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Aims of this session

- learn about the basic ideas behind Structured
Argumentation

- learn about how to handle priorities

- learn about some possible pitfalls
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On the way to Structured
Argumentation



Formal Argumentation as a Model for Defeasible Reasoning

- reasoning as an argumentative
activity an agent has with herself
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Formal Argumentation as a Model for Defeasible Reasoning

- reasoning as an argumentative
activity an agent has with herself

- defeasibility as a result of the
dynamics that results from tensions
between considerations and
counter-considerations

- some empirical evidence for the ‘
material adequacy of such a formal
account Mercier and Sperber (2011)
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Shifting Perspective: from Support to Attack and Acceptability

Dung (1995)

(o)
5.0 <>

: abstract, points in a directed graph
- arrows: argumentative attacks

Argumentation Semantics
select sets of arguments that represent rational stances, i.e.,

they are conflict-free, defended, etc.
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Back to Formal Logic: Structural / Instantiated Argumentation

(M1, 9)
(MU {=0} ¥)
c—d
b (FaU{=}, ¢)
(F2,—)

- structured arguments

- define attacks relative to this structure
- rebuttal
- premise-attack (sometimes ‘undercut’)
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Some of the proposed systems (non-exhaustive)

Dung-based

Prakken (2011); Modgil and Prakken (2013, 2014)
Dung et al. (2009)

Besnard and Hunter (20071,
2009)

Arieli (2013); Arieli and
Straler (2015)
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Some of the proposed systems (non-exhaustive)

Not Dung-based (doesn’t mean not Dung-related)

: Pollock (1995)
: Nute (1994); Governatori et al. (2004)
- Garcia and Simari (2004)
: Verheij (2000, 2003)
- etc.
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What are arguments in ASPIC*?



Rules and Argumentation Systems

- In ASPICT we deal with two types of rules:

1. strict rules, written: A, ..., A, — B
2. defeasible rules, written: Aq,..., A, = B
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Rules and Argumentation Systems

- In ASPICT we deal with two types of rules:

1. strict rules, written: A,..., A, — B
2. defeasible rules, written: Aq,..., A, = B
- As usual we call Ay, ..., A, the and B the
of the rule.

- Each defeasible rule is supposed to have a unique

Definition 1 (Argumentation System)

An argumentation system AS = (£,S,D, ) in a formal
language L consists of a set of strict rules S, a set of
defeasible rules D, and a from £ to 2.

think about negation for now 7/.s



Knowledge base

Arguments are built on top of a knowledge base. We have two
types of information in our knowledge base:

- strict/certain information collected in the set K,

- assumptions: collected in the set Kq
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Knowledge base

Arguments are built on top of a knowledge base. We have two
types of information in our knowledge base:

- strict/certain information collected in the set K,

- assumptions: collected in the set kg

Definition 2 (Knowledge Base)

A knowledge base is a set K of formulas (in £) where
IC:ICHU}CG and lCnmICa :®
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Definition 3 (Arguments)

Let AS = (£,S,D, ) be an argumentation system and
K =K, UKq a knowledge base. An argument a based on AS
and K is:
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Definition 3 (Arguments)

Let AS = (£,S,D, ) be an argumentation system and

K =K, UKq a knowledge base. An argument a based on AS
and K is:

- AifAek
Sub(a) = {a}
Prem(a) = {A} and Conc(a) = A

- (aq, ..., a, — B) where ay,...,a, are arguments and there
Is a strict rule conc(aq),...,conc(ay) - Be€S

Sub(a) ={as,...,an,a}
Prem(a) = Prem(aq) U...UPrem(a,) and Conc(a) = B
- {aq, ..., a, = B) where ay,...,a, are arguments and there
is a defeasible rule r = conc(a), ..., conc(an) = D.
Sub(a) ={a1,...,an,a}
Prem(a) = Prem(as) U... U Prem(a,) and Conc(a) = B
DefRules(a) = DefRules(aq) U ... U DefRules(an) U {r} 9/48



We write Arg(AS, K) for the set of all arguments built on top of
AS and K.
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« Kp = {=s,r,t} and Kq = {~q,-p, q}

* S={-9— -p,q— N(n}

+D={r=-p=s}

- A= {-A} where A has no preceeding - and —=A = {A}.

We can construct, among others, the following:

* a1 = (~q) and a; = (—q) (since g,~q € K)
a3 = (a1 +— —p)
- a, = (a3 =)
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Suppose we have:

* Kn = {-s,r,t} and Kq = {—q,—p, g}
- S={-9— —-p,q— N(r)}
- D={r=-p=s}
A = {-A} where A has no preceeding - and —=A = {A}.

We can construct, among others, the following:

- > and a, = <—|q> (Since g,—q € ]C)
ag — —\p>
as = s)

=
=
=
= (@ =5s)
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Suppose we have:

« Kn = {-s,r,t} and Kq = {—q,—p, g}
* 8§={-g—-p,q— N(n}
- D={r=-p=s}

A = {-A} where A has no preceeding - and —=A = {A}.

We can construct, among others, the following:

—q) and a, = (—q) (since g,~q € K)
ar — —p)
az = s)
a; = s)
) and a; = (—s)
+ ag = (as — N(r))

= ||
=
=
=
=(q
{
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Classifying arguments

- strict argument: only strict rules are used, i.e., no
defeasible rule is used

- defeasible argument: at least one defeasible rule is used
- firm argument: only based on strict premises in

- plausible argument: at least one defeasible premise in Kq
is used

12/48
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Contrariness and Contradictoriness

- Ais a contradictory of Bif Ac Band Be€ A
- Alisacontrary of Bif A€ BbutnotBe A

Why is this distinction useful. Isn't it sufficient to work simply
with classical negation?

We come back to this in a slide ...
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some B € Prem(b)

- a (restricted) rebuts b iff Conc(a) € B where B = Conc(b’)
for some b’ € Sub(b) and b’ is of the form (b, ..., by = B)

- a (restricted) contrary-rebuts b iff Conc(a) is a contrary of
B where B = Conc(b’) for some b’ € Sub(b) and b’ is of
the form (by,...,bym = B)

- a undercuts b iff Conc(a) = N(r) for some b’ € Sub(b)
where b’ is of the form (b4, ..., by = B) and based on the
defeasible rule r = Conc(bs), ..., Conc(by) = B with the
name N(r).

14/48
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Contrariness and Contradictoriness

- Ais a contradictory of Bif Ac Band Be A
- Aisa contrary of Bif A€ BbutnotBeA

Why is this distinction useful. Isn't it sufficient to work simply
with classical negation?

The idea is to capture also notions such as
negation-as-failure(-to-prove) e.g, in rules such as

bird, ~penguin = flies where ~penguin € Kq. Clearly, if we can
derive penguin this should attack arguments such as

- (~penguin)
- (bird, ~penguin = flies)

SO penguin € ~penguin. But (~penguin) should not attack an

argument with the conclusion penguin. So,

~penguin ¢ penguin. I3



Structured Argumentation System (without priorities)

A structured argumentation system AT = (Arg(AS, K),~) is an
argumentation system equipped with argumentative attacks
(define in some, possibly all, of the above ways) giving rise to
~ C Arg(AS, K) x Arg(AS, K).
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Back to the example

- undermining

- rebutting
- undercutting
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Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set
B C Arg(AS, K)

- Is conflict-free iff there are no a,b € B s.t. a attacks b
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rebuttal?

.. that is, why not allowing rebuttal on conclusions obtained by
strict rules? Suppose we have:
- Kq = {WearsRing, PartyAnimal}
- D = {r = WearsRing = Married, r, = PartyAnimal =
Bachelor}

- § = {Married — —Bachelor, Bachelor — —Married }
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Why rebuttal? (cont.)

We have e.g, the following arguments:
- a3 = (WearsRing), by = (PartyAnimal)
a, = <G1 =2 Married)
b, = (b1 = Bachelor)
as = (a, — —Bachelor)
(

b3 = bz — ﬂMarried>

giving rise to (with restricted rebuts)

T s e
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Why rebuttal? (cont.)

+ Preferred Extension 1:

N

al

b1
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Why rebuttal? (cont.)

+ Preferred Extension 1:
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Why rebuttal? (cont.)

We have e.g, the following arguments:

- a1 = (WearsRing), by = (Party Animal)
a; = (a1 = Married)

- by, = (by = Bachelor)
as = (a, — —Bachelor)
b3 = <b2 — ﬂMarried)

and now we allowing for rebuts on conclusions obtained by

strict rules:

<

N0
(1 1)
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Why rebuttal? (cont.)

We have e.g, the following arguments:

- a1 = (WearsRing), by = (Party Animal)
a; = (a; = Married)

- by, = (by = Bachelor)
as = (a, — —Bachelor)
bs = (b, — —Married)

Problem: now we also get the preferred extension:

al a2 a3

LA

b3 b2 b1
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Consequence Relations

Definition 5
Where AT = (Arg(AS, K),~) Is a structured argumentation

framework and the semantics sem is one of the
Dung-semantics defined above, we define:

* AT pveo A iff there is an a € B with Conc(a) = A for some
B € sem(AT)
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Where AT = (Arg(AS, K),~) Is a structured argumentation
framework and the semantics sem is one of the
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I~ admits floating conclusions, while 0, - blocks
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Example: Nixon

C Ky = We have, e.g., the following
{quaker, republican} arguments
- D consists of = ((quaker) = dove)
* quaker = dove = (a; = —hawk)
- republican = hawk .
1M
. dove — —hawk = (a1 = polMotivated)
- hawk = —dove - a4 = ((republican) = hawk)
- dove = polMotivated = (a; = —~dove)
* hawk = )
polMotivated A6 = (a4 = polMotivated)

We have three preferred extensions (highlighted arguments for
polMotivated),

- one including a4, a;, a;
- one including ay, as, as

. . 25/48
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Introducing priorities




On the level of arguments

Definition 6 (Structured Argumentation Framework)

A structured argumentation framework

AT = (Arg(AS, K),~, <) where AS is an argumentation
theory, K a knowledge base, ~ C Arg(AS, ) x Arg(AS,K) an
attack relation and < C Arg(AS, K) x Arg(AS, K) an preorder
(reflexive and transitive) on Arg(AS, K).
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AT = (Arg(AS, K),~, <) where AS is an argumentation
theory, K a knowledge base, ~ C Arg(AS, ) x Arg(AS,K) an
attack relation and < C Arg(AS, K) x Arg(AS, K) an preorder
(reflexive and transitive) on Arg(AS, K).

Definition 7 (Defeat)
Where a,b € Arg(AS,K), a b iff a~ b and

- either a undercuts b or

- a rebuts/undermines b and either a 4 b or a contrary
rebuts/undermines b.

We can now define the argumentation semantics relative to the
notion of defeat instead of the notion of argumentative attack



BUDDOSG Wwe nave: .. and we have the

* Ka = arguments:
{WearsRing, Party Animal} - a; = (WearsRing),

- D = {rh = WearsRing =
Married, r; = PartyAnimal =
Bachelor}

- § = {Married —
—Bachelor, Bachelor —
—~Married}

b1 = (Party Animal)
a; = (a1 = Married)
- by = (by = Bachelor)
as = (a, — —Bachelor)
by = (

b, — —Married)
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{WearsRing, Party Animal} - a; = (WearsRing),

- D = {rh = WearsRing =
Married, r; = PartyAnimal =
Bachelor}

- § = {Married —
—Bachelor, Bachelor —
—~Married}

b1 = (Party Animal)
a; = (a1 = Married)
- by = (by = Bachelor)
as = (a, — —Bachelor)
bs = (

b, — —Married)

Where a;, a3z < by, b3 then we have the following defeat graph:

oo
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Calculating Argument Strength bottom-up

Suppose we are equipped with priority ordering
< C (Kg x Kq)U (D x D) on

- the defeasible premises K, and

+ the defeasible rules D
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Calculating Argument Strength bottom-up

Suppose we are equipped with priority ordering
< C (Kg x Kq)U (D x D) on

- the defeasible premises K, and

+ the defeasible rules D

We are interested in lifting this on the level of arguments
constructed using information in Kq U K, and rules in DU S.

We introduce two possible ways of doing so, via

1. the weakest-link principle
2. the last-link principle
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The idea behind weakest-link is that an
argument is as strong as its weakest link,
which can be a used assumption in £, or a
used defeasible rule in D.



We first lift < to sets of formulas:
Definition 8 (Elitist Lifting, from < to <)
Where =, =" € 2Ke U 2P are finite,

1. If==0then=4Z
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Definition 8 (Elitist Lifting, from < to <)
Where =, =" € 2Ke U 2P are finite,

1L If==0then=4Z
2. If=Z=0and=Z#Dthen=<Z’
3. =< = ifthereisan A € = such thatforall Be =/, A < B.

Definition 9 (Weakest Link Ordering, from < to <)
Where a,b € Arg(AS,K), a < b iff

1. if both a and b are strict, then
Prem(a) N Kq < Prem(b) N /g

2. if both a and b are firm, then DefRules(a) < DefRules(b).

3. else: Prem(a) N KCq < Prem(b) N Kq and
DefRules(a) < DefRules(b)
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The rationale behind last-link is that
arguments are compared in their last link. As a
result, an argument a is preferred over b if its
last used defeasible rules are preferred over
the last defeasible rules used in b.



Definition 10 (Last defeasible rules)
Where a is a defeasible argument:

- ifa={(a,...,ap = A) then
LastDefRules(a) = {Conc(ay), ..., Conc(a,) = A}
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Where a is a defeasible argument:

- ifa={(a,...,ap = A) then
LastDefRules(a) = {Conc(ay), ..., Conc(a,) = A}

- else, where a = (a4,...,an — A), LastDefRules(a) =
LastDefRules(aq) U ... U LastDefRules(ap).

Definition 11 (Last Link principle)
Where a,b € Arg(AS, K), then a < b iff

1. ais a defeasible argument and b a strict argument, or

2. LastDefRules(a) < LastDefRules(b) and both are
defeasible arguments, or

3. Prem(a) N Ky < Prem(b) N Ky if both are strict arguments.
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Remark: Lifting

Instead of using the elitist lifting, one may also consider the
democratic lifting principle, according to which:

Definition 12 (Democratic Lifting)
Where =,=" € 2Xe U 2P are finite,

1L If==0then=4Z
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Remark: Lifting

Instead of using the elitist lifting, one may also consider the
democratic lifting principle, according to which:

Definition 12 (Democratic Lifting)
Where =,=" € 2Xe U 2P are finite,

1L If==0then=4Z

2. If=Z=0andZ#0then=<Z’

3. =< = ifforallAe=thereisaBe = A<B.

31/48



... time for the snoring professor ...



Suppose we have:

* KCq = {snores, prof}
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. ca3= (=
* I, = misbehaves = .
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accessDenied
- r; = prof = —accessDenied - a4 = (prof)
- snores < prof and ry < r3 < ry, © 05 = (0 =
rn<rn —accessDenied)

We are interested in the conflict between as and as. We first
compare with Last-Link.

- LastDefRules(as) = r;
- LastDefRules(as) = r3

Since r3 < r, we have as < as and so as strictly defeats as.
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Suppose we have: We have, e.g., the following:
- Kq = {snores, prof} - a1 = (snores)

* D consists of - a; = (a1 = misbehaves)
+ I = snores = misbehaves

. c a3 = () =
- r, = misbehaves = : < .
. accessDenied)
accessDenied
- r3 = prof = —accessDenied * Q4 = (prof)
- snores < prof and ry < r3 < ry, s = (as =
7 < 7 —accessDenied)

We are interested in the conflict between as and as. We now
compare with Weakest-Link.

- Prem(a3) N Kq = {snores} < {prof} = Prem(as) N Kq
- DefRules(az) = {r, n} < {r3} = DefRules(as)
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Changing the Interpretation to an epistemic one

Suppose we have:

c Ky =
{bornInScotland, fitnessLover} We have, e.g,, the following:
- D consists of * a7 = (bornInScotland)

* ry = bornInScotland = a; = (a; = Scottish)
Scottish . .
* r; = Scottish = likesWhisky 03 = (@ = likesWhisky)
Cay = (
as = <

- r; = fitnessLover =
—likesWhisky

fitnessLover)

as = —likesWhisky)
+ bornInScotland < fitnessLover
andn<rn<nn<n

Now it seems more reasonable to go with Weakest-Link!
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Rationality Postulates




Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates
for extensions & of a given argumentation framework
(Arg(AS, K),~, <)

1. Sub-argument closure: where a € £, Sub(a) C £
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Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates
for extensions & of a given argumentation framework
(Arg(AS, K),~, <)

1. Sub-argument closure: where a € £, Sub(a) C £

2. Closure under strict rules: where a4, ...,a, € £ and
Conc(ay),...,Conc(an) — B € S also (a1,...,an — B) € £

3. Direct consistency: {Conc(a) | a € £} is consistent, where
aset = C L is consistent iff there are no A, B € = for which
AeB

4. indirect consistency: the set obtained by closing
{Conc(a) | a € £} under the strict rules in S is consistent.

35/48



When are these postulates met?

1. the underlying argument theory should be well formed,
meaning that whenever A is a contrary of some B then B is
not a strict premise or the consequent of a strict rule.
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When are these postulates met?

. the underlying argument theory should be well formed,
meaning that whenever A is a contrary of some B then B is
not a strict premise or the consequent of a strict rule.
the underlying argument theory is closed under

- transposition: if Ay,...,A; — B € S then
A, LA BLAL A = Alwhere 1< <n, B'is a
contrapositary of B and A; is a contrapositary of Aj; or
- contraposition: forall= C Land A € Z, if = kg B then

=\ {AtU{B'} s A" where B’ is a contrapositary of B and A’
is a contrapositary of A
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When are these postulates met? (cont.)

3. the strict premises K, are indirectly consistent
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When are these postulates met? (cont.)

3. the strict premises K, are indirectly consistent
4. the preference ordering is reasonable, meaning
- strict and firm arguments are (i) (strictly) preferred over
arguments that are plausible and/or defeasible and (ii) are
incomparible with other strict and firm arguments
- the preference ordering is acyclic
- extending an argument with only strict rules and strict
premises doesn’t change its strength

Note: the Weakest/Last-Link principles as defined above are
reasonable.
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Why Transposition

Suppose we use:
- Kq = {WearsRing, Party Animal}
- D = {r; = WearsRing = Married, r, = PartyAnimal =
Bachelor}
- § = {Married — —Bachelor}
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- D = {r; = WearsRing = Married, r, = PartyAnimal =
Bachelor}
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(We removed Bachelor — —Married from S!)
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Why well-formedness?

Recall: whenever A is the contrary of some B, B is not a strict
premise or the consequent of a strict rule.

We come back to our application with negation-as-failure.
Suppose we have:

- Kn = {~penguin, livesInAlaska, bird }
o ICG — (Z)
- D = {bird, livesInAlaska = penguin}

Can you see why direct consistency doesn’t hold for this
example?
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Contamination, Interference Wu (2012); Caminada et al. (2012)

Another rationality postulate is Non-Interference: it says that
for two sets of formulas = and =’ that are syntactically disjoint
(they share no atoms) we have

Cn(Z)|Atoms(=) = CN(= U =')|Atoms(=)-
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Contamination, Interference Wu (2012); Caminada et al. (2012)

Another rationality postulate is Non-Interference: it says that
for two sets of formulas = and =’ that are syntactically disjoint
(they share no atoms) we have

Cn(Z)|Atoms(=) = CN(= U =')|Atoms(=)-

In particular, there should not be a contaminating set, that is a
set A (where Atoms(A) C Atoms(£)) such that for every = that
is syntactically disjoint from A, Cn(A) = Cn(A U =).
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An example Wu (2012)

-+ K9 = {Wr, Wrel}
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An example Wu (2012)

- K% = {Wr, Wrel}
- KL = {Js, Jrel, Mns, Mrel, Wr, Wrel},
- DY consists of
- Wr, Wrel = r (If Walter says it rains and he is reliable, it
rains.)
- for D' we add:

- Js,Jrel = s (If John says there is sugar in the coffee and he
is reliable then there is sugar in the coffee)
+ Mns, Mrel = —s

- suppose our strict rules allow for all the inferences of
classical logics, in particular s, =s — —r
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- a=((Js), (Jrel) = s)
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a = ((Js), (Jrel) = s)
- b= ((Mns), (Mrel) = —s)
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((Js), (Jrel) = s)
((Mns), (Mrel) = —s)
(a,b—r)

a
- b
C
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= ((Js), (Jrel) = s)
= ((Muns), (Mrel) = —s)
=(a,bw— —r)

= ((Wr), (Wrel) = r)

- See what happens in grounded semantics!

- Does it help to move to e.g, preferred semantics?
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A complication
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A complication (cont.)

(Junr), (Jrel) = —Jrel)
(Js), (Irel) = 5)

(Munr), (Mrel) = —Mrel)
(Mns), (Mrel) = —s)

< 29 bz —> —\l’>

((Wr), (Wrel) = 1)
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