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Aims of this session

• learn about the basic ideas behind Reiter’s Default Logic
• learn about some of its shortcomings
• … and variants inspired by them

1/71



Default Logic - Basic Concepts



Default Logic - Basic Concepts

Warming up



Some References to Classical Articles

• A logic for default reasoning. Artificial Intelligence, 1–2(13).
Reiter (1980)

• A logical framework for default reasoning. Artificial
intelligence, 36(1), 27–47. Poole (1988)

• The effect of knowledge on belief: conditioning, specificity
and the lottery paradox in default reasoning. Artificial
Intelligence, 49(1-3), 281–307. Poole (1991)

• Considerations on default logic: an alternative approach.
Computational intelligence, 4(1), 1–16. Łukaszewicz (1988)

• Bridges from classical to nonmonotonic logic, chapter 4.
Makinson (2005)
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Short Reminder: 1st order logic

Logical symbols

• quantifiers ∀,∃
• logical connectives ∧,∨,⊃,¬
• brackets
• variables

non-logical symbols

• predicate / relation symbols with specific arity
• function symbols with specific arity
• constants (0-ary functions)
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Short Reminder: 1st order logic, special terminology

• terms: variables, f(t1, . . . , tn) where ti are terms
• atomic formula: P(t1, . . . , tn)
• formulas: ⟨∀, ∃,∧,∨,⊃,¬⟩ closure of atomic formulas
• free / bound variables
• sentence: formula without free variables
• instance of a formula φ: substitution of some free
variables for terms

• ground term: term without variables
• ground instance: instance that is a sentence (obtained by
substituting all free variables by ground terms)

Example
bird(Tweety) ⊃ flies(Tweety)

is a ground instance of
bird(x) ⊃ flies(x) 4/71



Default Logic - Basic Concepts

Defaults and Default Theories



What’s a default conditional

α(x)

prerequisite

: β1(x), . . . , βn(x)
γ(x)

where x = x1, . . . , xm, and α(x), β1(x), . . . , βn(x), γ(x) are
formulas whose free variables are among x1, . . . , xm.

Application of a default
The default is applied in order to derive the c-ground
instance of γ in case

• trigger: α(c) belongs to our set of beliefs
• justification: the set of our beliefs is consistent with each
βi(c)
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Default Theory

⟨∆

set of defaults

,Φ⟩

simple example

• ∆ =

{
bird(x) : flies(x)

flies(x)

}
• Φ = {bird(Tweety), cat(Sylvester)}
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Types of defaults

Normal defaults

α(x) : γ(x)
γ(x)

Semi-Normal defaults

α(x) : β(x)
γ(x)

where β(x) ⊢ γ(x). E.g.,

α(x) : γ(x) ∧ β(x)
γ(x)
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How to Reason with Default Theories



How to Reason with Default Theories

Determining Extensions



Idea: Apply iteratively modus ponens to
defaults. This way build step-wise an

extension (sets of beliefs that are obtained in
this way)
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Here’s how it goes for a default theory ⟨∆,Φ⟩

• guess the extension Ξ

• init beliefs: Ξ⋆ = Φ

• (†) take an c-ground instance of an (unused) default
α(x) : β1(x), . . . , βn(x)

γ(x) ∈ ∆

and check whether:

1. trigger?: Ξ⋆ ⊢ α(c)
2. conflicted?: each βi(c) (1 ≤ i ≤ n) is consistent with Ξ

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γ(c)}
• if no:

• try another triggered (unused) default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found .
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Problem Quasi-Induction – End-regulated
procedure: We have to guess and use our

guess when adding new defaults.
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Example: Tweety
Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x)

flies(x)

}

• and Φ = {bird(Tweety), cat(Sylvester)}.

Building up the extensions:

• guess: Ξ = Cn({flies(Tweety)} ∪ Φ})
• our initial knowledge is Φ
• note that the Sylvester-instance of our default is not
applicable to Φ since Φ ⊬ bird(Sylvester)

• however, we have bird(Tweety) and flies(Tweety) is
consistent with Ξ.

• fixed point reached
• the only extension is Ξ.
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Compact representation

Given a default theory ⟨∆,Φ⟩, Ξ is an extension iff
Ξ = Cn(

∪∞
i=1 Ξi) where

1. Ξ0 = Φ

2. Ξi+1 = Ξi ∪{
γ(c) | α(x) : β1(x),...βn(x)

γ(x) ∈ ∆,Ξi ⊢ α(c),¬β1(c), . . . ,¬βn(c) /∈ Ξ
}
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How to Reason with Default Theories

Extensions and their existence



Let’s see: we could define that A is a
consequence of the default theory ⟨∆,Φ⟩ iff A

is in “its extension”.

But wait a sec, are extensions always unique?
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The Nixon Diamond

Let T = ⟨∆,Φ⟩ where

• ∆ ={
quaker(x) : pacifist(x)

pacifist(x) , republican(x) : ¬pacifist(x)
¬pacifist(x)

}
• Φ =

{quaker(Nixon), republican(Nixon)}.

There are two extensions:
1. one that contains pacifist(Nixon),
2. and one that contains ¬pacifist(Nixon).
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… and, do they always exist?
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Another example

Let ⟨∆,Φ⟩ be a default theory where

• ∆ =

{
α(x) : β(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}

Guess: Cn({α(c), γ(c)})

• first run:
• Φ⋆ = Φ

• α(x) : β(x)
γ(x) is

triggered and
justified: apply

• Φ⋆ = Φ ∪ {γ(c)}

• second run:
• γ(x) : ¬β(x)

¬β(x) is triggered and
justified

• Φ⋆ = Φ ∪ {γ(c),¬β(c)}
• our guess is wrong (similar
problems with other guesses)
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Reflections about Extensions

• should there always be extensions?

• what do extensions represent?

• equilibrium states of a rational reasoner?
• “different, possibly conflicting conclusion sets as rational
outcomes based on initial information” (Horty, 2005)

• good reasons approach: if A is in an extension then there
are good reasons to suppose A (see Nixon)

• are some extensions preferable to others?
• should some extensions be filtered out?
• how to build extensions (naturally) in order to explicate
actual default reasoning?

• should floating conclusions be accepted?
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How to define the consequences of a default theory?

Two approaches:

Skeptical approach
⟨∆,Φ⟩ ⊢skp A iff A ∈

∩
Extensions(⟨∆,Φ⟩)

Credulous approach
⟨∆,Φ⟩ ⊢crd A iff A ∈

∪
Extensions(⟨∆,Φ⟩)

Question:
When is which approach useful?
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Alternative Approaches to Reiter’s

Makinson’s approach



• first: order ground instances of defaults in ∆: d1,d2, . . .
• init beliefs: Ξ0 = Φ and init used defaults ∆0 = ∅
• in the n+1th step proceed as follows:

• if there is a c-ground instance of default
α(c) : β1(c),...,βm(c)

γ(c) /∈ ∆n such that
1. Ξn ⊢ α(c) (it is triggered) and
2. Ξn is consistent with β1(c), . . . , βm(c)

then take the next such one in the list, d, and
• if Ξn ∪ {γ(c)} is consistent with each justification in
∆n ∪ {d} then let Ξn+1 = Ξn ∪ {γ(c)} and ∆n+1 = ∆n ∪ {d}

• else, abort: no extension with this ordering of defaults
• else let Ξn+1 = Ξn and ∆n+1 = ∆n

• the extension is: Ξ =
∪

i≥0 Ξi

• there may be several extensions given different orderings
of the ground instances in ∆

• we get the same extensions as in Reiter’s approach
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Alternative Approaches to Reiter’s

Lukaszewicz’s account



Another account Łukaszewicz (1988)

Let ⟨∆,Φ⟩ be a default theory.

• init: Φ⋆ = Φ

• (†) take a c-instance of an arbitrary (unused) default
α(x) : β1(x),...,βm(x)

γ(x) ∈ ∆ and check:

1. Φ⋆ ⊢ α(c) (trigger)
2. each βi(c) is consistent with Φ⋆ (justification 1)
3. each justification of previously applied defaults and each

β1(c), . . . , βm(c) is consistent with Φ⋆ ∪ {γ(c)} ( justification
2)

• if yes: Φ⋆ = Φ⋆ ∪ {γ(c)} and goto (†)
• if no:

• if there is another instance of an (unused) default in ∆

that wasn’t tested, goto (†) and test it
• otherwise: let Ξ = Cn(Φ⋆), we found an extension.
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Some properties of the new procedure

• No guess needed.
• real procedural character
• guarantees existence of an extension
• hence: yields sometimes different results from Reiter’s
account

Question
What happens in the new approach when plugging in the
default theory ⟨∆,Φ⟩ where

• ∆ =

{
α(x) : β(x) ∧ γ(x)

γ(x) ,
γ(x) : ¬β(x)

¬β(x)

}
• Φ = {α(c)}
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Recall the three conditions
1. Φ⋆ ⊢ α(c) (trigger)

2. each βi(c) is consistent with Φ⋆ (justification 1)

3. each justification of previously applied defaults
is consistent with Φ⋆ ∪ {γ(c)} (justification 2)

• ∆ ={
α(x) : β(x)∧γ(x)

γ(x) , γ(x) : ¬β(x)
¬β(x)

}
• Φ = {α(c)}

• we start with Φ⋆ = Φ

• test the c-instance of the default α(x) : β(x)∧γ(x)
γ(x) :

1. Φ⋆ ⊢ α(c), OK
2. β(c) ∧ γ(c) is consistent with Φ⋆, OK
3. there are no previously used defaults, so 3 is OK

• hence, Φ⋆ = {α(c), γ(c)}.
• test the c-instance of the default γ(x) : ¬β(x)

¬β(x) :

1. Φ⋆ ⊢ γ(c), OK
2. ¬β(c) is consistent with Φ⋆, OK
3. however β(c) ∧ γ(c) is not consistent with Φ⋆ ∪ {¬β(c)}.

• Ξ = Cn{α(c), γ(c)}
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Always having an extension is a good thing, is
it?

18/71



Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71



Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71



Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it?

19/71



Lukaszewicz’s Fishing example

Let T = ⟨∆,Φ⟩ where

• ∆ ={
Sunday : I−go−fishing∧¬I−wake−up−late

I−go−fishing , Holidays : I−wake−up−late
I−wake−up−late

}
• Φ = {Sunday,Holidays}.

Reiter
there is only the extension containing
Sunday,Holidays, I−wake−up−late (by first applying the
second default)

Lukaszewicz
we also(!) have the extension that is the result of first
applying the first default

What do you make of it? 19/71



Fixed Points and a bit of
Meta-Theory



Fixed Points and a bit of
Meta-Theory

A Fixed-Point Characterization



Non-Procedural Fixed-Point Characterizations

What about the following definition?
Definition: Extension’
Ξ is an extension’ of a default theory ⟨∆,Φ⟩ iff it is a minimal
set that satisfies the following conditions:

1. Φ ⊆ Ξ

2. Cn(Ξ) = Ξ (fixed-point)
3. if α(c) : β(c)

γ(c) is a c-instance of some default in ∆ and

3.1 α(c) ∈ Ξ (trigger)
3.2 βi(c) is consistent with Ξ for all 1 ≤ i ≤ n (justification)

then γ(c) ∈ Ξ

Question
Is this equivalent to the procedural approach?
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Grounding

Take ⟨
{

⊤:p
p

}
, ∅}⟩.

Note that Cn({¬p}) is a minimal set satisfying the previous
conditions.

However, the only extension is Cn({p}). We face the

Problem of grounding
We expect that all members of the extension can be
generated iteratively by chaining and detaching defaults.
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Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)

3. if α(c) : β1(c),...,βn(c)
γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and

3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)

3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ

extensions are fixedpoints of πΦ

.

22/71



Non-Procedural Fixed-Point Characterizations

Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such
that for any set of formulas Γ, πΦ(Γ) the smallest set satisfying:

1. Φ ⊆ πΦ(Γ)

2. πΦ(Γ) = Cn(πΦ(Γ)) (fixed point)
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ πΦ(Γ) (trigger)
3.2 ¬βi(c) /∈ Γ

this is where Γ matters

for all 1 ≤ i ≤ n then γ(c) ∈ πΦ(Γ) (justification).

Definition: Extension
A set of formulas Γ is an extension of ⟨∆,Φ⟩ iff πΦ(Γ) = Γ

extensions are fixedpoints of πΦ

.

22/71



OK, that’s awfully complicated. Does this
smallest set πΦ(Γ) even exist for any Γ?
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Proof of the existence of π(Γ).

Let S be all sets that satisfy (1)–(3). (Note S ̸= ∅ since L ∈ S.)

Let Γ′ =
∩
S. We have to show (1)–(3).

1. trivial
2. Suppose A ∈ Cn(Γ′). Hence (by monotonicity), Γ′′ ⊢ A for

all Γ′′ ∈ S. Since Cn(Γ′′) = Γ′′, A ∈ Γ′′. Thus, A ∈
∩
S.

3. Suppose α(c) ∈ Γ′ and ¬βi(c) /∈ Γ for all i ≤ n. Hence,
α(c) ∈ Γ′′ for all Γ′′ ∈ S and thus γ(c) ∈ Γ′′. Thus, γ(c) ∈ Γ′.

Recall: Let ⟨∆,Φ⟩ be a default theory. Define the operator πΦ such that for
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Equivalence

Recall: Definition of Extension of ⟨∆,Φ⟩
Ξ is an extension iff Ξ = Cn(

∪∞
i=1 Ξi) where

1. Ξ0 = Φ

2. Ξi+1 = Ξi ∪{
γ(c) | α(x) : β1(x),...βn(x)

γ(x) ∈ ∆,Ξi ⊢ α(c),¬β1(c), . . . ,¬βn(c) /∈ Ξ
}

We show that Ξ is an extension of ⟨∆,Φ⟩ iff πΦ(Ξ) = Ξ. We first
observe that Cn(

∪∞
i=0 Ξi) satisfies:

1. Φ ⊆ Cn(
∪∞

i=0 Ξi)

2. Cn(Cn(
∪∞

i=0 Ξi)) = Cn(
∪∞

i=0 Ξi).
3. if α(c) : β1(c),...,βn(c)

γ(c) is a c-instance of some default in ∆

and
3.1 α(c) ∈ Cn(

∪∞
i=0 Ξi) (trigger)

3.2 ¬βi(c) /∈ Ξ for all 1 ≤ i ≤ n then γ(c) ∈ Cn(
∪∞

i=0 Ξi)

(justification).

Therefore: (⋆), πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi).
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Equivalence (2)

We show that if πΦ(Ξ) = Ξ then Ξ is an extension (and hence
Ξ = Cn(

∪∞
i=0 Ξi)).

• Since (by (⋆)) πΦ(Ξ) ⊆ Cn(
∪∞

i=0 Ξi), Ξ ⊆ Cn(
∪∞

i=0 Ξi).

• We show inductively that
∪∞

i=0 Ξi ⊆ Ξ.
• Base: Obviously Ξ0 ⊆ Ξ by 1.
• Step: Suppose Ξi ⊆ Ξ. To show: Ξi+1 ⊆ Ξ.
• Let γ(c) ∈ Ξi+1 \ Ξi.
• Thus, there is a ground instance α(c) : β1(c),...,βn(c)

γ(c) of a
default in ∆ such that Ξi ⊢ α(c) and ¬β1(c), . . .¬βn(c) /∈ Ξ.

• Thus also α(c) ∈ πΦ(Ξ) (by the inductive hypothesis).
• By 3, γ(c) ∈ πΦ(Ξ) = Ξ.
• Altogether:

∪∞
i=0 Ξi ⊆ Ξ.

• Thus, Cn(
∪∞

i=0 Ξi) ⊆ Ξ.
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Equivalence (3)
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∪∞

i=0 Ξi)) then
Ξ = πΦ(Ξ).

• Since by (⋆), πΦ(Ξ) ⊆ Cn(
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i=0 Ξi), also πΦ(Ξ) ⊆ Ξ.
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• Thus, Ξ = Cn(
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i=0 Ξi) ⊆ πΦ(Ξ).
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Fixed Points and a bit of
Meta-Theory

The “Cautious” Properties



Cautious Cut

If ⟨∆,Φ⟩ ⊢ A and ⟨∆,Φ ∪ {A}⟩ ⊢ B then ⟨∆,Φ⟩ ⊢ B.

Lemma (from this Cut follows immediately for skeptical
consequence)
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

Proof

• Suppose ⟨∆,Φ⟩ ⊢ A and let Ξ ∈ Ext(⟨∆,Φ⟩).
• We know that Ξ = πΦ(Ξ). To show: Ξ = πΦ∪{A}(Ξ).
• Clearly, since A ∈ Ξ, Ξ satisfies (1)–(3) (relative to Φ ∪ {A}).
• Assume πΦ∪{A}(Ξ) ⊂ Ξ.
• But then πΦ∪{A}(Ξ) also satisfies (1)–(3) relative to Φ which
contradicts Ξ = πΦ(Ξ).

• Hence, Ξ = πΦ∪{A}(Ξ).

:noexport:
Cautious cut (for skeptical version) follows immediately from
the lemma.
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Cautious Cut for credulous version?

Recall: Lemma
If ⟨∆,Φ⟩ ⊢ A, Ext(⟨∆,Φ⟩) ⊆ Ext(⟨∆,Φ ∪ {A}⟩).

What do you think, does this help?

Counter-example

Take ⟨∆,Φ⟩ where ∆ =
{

⊤:p
p , p∨q:¬p¬p

}
.

• ⟨∆,Φ⟩ ⊢cred p ∨ q.
• ⟨∆,Φ ∪ {p ∨ q}⟩ ⊢cred ¬p.
• But, ⟨∆,Φ⟩ ⊬cred ¬p.
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Default logic and monotonicity

Nonmonotonicity, both

• in the set of defaults ∆
• in the set of facts Φ

Not even cautious monotonic
Here’s an example that goes back to Makinson:

• ∆ =
{

⊤ : p
p , p∨q : ¬p

¬p

}
• Φ1 = ∅
• Φ2 = {p ∨ q}

Check, what happens!
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Fixed Points and a bit of
Meta-Theory

Normal Theories are quite special



The special status of normal default theories

A normal default theory is a default theory that only consists
of normal defaults.

• A normal default theory always has an extension both in
Reiter’s and in Lukaszewicz’s approach.

• For normal theories the set of Reiter extensions and the
set of Lukaszewicz extensions coincides.
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But, are normal defaults all we need?
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Semi-normal vs. normal defaults

Compare

has−motive(x) : guilty(x) ∧ suspect(x)
suspect(x)

with

has−motive(x) : guilty(x) ∧ suspect(x)
guilty(x) ∧ suspect(x)
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The expressive power of semi-normal defaults

Lukasziewicz writes: Assume, for instance, that on Sundays I
usually go fishing, and suppose that you should remain
agnostic about my fishing in rainy Sundays. It seems that the
only appropriate representation of this situation is to use the
following non-normal default:

Sunday : I−go−fishing ∧ ¬rain
I−go−fishing

Critically evaluated this claim.

1. Why is a normal representation of this default
suboptimal?

2. Do you agree with L.’s assessment that the proposed
non-normal representation is adequate?
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A look at various interesting
examples



Floating conclusions

Task

1. What are the extensions of
this default theory?

2. Is
politically−motivated(Nixon)
derivable?
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{ Nixon, quaker,
republican, dove,
hawk, politically
motivated }

{ Nixon, quaker,
republican, dove,
¬hawk, politically
motivated }

{ Nixon, quaker,
republican, ¬dove,
hawk, politically
motivated }
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Specificity

Question
Is flies(Tweety) derivable?

Nope
There are two extensions:

1. one with flies(Tweety)
2. one with ¬flies(Tweety)
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Poole’s Lottery Paradox

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬penguin(x)

flies(x) ∧ ¬penguin(x) ,

bird(x) : treenest(x) ∧ ¬sandpiper(x)
treenest(x) ∧ ¬sandpiper(x) , . . .

}
• Φ = {bird(Tweety)}

Problem
However, then we conclude
¬penguin(x) ∧ ¬sandpiper(x) ∧ ¬ . . . for all bird-species. But
then Tweety does not belong to any species of birds.

Typical birds (in an ideal sense) do not exist.
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The Finch-Example

Let T = ⟨∆,Φ⟩ where

• ∆ =
{

ruffed−finch(x) : green−island(x)
green−island(x) ,

least−ruffed−finch(x) : green−island(x)∨sand−island(x)
green−island(x)∨sand−island(x)

}

• Φ consists of

• least−ruffed−finch(Frank)
• ∀x(least−ruffed−finch(x) → ruffed−finch(x))}

Problem
the unique extension includes both green−island(Frank) and
green−island(Frank) ∨ sand−island(Frank) (since both
defaults are triggered)
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Problems with Disjunctions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
Quaker(x) : dove(x)

dove(x) ,
republican(x) : hawk(x)

hawk(x)

}
,

• Φ = {Quaker(Peter) ∨ republican(Peter),
Quaker(Anne) ∨ Quaker(George)}.

Problem
we don’t get

• hawk(Peter) ∨ dove(Peter),
• dove(Anne) ∨ dove(George).
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“Naming defaults”

Let T = ⟨∆,Φ⟩ where
• ∆ =

{
⊤ : birdsfly(x)

birdsfly(x)

}

• Φ consists of

• ∀x(birdsfly(x)∧bird(x) →
flies(x))

• ∀x(bird(x) ∧ baby(x) →
¬birdsfly(x))

• bird(Tweety),bird(Polly)
• bird(Anne) ∨

bird(George)
• baby(Polly),baby(Keith)
• ¬flies(Fred)}

The good:

• flies(Anne) ∨ flies(George)
• flies(Tweety)

The bad:
But, in some respect this
proposal is too radical:

• ¬bird(Keith), ¬bird(Fred)
• for any ground term
t ̸= Polly:

• birdsfly(t)
• bird(t) →
(flies(t) ∧ ¬baby(t))
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Semi-normal defaults and the problem of inconsistent assump-
tions

Let T = ⟨∆,Φ⟩ where

• ∆ =

{
bird(x) : flies(x) ∧ ¬dead(x)

flies(x)
of−ancient−species(x) : fossilised(x) ∧ dead(x)

fossilised(x)

}

• Φ = {bird(Tweety), of−ancient−species(Tweety)}

Task
Try to see what’s the problem here.
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Disjunctive Default Logic



Disjunctive Default Logic

Another paradigmatic example



The broken arm

Suppose we have:

⊤ : lh−usable ∧ ¬lh−broken
lh−usable and ⊤ : rh−usable ∧ ¬rh−broken

rh−usable

• This works fine in Reiter if we have Φ = {lh−broken}.
(Exercise: check what happens!)

• However, if we have Φ∨ = {rh−broken ∨ lh−broken}, we
have a problem! (Exercise: try to see why!)
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A similar formulation

We have two defaults:
⊤ : ¬ab1

lh−usable and ⊤ : ¬ab2
rh−usable

and the factual information Φ = {lh−broken ⊃
ab1, rh−broken ⊃ ab2} ∪ {lh−broken ∨ rh−broken}.
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Disjunctive Default Logic

A new disjunction to the rescue!



A new disjunction | in Gelfond et al. (1991)

Gelfond et al. propose in such cases to use a new disjunction |
and formulate the example as follows (we use the first
formulation):

• ⊤:lh−usable∧¬lh−broken
lh−usable and ⊤:rh−usable∧¬rh−broken

rh−usable

• Φ = {lh−broken | rh−broken}.
• The new disjunction is used in such a way that in every
extension it is enforced that one disjunct is true.

• Exercise: determine the extensions!
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Disjunctive Defaults

The new disjunction can also appear in defaults:

α : β1, . . . , βm
γ1 | . . . | γn

disjunctive conclusions
where, again,

• α is the prerequisite,
• β1, . . . , βm are the justifications, and
• γ1, . . . , γn are the conclusions of the default.
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Disjunctive Default Theories …

… consist of

• a set of disjunctive defaults and
• a set of facts (possibly with the new disjunction as the
most outward connective)
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Disjunctive Default Logic

What are extensions now?



Extensions of disjunctive default theories (original)

where ’facts’ are defaults with empty justification and empty
prerequisite.

• Exercise: is this problematic?
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See, our slides are useful :-)
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Extensions of disjunctive default theories (alternative)

Given a disjunctive default theory ⟨∆,Φ⟩ let ΠΦ(Γ) be the
operator that returns the smallest set that satisfy the following
requirements:

1. for each α1 | . . . | αn in ΠΦ(Γ) there is an i ≤ n such that
αi ∈ ΠΦ(Γ)

2. ΠΦ(Γ) = Cn(ΠΦ(Γ))

3. for each α:β1,...,βn
γ1|...|γm ∈ ∆ if

• trigger: α ∈ ΠΦ(Γ)

• consistency: ¬β1 /∈ Γ for each i ≤ n

then γj ∈ ΠΦ(Γ) for some j ≤ m .

Γ is an extension iff Γ=ΠΦ(Γ).
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choose again
Γ is an extension iff Γ=

we want fixed points

ΠΦ(Γ).
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Extensions of disjunctive default theories (alternative)

• guess the extension Ξ

• init beliefs: Ξ⋆ pick from each α1 | . . . | αn ∈ Φ a
choose

member
• (†) take a default α : β1,...,βm

γ1|...|γn ∈ ∆ and check whether:
1. trigger?: Ξ⋆ ⊢ α

2. conflicted?: each βi (1 ≤ i ≤ m) is consistent with Ξ (!!)

• if yes: update beliefs: Ξ⋆ := Ξ⋆ ∪ {γi} for some 1 ≤ i ≤ n
• if no:

• try another triggered default in ∆ (goto (†))
• if there isn’t: terminate.
• if Ξ = Cn(Ξ⋆): extension found.
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Do the two definition characterize the same extensions?

Take ⟨{p:q
q , p:rr }, {p | q}⟩

With the operational / semi-inductive approach:

We have two extensions:

1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))
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1. Cn({p,q, r})
2. Cn({q})

With the fixed point approach:
We have one extension

• namely Cn({q}).
• note that Cn({p,q, r}) is not an extension (since
Π{p|q}(Cn({p,q, r})) = Cn({q}))
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Some examples

Compare:

T1 =
⟨{

p : q
q ,

r : s
s

}
, {p ∨ r}

⟩

with
T2 =

⟨{
p : q
q ,

r : s
s

}
, {p | r}

⟩
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Disjunctive Default Logic

Covers



Covers: can disjunctive default theory be simulated in standard
default theory?

Let a cover of a disjunctive default theory T be a Reiter default
theory in which for each α1 | . . . | αn occurring in T is replaced
by some αi where 1 ≤ i ≤ n.

Example

T2 =
⟨{

p : q
q ,

r : s
s

}
, {p | r}

⟩
We have two covers:

• T′2 =
⟨{

p:q
q , r:ss

}
, {p}

⟩
• T′′2 =

⟨{
p:q
q , r:ss

}
, {r}

⟩
• T′2 has one extension: Cn({p,q}).
• T′′2 has one extension: Cn({r, s})
• These exactly coincide with the extensions of T2.
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Does the set of extensions of the covers always
coincide with the set of extensions of the
disjunctive default theory (according to the
fixed point approach or the semi-inductive

approach)?
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A counter-example for the fixed point approach:

Take T3 = ⟨{p:q
q , p:rr }, {p | q}⟩.

Exercise:

• determine the covers of T3.
• determine an extension of a cover that is not a fixed point
extension of T3.
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Disjunctive Default Logic

A problematic example?



A problem? A variant of the broken arm

Take T4 = ⟨{writing−legibly:¬rh−broken
¬rh−broken }, {lh−broken |

rh−broken,writing−legibly}⟩.

Exercise: try to see what happens and evaluate whether you
find this problematic.
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Disjunctive Default Logic

Some exercises



Another exercise

Let T5 = ⟨{ r:p∨q
p|q , s:¬p¬p }, {s, r}⟩.

• Determine the extensions.
• Does q follow skeptically? What do you think?
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Another exercise

Let T6 = ⟨{p:q∨r
q|r , q:ss , s:vv , r:vv ,

t:¬s
¬s }, {p, t}⟩.

• Determine the extensions.
• Is v a skeptical consequence?
• Is ¬s a skeptical consequence? What do you think about
this?
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Other variants



Other variants

Constrained Default Logic: relying on a
consistent set of justifications



Poole’s broken arm: Constrained default logic

Let
T = ⟨{⊤:usable(a)∧¬broken(a)

usable(a) , ⊤:usable(b)∧¬broken(b)
usable(b) }, {broken(a) ∨

broken(b)}⟩.

• In Reiter’s default logic: one extension
Cn({usable(a),usable(b)})

• do you see why this is counter-intuitive?
• enters: Constrained default logic (Schaub (1992))
• idea: keep track of used justifications and check whether
they are consistent with the produced belief set
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Fixed point characterization

Given a default theory ⟨∆,Φ⟩ and a set of formulas Γ, let ΠΦ(Γ)

be the function that returns the pair of smallest sets of
formulas (Θ,Λ) that satisfies the following properties:

1. Φ ⊆ Θ ⊆ Λ

2. Cn(Θ) = Θ and Cn(Λ) = Λ

3. for all α:β1,...,βn
γ ∈ ∆, if

• trigger: α ∈ Θ

• consistency: Γ ∪ {β1, . . . , βn, γ} is consistent

then γ ∈ Θ and β1, . . . , βn, γ ∈ Λ.

(Θ,Λ) is a constrained extension of ⟨∆,Φ⟩ iff ΠΦ(Λ) = (Θ,Λ).
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Exercise

Check what happens in this approach when applied to our
previous example.
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Cautious Monotonicity

Some authors define variants of default logic that validate
Cautious Monotonicity also by means of a refined handling of
justifications. See (Brewka (1991); Antonelli (1999)).
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Other variants

Introducing Priorities



First approach: ala Brewka (1994)

• Suppose the default rules are linearly ordered via δ ≺ δ′

means that δ has priority over δ′

• (if there are infinitely many defaults, we suppose the
ordering is a well-order: every subset of defaults has a
minimal one)

• the idea is: if we have a choice between applying two
triggered defaults δ and δ′, we opt for the prioritized one

• a prioritized default theory is given by ⟨∆,Φ,≺⟩
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Building extensions

Given a prioritized default theory ⟨∆,Φ,≺⟩ we build its
extension as follows:

• add all facts to the initial belief set: Ξ⋆ = Φ

• let ∆⋆ = ∆

• loop:
• check if there is a smallest α:β1,...,βn

γ ∈ ∆⋆ that is
• triggered: Ξ⋆ ⊢ α

• consistency each justification of previously applied defaults
and each β1, . . . , βn is consistent with Ξ⋆ ∪ {γ}

• if yes: let Ξ⋆ := Ξ⋆ ∪ {γ} and ∆⋆ := ∆⋆ − α:β1,...,βn
γ

• if no: we are done and the extension is Ξ⋆.
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Exercise

• let T = ⟨{δ1 = b:f
f , δ2 =

p:¬f
¬f }, {p,p → b}, {(δ2, δ1)}⟩. What

can you derive?

• let T = ⟨{δ1 = a:b
b , δ2 =

b:c
c , δ3 =

a:¬c
¬c }, {a},≺⟩

• where ≺ = {(δ1, δ2), (δ2, δ3), (δ1, δ3)}
• where ≺ = {(δ3, δ2), (δ2, δ1), (δ3, δ1)}
• where ≺ = {(δ2, δ3), (δ3, δ1), (δ2, δ1)}

• let T = {{δ1 = a:b
b , δ2 =

b:c
c , c:¬b¬b }, {a}, {(δ3, δ1), (δ1, δ2), (δ3, δ2)}}
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Beyond linear orders on defaults …

• if ≺ is non-linear, but non-cyclic

• we complete ≺ to a linear order ≺⋆ and then build its
extension

• ≺⋆ completes ≺ to a linear order iff

• whenever δ ≺ δ′ then also δ ≺⋆ δ′.
• ≺⋆ is linear

• for each completion there will be an extension

Exercise:
let ≺ be a non-linear strict order on ∆ = {δ1, δ2, δ3} for which
δ1 ≺ δ2 and δ1 ≺ δ3. Find all linear completions of ≺.
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An Alternative Recent Approach …

… you find in (Horty (2007, 2012)).
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A Semantics for Default Logic

Basic Idea following (Lin and Shoham (1990,
1992))



Two modalities

• K for knowledge (as in computer science, not as in
philosophy)

• A for (defeasible) assumptions
• semantically: Kripke structures with 2 accessibility
relations (no restrictions needed, although the approach
works also with e.g. S5)

• translate p:q
r into Kp ∧ ¬A¬q ⊃ Kr

Basic Idea
If we know p and we do not assume ¬q then it’s safe to add r
to our knowledge base.

General Translation of Defaults
A : B1, . . . ,Bn

C ; KA ∧ ¬A¬B1 ∧ . . . ∧ ¬A¬Bn ⊃ KC
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Shoham is a co-author, so let’s see the
semantic selection!
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Going nonmonotonic: Selection Semantics

We define the following order on the models of our logic:
Definition 1 (Ordering)
Where for any model M, K(M) = {B | M |= KB} and
A(M) = {B | M |= AB},
M is preferred over M′, written M < M′, iff

1. A(M) = A(M′)

2. K(M) ⊂ K(M′)

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)
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knowledge

Definition 2 (Semantic Selection)
A model M of Σ is selected iff

1. M ∈ min<(M(Σ)),
2. and K(M) = A(M)

assumptions have
to be justified
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A Semantics for Default Logic

Examples



Examples

Take the translation of ⟨∅, { :¬p
p }⟩ which is {¬A¬¬p ⊃ Kp}.

What do you think, is there a selected model?

In fact, there isn’t.

• Take a model with Ap. Then also Kp. But there is a
<-better model without Kp. Thus our model was not
selected.

• Take a model with ¬Ap. But then also Kp holds, and thus
the model is not selected.
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Example (cont.)

• We can even deal with disjunctions in our rich language.

• Take {Kp ∨ Kq,Kp ∧ ¬A¬r ⊃ Kr,Kq ∧ ¬A¬ ⊃ Kr}.
• In view of the first disjunction, we have two types of
selected models.

1. one in which Kp and ¬Kq. Thus, also Kr
2. one in which Kq and ¬Kp. Thus, also Kr
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