1 = ∆n

we keep track of used defaults

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach

15/71

• first: order ground instances of defaults in ∆: d1,d2, . . .

instead of
guessing

• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and

the order is used

• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n

to check
consistency

∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}
• else, abort: no extension with this ordering of defaults

runs may be unsuccessful

• else let Ξn+1 = Ξn and ∆n+1 = ∆n

we keep track of used defaults

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach

15/71

• first: order ground instances of defaults in ∆: d1,d2, . . .

instead of
guessing

• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and

the order is used

• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n

to check
consistency

∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}
• else, abort: no extension with this ordering of defaults

runs may be unsuccessful

• else let Ξn+1 = Ξn and ∆n+1 = ∆n

we keep track of used defaults

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach 15/71

Alternative Approaches to Reiter’s

Lukaszewicz’s account

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ

• (†) take a c-instance of an arbitrary (unused) default
α(x) : β1(x),...,βm(x)

γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
2)

• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
2)

• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
2)

• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults and each
β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification

no reference
to a guess

2)
• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
no reference
to a guess

2)

• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
no reference
to a guess

2)
• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)

• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
no reference
to a guess

2)
• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
no reference
to a guess

2)
• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it

• otherwise: let Ξ = Cn(Φ⋆), we found an extension

success warranted

.

16/71

Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ
• (†) take a c-instance of an arbitrary (unused) default

α(x) : β1(x),...,βm(x)
γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} (justification
no reference
to a guess

2)
• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension

success warranted

.

16/71

Some properties of the new procedure

• No guess needed.
• real procedural character
• guarantees existence of an extension
• hence: yields sometimes different results from Reiter’s
account

Question
What happens in the new approach when plugging in the
default theory ⟨∆,Φ⟩ where

• ∆ =

{
α(x) : β(x) ∧ γ(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

17/71

Some properties of the new procedure

• No guess needed.
• real procedural character
• guarantees existence of an extension
• hence: yields sometimes different results from Reiter’s
account

Question
What happens in the new approach when plugging in the
default theory ⟨∆,Φ⟩ where

• ∆ =

{
α(x) : β(x) ∧ γ(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

17/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK

2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK

3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.

• test the c-instance of the default γ(x) : ¬β(x)
¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :
1. Φ⋆ ⊢ γ(c), OK

2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :
1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK

3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.
• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :
1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}

18/71

Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :
1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)} 18/71

Always having an extension is a good thing, is
it?

18/71

Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71

Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71

Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71

Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it? 19/71

Fixed Points and a bit of
Meta-Theory

Fixed Points and a bit of
Meta-Theory

A Fixed-Point Characterization

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and

3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and

3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)

3. if α(c) : β(c)
γ(c) is a c-instance of some default in ∆ and

3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and

3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ Ξ (trigger)

3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?

20/71

Grounding

Take ⟨
{

⊤:p
p

}
, ∅}⟩.

Note that Cn({¬p}) is a minimal set satisfying the previous
conditions.

However, the only extension is Cn({p}). We face the

Problem of grounding
We expect that all members of the extension can be
generated iteratively by chaining and detaching defaults.

21/71

Grounding

Take ⟨
{

⊤:p
p

}
, ∅}⟩.

Note that Cn({¬p}) is a minimal set satisfying the previous
conditions.

However, the only extension is Cn({p}).

We face the

Problem of grounding
We expect that all members of the extension can be
generated iteratively by chaining and detaching defaults.

21/71

Grounding

Take ⟨
{

⊤:p
p

}
, ∅}⟩.

Note that Cn({¬p}) is a minimal set satisfying the previous
conditions.

However, the only extension is Cn({p}). We face the

Problem of grounding
We expect that all members of the extension can be
generated iteratively by chaining and detaching defaults.

21/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)

3. if α(c) : β1(c),...,βn(c)
γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)

3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ

extensions are fixedpoints of πΦ

.

22/71

Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ

extensions are fixedpoints of πΦ

.

22/71

OK, that’s awfully complicated. Does this
smallest set πΦ(Γ) even exist for any Γ?

22/71

Proof of the existence of π(Γ).

Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial
2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for

all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈
∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

23/71

Proof of the existence of π(Γ).
Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial
2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for

all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈
∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

23/71

Proof of the existence of π(Γ).
Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial

2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for
all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈

∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification). 23/71

Proof of the existence of π(Γ).
Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial
2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for

all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈
∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification). 23/71

Proof of the existence of π(Γ).
Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial
2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for

all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈
∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆ and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification). 23/71

Equivalence

Recall: Definition of Extension of ⟨∆,Φ⟩
Ξ is an extension iff Ξ = Cn(

∪∞
i=1 Ξi) where

1. Ξ0 = Φ

2. Ξi+1 = Ξi ∪{
γ(c) | α(x) : β1(x),...βn(x)

γ(x) ∈ ∆,Ξi ⊢ α(c),¬β1(c), . . . ,¬βn(c) /∈ Ξ
}

We show that Ξ is an extension of ⟨∆,Φ⟩ iff πΦ(Ξ) = Ξ. We first
observe that Cn(

∪∞
i=0 Ξi) satisfies:

1. Φ ⊆ Cn(
∪∞

i=0 Ξi)

2. Cn(Cn(
∪∞

i=0 Ξi)) = Cn(
∪∞

i=0 Ξi).
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ Cn(

∪∞
i=0 Ξi) (trigger)

3.2 ¬βi(c) /∈ Ξ for all 1 ≤ i ≤ n then γ(c) ∈ Cn(
∪∞

i=0 Ξi)

(justification).

Therefore: (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi).

24/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).

• We show inductively that
∪∞

i=0 Ξi ⊆ Ξ.
• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.

• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.

• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.

• Thus, there is a ground instance α(c) : β1(c),...,βn(c)
γ(c) of a

default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.
• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).

• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.

• Altogether:
∪∞

i=0 Ξi ⊆ Ξ.
• Thus, Cn(

∪∞
i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.

25/71

Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).
• We show inductively that

∪∞
i=0 Ξi ⊆ Ξ.

• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.
25/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.

• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.

• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).

• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.

• Thus, there is a ground instance α(c) : β1(c),...,βn(c)
γ(c) of a

default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.
• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).

• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).

• Altogether:
∪∞

i=0 Ξi ⊆ πΦ(Ξ).
• Thus, Ξ = Cn(

∪∞
i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Equivalence (3)

We show that if Ξ is an extension (thus Ξ = Cn(
∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
• Obviously, Ξ0 ⊆ πΦ(Ξ) by 1.
• Suppose Ξi ⊆ πΦ(Ξ). To show Ξi+1 ⊆ πΦ(Ξ).
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ).
• By 3, γ(c) ∈ πΦ(Ξ).
• Altogether:

∪∞
i=0 Ξi ⊆ πΦ(Ξ).

• Thus, Ξ = Cn(
∪∞

i=0 Ξi) ⊆ πΦ(Ξ).

26/71

Fixed Points and a bit of
Meta-Theory

The “Cautious” Properties

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).

• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).

• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).

• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.

• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.

27/71

Cautious Cut for credulous version?

Recall: Lemma
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

What do you think, does this help?

Counter-example

Take ⟨∆,Φ⟩ where ∆ =
{

⊤:p
p , p∨q:¬p¬p

}
.

• ⟨∆,Φ⟩ ⊢cred p ∨ q.
• ⟨∆,Φ ∪ {p ∨ q}⟩ ⊢cred ¬p.
• But, ⟨∆,Φ⟩ ⊬cred ¬p.

28/71

Cautious Cut for credulous version?

Recall: Lemma
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

What do you think, does this help?

Counter-example

Take ⟨∆,Φ⟩ where ∆ =
{

⊤:p
p , p∨q:¬p¬p

}
.

• ⟨∆,Φ⟩ ⊢cred p ∨ q.
• ⟨∆,Φ ∪ {p ∨ q}⟩ ⊢cred ¬p.
• But, ⟨∆,Φ⟩ ⊬cred ¬p.

28/71

Cautious Cut for credulous version?

Recall: Lemma
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

What do you think, does this help?

Counter-example

Take ⟨∆,Φ⟩ where ∆ =
{

⊤:p
p , p∨q:¬p¬p

}
.

• ⟨∆,Φ⟩ ⊢cred p ∨ q.
• ⟨∆,Φ ∪ {p ∨ q}⟩ ⊢cred ¬p.
• But, ⟨∆,Φ⟩ ⊬cred ¬p.

28/71

Cautious Cut for credulous version?

Recall: Lemma
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

What do you think, does this help?

Counter-example

Take ⟨∆,Φ⟩ where ∆ =
{

⊤:p
p , p∨q:¬p¬p

}
.

• ⟨∆,Φ⟩ ⊢cred p ∨ q.
• ⟨∆,Φ ∪ {p ∨ q}⟩ ⊢cred ¬p.
• But, ⟨∆,Φ⟩ ⊬cred ¬p.

28/71

Default logic and monotonicity

Nonmonotonicity, both

• in the set of defaults ∆
• in the set of facts Φ

Not even cautious monotonic
Here’s an example that goes back to Makinson:

• ∆ =
{

⊤ : p
p , p∨q : ¬p

¬p

}
• Φ1 = ∅
• Φ2 = {p ∨ q}

Check, what happens!

29/71

Default logic and monotonicity

Nonmonotonicity, both

• in the set of defaults ∆
• in the set of facts Φ

Not even cautious monotonic
Here’s an example that goes back to Makinson:

• ∆ =
{

⊤ : p
p , p∨q : ¬p

¬p

}
• Φ1 = ∅
• Φ2 = {p ∨ q}

Check, what happens!

29/71

Fixed Points and a bit of
Meta-Theory

Normal Theories are quite special

The special status of normal default theories

A normal default theory is a default theory that only consists
of normal defaults.

• A normal default theory always has an extension both in
Reiter’s and in Lukaszewicz’s approach.

• For normal theories the set of Reiter extensions and the
set of Lukaszewicz extensions coincides.

30/71

The special status of normal default theories

A normal default theory is a default theory that only consists
of normal defaults.

• A normal default theory always has an extension both in
Reiter’s and in Lukaszewicz’s approach.

• For normal theories the set of Reiter extensions and the
set of Lukaszewicz extensions coincides.

30/71

The special status of normal default theories

A normal default theory is a default theory that only consists
of normal defaults.

• A normal default theory always has an extension both in
Reiter’s and in Lukaszewicz’s approach.

• For normal theories the set of Reiter extensions and the
set of Lukaszewicz extensions coincides.

30/71

But, are normal defaults all we need?

30/71

Semi-normal vs. normal defaults

Compare

has−motive(x) : guilty(x) ∧ suspect(x)
suspect(x)

with

has−motive(x) : guilty(x) ∧ suspect(x)
guilty(x) ∧ suspect(x)

31/71

The expressive power of semi-normal defaults

Lukasziewicz writes: Assume, for instance, that on Sundays I
usually go fishing, and suppose that you should remain
agnostic about my fishing in rainy Sundays. It seems that the
only appropriate representation of this situation is to use the
following non-normal default:

Sunday : I−go−fishing ∧ ¬rain
I−go−fishing

Critically evaluated this claim.

1. Why is a normal representation of this default
suboptimal?

2. Do you agree with L.’s assessment that the proposed
non-normal representation is adequate?

32/71

The expressive power of semi-normal defaults

Lukasziewicz writes: Assume, for instance, that on Sundays I
usually go fishing, and suppose that you should remain
agnostic about my fishing in rainy Sundays. It seems that the
only appropriate representation of this situation is to use the
following non-normal default:

Sunday : I−go−fishing ∧ ¬rain
I−go−fishing

Critically evaluated this claim.

1. Why is a normal representation of this default
suboptimal?

2. Do you agree with L.’s assessment that the proposed
non-normal representation is adequate?

32/71

A look at various interesting
examples

Floating conclusions

Task

1. What are the extensions of
this default theory?

2. Is
politically−motivated(Nixon)
derivable?

33/71

{ Nixon, quaker,
republican, dove,
hawk, politically
motivated }

{ Nixon, quaker,
republican, dove,
¬hawk, politically
motivated }

{ Nixon, quaker,
republican, ¬dove,
hawk, politically
motivated }

34/71

{ Nixon, quaker,
republican, dove,
hawk, politically
motivated }

{ Nixon, quaker,
republican, dove,
¬hawk, politically
motivated }

{ Nixon, quaker,
republican, ¬dove,
hawk, politically
motivated }

34/71

{ Nixon, quaker,
republican, dove,
hawk, politically
motivated }

{ Nixon, quaker,
republican, dove,
¬hawk, politically
motivated }

{ Nixon, quaker,
republican, ¬dove,
hawk, politically
motivated }

34/71

Specificity

Question
Is flies(Tweety) derivable?

Nope
There are two extensions:

1. one with flies(Tweety)
2. one with ¬flies(Tweety)

35/71

Specificity

Question
Is flies(Tweety) derivable?

Nope
There are two extensions:

1. one with flies(Tweety)
2. one with ¬flies(Tweety)

35/71

Specificity

Question
Is flies(Tweety) derivable?

Nope
There are two extensions:

1. one with flies(Tweety)
2. one with ¬flies(Tweety)

35/71

Poole’s Lottery Paradox

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬penguin(x)

flies(x) ∧ ¬penguin(x) ,

bird(x) : treenest(x) ∧ ¬sandpiper(x)
treenest(x) ∧ ¬sandpiper(x) , . . .

}
• Φ = {bird(Tweety)}

Problem
However, then we conclude
¬penguin(x) ∧ ¬sandpiper(x) ∧ ¬ . . . for all bird-species. But
then Tweety does not belong to any species of birds.

Typical birds (in an ideal sense) do not exist.

36/71

Poole’s Lottery Paradox

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬penguin(x)

flies(x) ∧ ¬penguin(x) ,

bird(x) : treenest(x) ∧ ¬sandpiper(x)
treenest(x) ∧ ¬sandpiper(x) , . . .

}
• Φ = {bird(Tweety)}

Problem
However, then we conclude
¬penguin(x) ∧ ¬sandpiper(x) ∧ ¬ . . . for all bird-species. But
then Tweety does not belong to any species of birds.

Typical birds (in an ideal sense) do not exist.

36/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}

• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)

• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem

the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}
• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)

37/71

Problems with Disjunctions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
Quaker(x) : dove(x)

dove(x) ,
republican(x) : hawk(x)

hawk(x)

}
,

• Φ = {Quaker(Peter) ∨ republican(Peter),
Quaker(Anne) ∨ Quaker(George)}.

Problem
we don’t get

• hawk(Peter) ∨ dove(Peter),
• dove(Anne) ∨ dove(George).

38/71

Problems with Disjunctions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
Quaker(x) : dove(x)

dove(x) ,
republican(x) : hawk(x)

hawk(x)

}
,

• Φ = {Quaker(Peter) ∨ republican(Peter),
Quaker(Anne) ∨ Quaker(George)}.

Problem
we don’t get

• hawk(Peter) ∨ dove(Peter),
• dove(Anne) ∨ dove(George).

38/71

Problems with Disjunctions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
Quaker(x) : dove(x)

dove(x) ,
republican(x) : hawk(x)

hawk(x)

}
,

• Φ = {Quaker(Peter) ∨ republican(Peter),
Quaker(Anne) ∨ Quaker(George)}.

Problem
we don’t get

• hawk(Peter) ∨ dove(Peter),

• dove(Anne) ∨ dove(George).

38/71

Problems with Disjunctions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
Quaker(x) : dove(x)

dove(x) ,
republican(x) : hawk(x)

hawk(x)

}
,

• Φ = {Quaker(Peter) ∨ republican(Peter),
Quaker(Anne) ∨ Quaker(George)}.

Problem
we don’t get

• hawk(Peter) ∨ dove(Peter),
• dove(Anne) ∨ dove(George).

38/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}

• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)

• bird(Anne) ∨
bird(George)

• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)

• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)

• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))

39/71

“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}
• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t)) 39/71

Semi-normal defaults and the problem of inconsistent assump-
tions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬dead(x)

flies(x)
of−ancient−species(x) : fossilised(x) ∧ dead(x)

fossilised(x)

}

• Φ = {bird(Tweety), of−ancient−species(Tweety)}

Task
Try to see what’s the problem here.

40/71

Semi-normal defaults and the problem of inconsistent assump-
tions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬dead(x)

flies(x)
of−ancient−species(x) : fossilised(x) ∧ dead(x)

fossilised(x)

}
• Φ = {bird(Tweety), of−ancient−species(Tweety)}

Task
Try to see what’s the problem here.

40/71

Semi-normal defaults and the problem of inconsistent assump-
tions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬dead(x)

flies(x)
of−ancient−species(x) : fossilised(x) ∧ dead(x)

fossilised(x)

}
• Φ = {bird(Tweety), of−ancient−species(Tweety)}

Task
Try to see what’s the problem here.

40/71

Disjunctive Default Logic

Disjunctive Default Logic

Another paradigmatic example

The broken arm

Suppose we have:

⊤ : lh−usable ∧ ¬lh−broken
lh−usable and ⊤ : rh−usable ∧ ¬rh−broken

rh−usable

• This works fine in Reiter if we have Φ = {lh−broken}.
(Exercise: check what happens!)

• However, if we have Φ∨ = {rh−broken ∨ lh−broken}, we
have a problem! (Exercise: try to see why!)

41/71

The broken arm

Suppose we have:

⊤ : lh−usable ∧ ¬lh−broken
lh−usable and ⊤ : rh−usable ∧ ¬rh−broken

rh−usable

• This works fine in Reiter if we have Φ = {lh−broken}.
(Exercise: check what happens!)

• However, if we have Φ∨ = {rh−broken ∨ lh−broken}, we
have a problem! (Exercise: try to see why!)

41/71

The broken arm

Suppose we have:

⊤ : lh−usable ∧ ¬lh−broken
lh−usable and ⊤ : rh−usable ∧ ¬rh−broken

rh−usable

• This works fine in Reiter if we have Φ = {lh−broken}.
(Exercise: check what happens!)

• However, if we have Φ∨ = {rh−broken ∨ lh−broken}, we
have a problem! (Exercise: try to see why!)

41/71

A similar formulation

We have two defaults:
⊤ : ¬ab1

lh−usable and ⊤ : ¬ab2
rh−usable

and the factual information Φ = {lh−broken ⊃
ab1, rh−broken ⊃ ab2} ∪ {lh−broken ∨ rh−broken}.

42/71

A similar formulation

We have two defaults:
⊤ : ¬ab1

lh−usable and ⊤ : ¬ab2
rh−usable

and the factual information Φ = {lh−broken ⊃
ab1, rh−broken ⊃ ab2} ∪ {lh−broken ∨ rh−broken}.

42/71

Disjunctive Default Logic

A new disjunction to the rescue!

A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.
• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!

43/71

A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.
• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!

43/71

A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.

• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!

43/71

A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.
• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!

43/71

A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.
• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!

43/71

Disjunctive Defaults

The new disjunction can also appear in defaults:

α : β1, . . . , βm
γ1 | . . . | γn

disjunctive conclusions
where, again,

• α is the prerequisite,
• β1, . . . , βm are the justifications, and
• γ1, . . . , γn are the conclusions of the default.

44/71

Disjunctive Default Theories …

… consist of

• a set of disjunctive defaults and
• a set of facts (possibly with the new disjunction as the
most outward connective)

45/71

Disjunctive Default Theories …

… consist of

• a set of disjunctive defaults and

• a set of facts (possibly with the new disjunction as the
most outward connective)

45/71

Disjunctive Default Theories …

… consist of

• a set of disjunctive defaults and
• a set of facts (possibly with the new disjunction as the
most outward connective)

45/71

Disjunctive Default Logic

What are extensions now?

Extensions of disjunctive default theories (original)

where ’facts’ are defaults with empty justification and empty
prerequisite.

• Exercise: is this problematic?

46/71

See, our slides are useful :-)

46/71

Extensions of disjunctive default theories (alternative)

Given a disjunctive default theory ⟨∆,Φ⟩ let ΠΦ(Γ) be the
operator that returns the smallest set that satisfy the following
requirements:

1. for each α1 | . . . | αn in ΠΦ(Γ) there is an i ≤ n such that
αi ∈ ΠΦ(Γ)

2. ΠΦ(Γ) = Cn(ΠΦ(Γ))

3. for each α:β1,...,βn
γ1|...|γm ∈ ∆ if

• trigger: α ∈ ΠΦ(Γ)

• consistency: ¬β1 /∈ Γ for each i ≤ n

then γj ∈ ΠΦ(Γ) for some j ≤ m .

Γ is an extension iff Γ=ΠΦ(Γ).

47/71

Extensions of disjunctive default theories (alternative)

Given a disjunctive default theory ⟨∆,Φ⟩ let ΠΦ(Γ) be the
operator that returns the smallest set that satisfy the following
requirements:

1. for each α1 | . . . | αn in ΠΦ(Γ) there is an i ≤ n such

choose

that
αi ∈ ΠΦ(Γ)

2. ΠΦ(Γ) = Cn(ΠΦ(Γ))

3. for each α:β1,...,βn
γ1|...|γm ∈ ∆ if

• trigger: α ∈ ΠΦ(Γ)

• consistency: ¬β1 /∈ Γ for each i ≤ n

then γj ∈ ΠΦ(Γ) for some j ≤ m .

Γ is an extension iff Γ=ΠΦ(Γ).

47/71

Extensions of disjunctive default theories (alternative)

Given a disjunctive default theory ⟨∆,Φ⟩ let ΠΦ(Γ) be the
operator that returns the smallest set that satisfy the following
requirements:

1. for each α1 | . . . | αn in ΠΦ(Γ) there is an i ≤ n such

choose

that
αi ∈ ΠΦ(Γ)

2. ΠΦ(Γ) = Cn(ΠΦ(Γ))

3. for each α:β1,...,βn
γ1|...|γm ∈ ∆ if

• trigger: α ∈ ΠΦ(Γ)

• consistency: ¬β1 /∈ Γ for each i ≤ n

then γj ∈ ΠΦ(Γ) for some j ≤ m .

choose again
Γ is an extension iff Γ=ΠΦ(Γ).

47/71

Extensions of disjunctive default theories (alternative)

Given a disjunctive default theory ⟨∆,Φ⟩ let ΠΦ(Γ) be the
operator that returns the smallest set that satisfy the following
requirements:

1. for each α1 | . . . | αn in ΠΦ(Γ) there is an i ≤ n such

choose

that
αi ∈ ΠΦ(Γ)

2. ΠΦ(Γ) = Cn(ΠΦ(Γ))

3. for each α:β1,...,βn
γ1|...|γm ∈ ∆ if

• trigger: α ∈ ΠΦ(Γ)

• consistency: ¬β1 /∈ Γ for each i ≤ n

then γj ∈ ΠΦ(Γ) for some j ≤ m .

choose again
Γ is an extension iff Γ=

we want fixed points

ΠΦ(Γ).

47/71

Extensions of disjunctive default theories (alternative)

• guess the extension Ξ

• init beliefs: Ξ⋆ pick from each α1 | . . . | αn ∈ Φ a
choose

member
• (†) take a default α : β1,...,βm

γ1|...|γn ∈ ∆ and check whether:
1. trigger?: Ξ⋆ ⊢ α

2. conflicted?: each βi (1 ≤ i ≤ m) is consistent with Ξ (!!)

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γi} for some 1 ≤ i ≤ n
• if no:

• try another triggered default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found.

48/71

Extensions of disjunctive default theories (alternative)

• guess the extension Ξ

• init beliefs: Ξ⋆ pick from each α1 | . . . | αn ∈ Φ a
choose

member
• (†) take a default α : β1,...,βm

γ1|...|γn ∈ ∆ and check whether:
1. trigger?: Ξ⋆ ⊢ α

2. conflicted?: each βi (1 ≤ i ≤ m) is consistent with Ξ (!!)

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γi} for some

choose

1 ≤ i ≤ n
• if no:

• try another triggered default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found.

48/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:

We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:
We have two extensions:

1. Cn({p,q, r})

2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:
We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:
We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:

We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:
We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension

(since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:
We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))

49/71

Some examples

Compare:

T1 =
⟨{

p : q
q ,

r : s
s

}
, {p ∨ r}

⟩

with
T2 =

⟨{
p : q
q ,

r : s
s

}
, {p | r}

⟩

50/71

Some examples

Compare:

T1 =
⟨{

p : q
q ,

r : s
s

}
, {p ∨ r}

⟩
with

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩

50/71

Disjunctive Default Logic

Covers

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.

Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩

We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩

• T′′2 =
⟨{

p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩

• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).

• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})

• These exactly coincide with the extensions of T2.

51/71

Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.
Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.

51/71

Does the set of extensions of the covers always
coincide with the set of extensions of the
disjunctive default theory (according to the
fixed point approach or the semi-inductive

approach)?

51/71

A counter-example for the fixed point approach:

Take T3 = ⟨{p:q
q , p:rr }, {p | q}⟩.

Exercise:

• determine the covers of T3.
• determine an extension of a cover that is not a fixed point
extension of T3.

52/71

A counter-example for the fixed point approach:

Take T3 = ⟨{p:q
q , p:rr }, {p | q}⟩.

Exercise:

• determine the covers of T3.
• determine an extension of a cover that is not a fixed point
extension of T3.

52/71

Disjunctive Default Logic

A problematic example?

A problem? A variant of the broken arm

Take T4 = ⟨{writing−legibly:¬rh−broken
¬rh−broken }, {lh−broken |

rh−broken,writing−legibly}⟩.

Exercise: try to see what happens and evaluate whether you
find this problematic.

53/71

A problem? A variant of the broken arm

Take T4 = ⟨{writing−legibly:¬rh−broken
¬rh−broken }, {lh−broken |

rh−broken,writing−legibly}⟩.

Exercise: try to see what happens and evaluate whether you
find this problematic.

53/71

Disjunctive Default Logic

Some exercises

Another exercise

Let T5 = ⟨{ r:p∨q
p|q , s:¬p¬p }, {s, r}⟩.

• Determine the extensions.
• Does q follow skeptically? What do you think?

54/71

Another exercise

Let T5 = ⟨{ r:p∨q
p|q , s:¬p¬p }, {s, r}⟩.

• Determine the extensions.
• Does q follow skeptically? What do you think?

54/71

Another exercise

Let T6 = ⟨{p:q∨r
q|r , q:ss , s:vv , r:vv ,

t:¬s
¬s }, {p, t}⟩.

• Determine the extensions.
• Is v a skeptical consequence?
• Is ¬s a skeptical consequence? What do you think about
this?

55/71

Another exercise

Let T6 = ⟨{p:q∨r
q|r , q:ss , s:vv , r:vv ,

t:¬s
¬s }, {p, t}⟩.

• Determine the extensions.
• Is v a skeptical consequence?
• Is ¬s a skeptical consequence? What do you think about
this?

55/71

Other variants

Other variants

Constrained Default Logic: relying on a
consistent set of justifications

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic: one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic:

one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic:

one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic: one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?

• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic: one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))

• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic: one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set

56/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).

57/71

Exercise

Check what happens in this approach when applied to our
previous example.

58/71

Cautious Monotonicity

Some authors define variants of default logic that validate
Cautious Monotonicity also by means of a refined handling of
justifications. See (Brewka (1991); Antonelli (1999)).

59/71

Other variants

Introducing Priorities

First approach: ala Brewka (1994)

• Suppose the default rules are linearly ordered via δ ≺ δ′

means that δ has priority over δ′

• (if there are infinitely many defaults, we suppose the
ordering is a well-order: every subset of defaults has a
minimal one)

• the idea is: if we have a choice between applying two
triggered defaults δ and δ′, we opt for the prioritized one

• a prioritized default theory is given by ⟨∆,Φ,≺⟩

60/71

First approach: ala Brewka (1994)

• Suppose the default rules are linearly ordered via δ ≺ δ′

means that δ has priority over δ′

• (if there are infinitely many defaults, we suppose the
ordering is a well-order: every subset of defaults has a
minimal one)

• the idea is: if we have a choice between applying two
triggered defaults δ and δ′, we opt for the prioritized one

• a prioritized default theory is given by ⟨∆,Φ,≺⟩

60/71

First approach: ala Brewka (1994)

• Suppose the default rules are linearly ordered via δ ≺ δ′

means that δ has priority over δ′

• (if there are infinitely many defaults, we suppose the
ordering is a well-order: every subset of defaults has a
minimal one)

• the idea is: if we have a choice between applying two
triggered defaults δ and δ′, we opt for the prioritized one

• a prioritized default theory is given by ⟨∆,Φ,≺⟩

60/71

First approach: ala Brewka (1994)

• Suppose the default rules are linearly ordered via δ ≺ δ′

means that δ has priority over δ′

• (if there are infinitely many defaults, we suppose the
ordering is a well-order: every subset of defaults has a
minimal one)

• the idea is: if we have a choice between applying two
triggered defaults δ and δ′, we opt for the prioritized one

• a prioritized default theory is given by ⟨∆,Φ,≺⟩

60/71

Building extensions

Given a prioritized default theory ⟨∆,Φ,≺⟩ we build its
extension as follows:

• add all facts to the initial belief set: Ξ⋆ = Φ

• let ∆⋆ = ∆

• loop:
• check if there is a smallest α:β1,...,βn

γ ∈ ∆⋆ that is
• triggered: Ξ⋆ ⊢ α

• consistency each justification of previously applied defaults
and each β1, . . . , βn is consistent with Ξ⋆ ∪ {γ}

• if yes: let Ξ⋆ := Ξ⋆ ∪ {γ} and ∆⋆ := ∆⋆ − α:β1,...,βn
γ

• if no: we are done and the extension is Ξ⋆.

61/71

Building extensions

Given a prioritized default theory ⟨∆,Φ,≺⟩ we build its
extension as follows:

• add all facts to the initial belief set: Ξ⋆ = Φ

• let ∆⋆ = ∆

• loop:
• check if there is a smallest

here’s where the order matters
α:β1,...,βn

γ ∈ ∆⋆ that is
• triggered: Ξ⋆ ⊢ α

• consistency each justification of previously applied defaults
and each β1, . . . , βn is consistent with Ξ⋆ ∪ {γ}

• if yes: let Ξ⋆ := Ξ⋆ ∪ {γ} and ∆⋆ := ∆⋆ − α:β1,...,βn
γ

• if no: we are done and the extension is Ξ⋆.

61/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?

• let T = ⟨{δ1 = a:b
b , δ2 =

b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?
• let T = ⟨{δ1 = a:b

b , δ2 =
b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?
• let T = ⟨{δ1 = a:b

b , δ2 =
b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}

• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?
• let T = ⟨{δ1 = a:b

b , δ2 =
b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}

• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?
• let T = ⟨{δ1 = a:b

b , δ2 =
b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?
• let T = ⟨{δ1 = a:b

b , δ2 =
b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}

62/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic

• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff

• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff

• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff

• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff
• whenever δ ≺ δ′ then also δ ≺⋆ δ′.

• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff
• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff
• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic
• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff
• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.

63/71

An Alternative Recent Approach …

… you find in (Horty (2007, 2012)).

64/71

A Semantics for Default Logic

A Semantics for Default Logic

Basic Idea following (Lin and Shoham (1990,
1992))

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC

65/71

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions

• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC

65/71

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC

65/71

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC

65/71

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC

65/71

Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC
65/71

Shoham is a co-author, so let’s see the
semantic selection!

65/71

Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

2. K(M) ⊂ K(M′)

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

66/71

Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

models with the same assumptions are comparable

2. K(M) ⊂ K(M′)

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

66/71

Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

models with the same assumptions are comparable

2. K(M) ⊂ K(M′)

we minimize
knowledge

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

66/71

Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

models with the same assumptions are comparable

2. K(M) ⊂ K(M′)

we minimize
knowledge

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

66/71

Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

models with the same assumptions are comparable

2. K(M) ⊂ K(M′)

we minimize
knowledge

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

assumptions have
to be justified

66/71

A Semantics for Default Logic

Examples

Examples

Take the translation of ⟨∅, { :¬p
p }⟩ which is {¬A¬¬p ⊃ Kp}.

What do you think, is there a selected model?

In fact, there isn’t.

• Take a model with Ap. Then also Kp. But there is a
<-better model without Kp. Thus our model was not
selected.

• Take a model with ¬Ap. But then also Kp holds, and thus
the model is not selected.

67/71

Examples

Take the translation of ⟨∅, { :¬p
p }⟩ which is {¬A¬¬p ⊃ Kp}.

What do you think, is there a selected model?

In fact, there isn’t.

• Take a model with Ap. Then also Kp. But there is a
<-better model without Kp. Thus our model was not
selected.

• Take a model with ¬Ap. But then also Kp holds, and thus
the model is not selected.

67/71

Examples

Take the translation of ⟨∅, { :¬p
p }⟩ which is {¬A¬¬p ⊃ Kp}.

What do you think, is there a selected model?

In fact, there isn’t.

• Take a model with Ap. Then also Kp. But there is a
<-better model without Kp. Thus our model was not
selected.

• Take a model with ¬Ap. But then also Kp holds, and thus
the model is not selected.

67/71

Example (cont.)

• We can even deal with disjunctions in our rich language.

• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.
• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr
2. one in which Kq and ¬Kp. Thus, also Kr

68/71

Example (cont.)

• We can even deal with disjunctions in our rich language.
• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.

• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr
2. one in which Kq and ¬Kp. Thus, also Kr

68/71

Example (cont.)

• We can even deal with disjunctions in our rich language.
• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.
• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr
2. one in which Kq and ¬Kp. Thus, also Kr

68/71

Example (cont.)

• We can even deal with disjunctions in our rich language.
• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.
• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr

2. one in which Kq and ¬Kp. Thus, also Kr

68/71

Example (cont.)

• We can even deal with disjunctions in our rich language.
• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.
• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr
2. one in which Kq and ¬Kp. Thus, also Kr

68/71

Bibliography

Bibliography i

References

Antonelli, G. A.: 1999, ‘A directly cautious theory of defeasible consequence
for default logic via the notion of general extension’. Artificial Intelligence
109(1), 71–109.

Brewka, G.: 1991, ‘Cumulative default logic: In defense of nonmonotonic
inference rules’. Artificial Intelligence 50(2), 183–205.

Brewka, G.: 1994, ‘Reasoning about priorities in default logic’. In: AAAI, Vol.
1994. pp. 940–945.

Gelfond, M., V. Lifschitz, H. Przymusinska, and M. Truszczynski: 1991,
‘Disjunctive defaults’. In: Proc. Second International Conf. on Principles of
Knowledge Representation and Reasoning. pp. 230–237.

69/71

Bibliography ii
Horty, J.: 2007, ‘Defaults with Priorities’. Journal of Philosophical Logic 36,

367–413.
Horty, J. F.: 2012, Reasons as defaults. Oxford University Press.
Lin, F. and Y. Shoham: 1990, ‘Epistemic Semantics for Fixed-points

Non-monotonic Logics’. In: Proceedings of the 3rd Conference on
Theoretical Aspects of Reasoning About Knowledge. San Francisco, CA,
USA, pp. 111–120, Morgan Kaufmann Publishers Inc.

Lin, F. and Y. Shoham: 1992, ‘A logic of knowledge and justified assumptions’.
Artificial Intelligence 57(2-3), 271–289.

Łukaszewicz, W.: 1988, ‘Considerations on default logic: an alternative
approach’. Computational intelligence 4(1), 1–16.

Makinson, D.: 2005, Bridges from Classical to Nonmonotonic Logic, Vol. 5 of
Texts in Computing. London: King’s College Publications.

Poole, D.: 1988, ‘A logical framework for default reasoning’. Artificial
intelligence 36(1), 27–47.

70/71

Bibliography iii

Poole, D.: 1991, ‘The effect of knowledge on belief: conditioning, specificity
and the lottery paradox in default reasoning’. Artifical Intelligence 49(1-3),
281–307.

Reiter, R.: 1980, ‘A Logic for Default Reasoning’. Artifical Intelligence 1–2(13).

Schaub, T.: 1992, ‘On Constrained Default Theories.’. In: ECAI. pp. 304–308.

71/71

	Default Logic - Basic Concepts
	Warming up
	Defaults and Default Theories

	How to Reason with Default Theories
	Determining Extensions
	Extensions and their existence

	Alternative Approaches to Reiter's
	Makinson's approach
	Lukaszewicz's account

	Fixed Points and a bit of Meta-Theory
	A Fixed-Point Characterization
	The ``Cautious'' Properties
	Normal Theories are quite special

	A look at various interesting examples
	Disjunctive Default Logic
	Another paradigmatic example
	A new disjunction to the rescue!
	What are extensions now?
	Covers
	A problematic example?
	Some exercises

	Other variants
	Constrained Default Logic: relying on a consistent set of justifications
	Introducing Priorities

	A Semantics for Default Logic
	Basic Idea following (Lin:Shoham:1990,LinShohamAI1992)
	Examples

	Bibliography

