ESSLLI Tutorial: Nonmonotonic Logic

Structured Argumentation

Mathieu Beirlaen ${ }^{1}$ Christian Straßer ${ }^{1,2}$
August 26, 2016
${ }^{1}$ Institute for Philosophy II, Ruhr-University Bochum in
${ }^{2}$ Center for Logic and Philosophy of Science, Ghent University

Aims of this session

- learn about the basic ideas behind Structured Argumentation
- learn about how to handle priorities
- learn about some possible pitfalls

On the way to Structured Argumentation

Formal Argumentation as a Model for Defeasible Reasoning

- reasoning as an argumentative activity an agent has with herself

Formal Argumentation as a Model for Defeasible Reasoning

- reasoning as an argumentative activity an agent has with herself
- defeasibility as a result of the dynamics that results from tensions between considerations and counter-considerations

Formal Argumentation as a Model for Defeasible Reasoning

- reasoning as an argumentative activity an agent has with herself
- defeasibility as a result of the dynamics that results from tensions between considerations and counter-considerations
- some empirical evidence for the material adequacy of such a formal
 account Mercier and Sperber (2011)

Shifting Perspective: from Support to Attack and Acceptability Dung (1995)

- argument: abstract, points in a directed graph
- arrows: argumentative attacks

Argumentation Semantics

select sets of arguments that represent rational stances, i.e., they are conflict-free, defended, etc.

Shifting Perspective: from Support to Attack and Acceptability Dung (1995)

- argument: abstract, points in a directed graph
- arrows: argumentative attacks

Argumentation Semantics

select sets of arguments that represent rational stances, i.e., they are conflict-free, defended, etc.

Back to Formal Logic: Structural / Instantiated Argumentation

- structured arguments

Back to Formal Logic: Structural / Instantiated Argumentation

- structured arguments
- define attacks relative to this structure

Back to Formal Logic: Structural / Instantiated Argumentation

- structured arguments
- define attacks relative to this structure
- rebuttal

Back to Formal Logic: Structural / Instantiated Argumentation

- structured arguments
- define attacks relative to this structure
- rebuttal
- premise-attack (sometimes ‘undercut')

Some of the proposed systems (non-exhaustive)

Dung-based

- ASPIC $^{+}$Prakken (2011); Modgil and Prakken $(2013,2014)$
- ABA (Assumption-Based Argumentation) Dung et al. (2009)
- Logic-Based Argumetation Besnard and Hunter (2001, 2009)
- Sequent-based Argumentation Arieli (2013); Arieli and Straßer (2015)

Some of the proposed systems (non-exhaustive)

Not Dung-based (doesn't mean not Dung-related)

- OSCAR: Pollock (1995)
- Defeasible Logic: Nute (1994); Governatori et al. (2004)
- Defeasible Logic Programming: García and Simari (2004)
- DEFLOG: Verheij $(2000,2003)$
- etc.

What are arguments in ASPIC ${ }^{+}$?

Rules and Argumentation Systems

- In ASPIC ${ }^{+}$we deal with two types of rules:

1. strict rules, written: $A_{1}, \ldots, A_{n} \rightarrow B$
2. defeasible rules, written: $A_{1}, \ldots, A_{n} \Rightarrow B$

Rules and Argumentation Systems

- In ASPIC ${ }^{+}$we deal with two types of rules:

1. strict rules, written: $A_{1}, \ldots, A_{n} \rightarrow B$
2. defeasible rules, written: $A_{1}, \ldots, A_{n} \Rightarrow B$

- As usual we call A_{1}, \ldots, A_{n} the antecedents and B the consequent of the rule.

Rules and Argumentation Systems

- In ASPIC^{+}we deal with two types of rules:

1. strict rules, written: $A_{1}, \ldots, A_{n} \rightarrow B$
2. defeasible rules, written: $A_{1}, \ldots, A_{n} \Rightarrow B$

- As usual we call A_{1}, \ldots, A_{n} the antecedents and B the consequent of the rule.
- Each defeasible rule is supposed to have a unique name.

Rules and Argumentation Systems

- In ASPIC^{+}we deal with two types of rules:

1. strict rules, written: $A_{1}, \ldots, A_{n} \rightarrow B$
2. defeasible rules, written: $A_{1}, \ldots, A_{n} \Rightarrow B$

- As usual we call A_{1}, \ldots, A_{n} the antecedents and B the consequent of the rule.
- Each defeasible rule is supposed to have a unique name.

Definition 1 (Argumentation System)

An argumentation system $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$in a formal language \mathcal{L} consists of a set of strict rules \mathcal{S}, a set of defeasible rules \mathcal{D}, and a contrariness function from \mathcal{L} to $2^{\mathcal{L}}$.

Knowledge base

Arguments are built on top of a knowledge base. We have two types of information in our knowledge base:

- strict/certain information collected in the set \mathcal{K}_{n}
- assumptions: collected in the set \mathcal{K}_{a}

Knowledge base

Arguments are built on top of a knowledge base. We have two types of information in our knowledge base:

- strict/certain information collected in the set \mathcal{K}_{n}
- assumptions: collected in the set \mathcal{K}_{a}

Definition 2 (Knowledge Base)

A knowledge base is a set \mathcal{K} of formulas (in \mathcal{L}) where $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ and $\mathcal{K}_{n} \cap \mathcal{K}_{a}=\emptyset$.

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$ $\operatorname{Sub}(a)=\{a\}$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on $A S$ and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule conc $\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on $A S$ and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule $\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule conc $\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule $\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$
$\cdot\left\langle a_{1}, \ldots, a_{n} \Rightarrow B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a defeasible rule $r=\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \Rightarrow \mathcal{D}$.

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule conc $\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$
$\cdot\left\langle a_{1}, \ldots, a_{n} \Rightarrow B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a defeasible rule $r=\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \Rightarrow \mathcal{D}$.
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule $\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$
$\cdot\left\langle a_{1}, \ldots, a_{n} \Rightarrow B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a defeasible rule $r=\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \Rightarrow \mathcal{D}$.
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$

Definition 3 (Arguments)

Let $\mathrm{AS}=\left\langle\mathcal{L}, \mathcal{S}, \mathcal{D},{ }^{-}\right\rangle$be an argumentation system and $\mathcal{K}=\mathcal{K}_{n} \cup \mathcal{K}_{a}$ a knowledge base. An argument a based on AS and \mathcal{K} is:

- $\langle A\rangle$ if $A \in \mathcal{K}$
$\operatorname{Sub}(a)=\{a\}$
$\operatorname{Prem}(a)=\{A\}$ and $\operatorname{Conc}(a)=A$
- $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a strict rule conc $\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$
$\cdot\left\langle a_{1}, \ldots, a_{n} \Rightarrow B\right\rangle$ where a_{1}, \ldots, a_{n} are arguments and there is a defeasible rule $r=\operatorname{conc}\left(a_{1}\right), \ldots, \operatorname{conc}\left(a_{n}\right) \Rightarrow \mathcal{D}$.
$\operatorname{Sub}(a)=\left\{a_{1}, \ldots, a_{n}, a\right\}$
$\operatorname{Prem}(a)=\operatorname{Prem}\left(a_{1}\right) \cup \ldots \cup \operatorname{Prem}\left(a_{n}\right)$ and $\operatorname{Conc}(a)=B$ $\operatorname{DefRules}(a)=\operatorname{DefRules}\left(a_{1}\right) \cup \ldots \cup \operatorname{DefRules}\left(a_{n}\right) \cup\{r\}$

Arguments

We write $\operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ for the set of all arguments built on top of AS and \mathcal{K}.

Example

Suppose we have:

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)
- $a_{3}=\left\langle a_{1} \mapsto \neg p\right\rangle$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)
- $a_{3}=\left\langle a_{1} \mapsto \neg p\right\rangle$
- $a_{4}=\left\langle a_{3} \Rightarrow s\right\rangle$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)
- $a_{3}=\left\langle a_{1} \mapsto \neg p\right\rangle$
- $a_{4}=\left\langle a_{3} \Rightarrow s\right\rangle$
- $a_{5}=\left\langle a_{2} \Rightarrow s\right\rangle$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)
- $a_{3}=\left\langle a_{1} \mapsto \neg p\right\rangle$
- $a_{4}=\left\langle a_{3} \Rightarrow s\right\rangle$
- $a_{5}=\left\langle a_{2} \Rightarrow s\right\rangle$
- $a_{6}=\langle q\rangle$ and $a_{7}=\langle\neg s\rangle$

Example

Suppose we have:

- $\mathcal{K}_{n}=\{\neg s, r, t\}$ and $\mathcal{K}_{a}=\{\neg q, \neg p, q\}$
- $\mathcal{S}=\{\neg q \rightarrow \neg p, q \rightarrow \overline{N(r)}\}$
- $\mathcal{D}=\{r=\neg p \Rightarrow s\}$
- $\bar{A}=\{\neg A\}$ where A has no preceeding \neg and $\overline{\neg A}=\{A\}$.

We can construct, among others, the following:

- $a_{1}=\langle\neg q\rangle$ and $a_{2}=\langle\neg q\rangle$ (since $q, \neg q \in \mathcal{K}$)
- $a_{3}=\left\langle a_{1} \mapsto \neg p\right\rangle$
- $a_{4}=\left\langle a_{3} \Rightarrow s\right\rangle$
- $a_{5}=\left\langle a_{2} \Rightarrow s\right\rangle$
- $a_{6}=\langle q\rangle$ and $a_{7}=\langle\neg s\rangle$
- $a_{8}=\left\langle a_{5} \mapsto \overline{N(r)}\right\rangle$

Classifying arguments

- strict argument: only strict rules are used, i.e., no defeasible rule is used

Classifying arguments

- strict argument: only strict rules are used, i.e., no defeasible rule is used
- defeasible argument: at least one defeasible rule is used

Classifying arguments

- strict argument: only strict rules are used, i.e., no defeasible rule is used
- defeasible argument: at least one defeasible rule is used
- firm argument: only based on strict premises in \mathcal{K}_{n}

Classifying arguments

- strict argument: only strict rules are used, i.e., no defeasible rule is used
- defeasible argument: at least one defeasible rule is used
- firm argument: only based on strict premises in \mathcal{K}_{n}
- plausible argument: at least one defeasible premise in \mathcal{K}_{a} is used

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
- A is a contrary of B if $A \in \bar{B}$ but not $B \in \bar{A}$

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
- A is a contrary of B if $A \in \bar{B}$ but not $B \in \bar{A}$

Why is this distinction useful. Isn't it sufficient to work simply with classical negation?

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
- A is a contrary of B if $A \in \bar{B}$ but not $B \in \bar{A}$

Why is this distinction useful. Isn't it sufficient to work simply with classical negation?

We come back to this in a slide ...

Definition 4 (Argumentative Attack)
Where $a, b \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$,

- a undermines b iff $\operatorname{Conc}(a) \in \bar{B}$ for some $B \in \operatorname{Prem}(b)$

Definition 4 (Argumentative Attack)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$,

- a undermines b iff $\operatorname{Conc}(a) \in \bar{B}$ for some $B \in \operatorname{Prem}(b)$
- a contrary-undermines b iff $\operatorname{Conc}(a)$ is a contrary of \bar{B} for some $B \in \operatorname{Prem}(b)$

Definition 4 (Argumentative Attack)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$,

- a undermines b iff $\operatorname{Conc}(a) \in \bar{B}$ for some $B \in \operatorname{Prem}(b)$
- a contrary-undermines b iff $\operatorname{Conc}(a)$ is a contrary of \bar{B} for some $B \in \operatorname{Prem}(b)$
- a (restricted) rebuts b iff $\operatorname{Conc}(a) \in \bar{B}$ where $B=\operatorname{Conc}\left(b^{\prime}\right)$ for some $b^{\prime} \in \operatorname{Sub}(b)$ and b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$

Definition 4 (Argumentative Attack)

Where $a, b \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$,

- a undermines b iff $\operatorname{Conc}(a) \in \bar{B}$ for some $B \in \operatorname{Prem}(b)$
- a contrary-undermines biff $\operatorname{Conc}(a)$ is a contrary of \bar{B} for some $B \in \operatorname{Prem}(b)$
- a (restricted) rebuts b iff $\operatorname{Conc}(a) \in \bar{B}$ where $B=\operatorname{Conc}\left(b^{\prime}\right)$ for some $b^{\prime} \in \operatorname{Sub}(b)$ and b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$
- a (restricted) contrary-rebuts b iff $\operatorname{Conc}(a)$ is a contrary of \bar{B} where $B=\operatorname{Conc}\left(b^{\prime}\right)$ for some $b^{\prime} \in \operatorname{Sub}(b)$ and b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$

Definition 4 (Argumentative Attack)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$,

- a undermines b iff $\operatorname{Conc}(a) \in \bar{B}$ for some $B \in \operatorname{Prem}(b)$
- a contrary-undermines b iff $\operatorname{Conc}(a)$ is a contrary of \bar{B} for some $B \in \operatorname{Prem}(b)$
- a (restricted) rebuts b iff $\operatorname{Conc}(a) \in \bar{B}$ where $B=\operatorname{Conc}\left(b^{\prime}\right)$ for some $b^{\prime} \in \operatorname{Sub}(b)$ and b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$
- a (restricted) contrary-rebuts b iff $\operatorname{Conc}(a)$ is a contrary of \bar{B} where $B=\operatorname{Conc}\left(b^{\prime}\right)$ for some $b^{\prime} \in \operatorname{Sub}(b)$ and b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$
- a undercuts b iff $\operatorname{Conc}(a)=\overline{N(r)}$ for some $b^{\prime} \in \operatorname{Sub}(b)$ where b^{\prime} is of the form $\left\langle b_{1}, \ldots, b_{m} \Rightarrow B\right\rangle$ and based on the defeasible rule $r=\operatorname{Conc}\left(b_{1}\right), \ldots, \operatorname{Conc}\left(b_{n}\right) \Rightarrow B$ with the name $N(r)$.

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
- A is a contrary of B if $A \in \bar{B}$ but $\operatorname{not} B \in \bar{A}$

Contrariness and Contradictoriness

- A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
- A is a contrary of B if $A \in \bar{B}$ but $\operatorname{not} B \in \bar{A}$

Why is this distinction useful. Isn't it sufficient to work simply with classical negation?

Contrariness and Contradictoriness

－A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
－A is a contrary of B if $A \in \bar{B}$ but not $B \in \bar{A}$
Why is this distinction useful．Isn＇t it sufficient to work simply with classical negation？

The idea is to capture also notions such as
negation－as－failure（－to－prove）e．g．，in rules such as bird，\sim penguin \Rightarrow flies where \sim penguin $\in \mathcal{K}_{a}$ ．Clearly，if we can derive penguin this should attack arguments such as

- 〈～penguin〉
- 〈bird，\sim penguin \Rightarrow flies〉

Contrariness and Contradictoriness

－A is a contradictory of B if $A \in \bar{B}$ and $B \in \bar{A}$
－A is a contrary of B if $A \in \bar{B}$ but not $B \in \bar{A}$
Why is this distinction useful．Isn＇t it sufficient to work simply with classical negation？

The idea is to capture also notions such as
negation－as－failure（－to－prove）e．g．，in rules such as bird，\sim penguin \Rightarrow flies where \sim penguin $\in \mathcal{K}_{a}$ ．Clearly，if we can derive penguin this should attack arguments such as

- 〈～penguin〉
- 〈bird，\sim penguin \Rightarrow flies〉

So penguin $\in \overline{\sim \text { penguin．}}$ But $\langle\sim$ penguin \rangle should not attack an argument with the conclusion penguin．So，
\sim penguin $\notin \overline{\text { penguin }}$ ．

Structured Argumentation System (without priorities)

A structured argumentation system $\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim\rangle$ is an argumentation system equipped with argumentative attacks (define in some, possibly all, of the above ways) giving rise to $\sim \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$.

Back to the example

- undermining

Back to the example

- undermining
- rebutting

Back to the example

- undermining
- rebutting
- undercutting

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(A S, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(A S, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c
- is admissible iff it is conflict-free and it defends every $b \in B$

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c
- is admissible iff it is conflict-free and it defends every $b \in B$
- is complete iff it is admissible and contains every argument it defends

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c
- is admissible iff it is conflict-free and it defends every $b \in B$
- is complete iff it is admissible and contains every argument it defends
- is preferred iff it is maximally (w.r.t. \subseteq) admissible/complete

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c
- is admissible iff it is conflict-free and it defends every $b \in B$
- is complete iff it is admissible and contains every argument it defends
- is preferred iff it is maximally (w.r.t. \subseteq) admissible/complete
- is stable iff it is admissible and $\mathcal{B}=\operatorname{Arg}(A S, \mathcal{K}) \backslash \mathcal{B}^{+}$where \mathcal{B}^{+}is the set of all arguments attacked by \mathcal{B}

Argumentation Semantics

We use Dung-style semantics to select sets of arguments. A set $\mathcal{B} \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$

- is conflict-free iff there are no $a, b \in \mathcal{B}$ s.t. a attacks b
- is naive iff it is maximally conflict-free
- defends $a \in \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ iff for every attacker c of a there is $a b \in \mathcal{B}$ such that b attacks c
- is admissible iff it is conflict-free and it defends every $b \in B$
- is complete iff it is admissible and contains every argument it defends
- is preferred iff it is maximally (w.r.t. \subseteq) admissible/complete
- is stable iff it is admissible and $\mathcal{B}=\operatorname{Arg}(A S, \mathcal{K}) \backslash \mathcal{B}^{+}$where \mathcal{B}^{+}is the set of all arguments attacked by \mathcal{B}
- etc.

Why restricted rebuttal?

... that is, why not allowing rebuttal on conclusions obtained by strict rules?

Why restricted rebuttal?

... that is, why not allowing rebuttal on conclusions obtained by strict rules? Suppose we have:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$

Why restricted rebuttal?

... that is, why not allowing rebuttal on conclusions obtained by strict rules? Suppose we have:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}

Why restricted rebuttal?

... that is, why not allowing rebuttal on conclusions obtained by strict rules? Suppose we have:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor, Bachelor $\rightarrow \neg$ Married $\}$

Why restricted rebuttal? (cont.)

We have e.g., the following arguments:

- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle
- $b_{3}=\left\langle b_{2} \mapsto \neg\right.$ Married \rangle
giving rise to (with restricted rebuts)

Why restricted rebuttal? (cont.)

- Preferred Extension 1:

Why restricted rebuttal? (cont.)

- Preferred Extension 1:
a1

- Preferred Extension 2:

Why restricted rebuttal? (cont.)

We have e.g., the following arguments:

- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle
- $b_{3}=\left\langle b_{2} \mapsto \neg\right.$ Married \rangle
and now we allowing for rebuts on conclusions obtained by strict rules:

Why restricted rebuttal? (cont.)

We have e.g., the following arguments:

- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle
- $b_{3}=\left\langle b_{2} \mapsto \neg\right.$ Married \rangle

Problem: now we also get the preferred extension:

Consequence Relations

Definition 5

Where $\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \leadsto\rangle$ is a structured argumentation framework and the semantics sem is one of the Dung-semantics defined above, we define:

- AT $\mathcal{r}_{\text {sem }}^{\cup} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for some $\mathcal{B} \in \operatorname{sem}(A T)$

Consequence Relations

Definition 5

Where $\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim\rangle$ is a structured argumentation framework and the semantics sem is one of the Dung-semantics defined above, we define:

- AT $\mathcal{r}_{\text {sem }}^{\cup} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for some $\mathcal{B} \in \operatorname{sem}(A T)$
- AT $\mu_{\text {sem }}^{\cap} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for every $\mathcal{B} \in \operatorname{sem}(A T)$

Consequence Relations

Definition 5

Where $\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim\rangle$ is a structured argumentation framework and the semantics sem is one of the Dung-semantics defined above, we define:

- AT $\sim_{\text {sem }}^{\cup} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for some $\mathcal{B} \in \operatorname{sem}(A T)$
- AT $\sim_{\text {sem }}^{\cap} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for every $\mathcal{B} \in \operatorname{sem}(A T)$
- AT $\sim_{\text {sem }}^{n} A$ iff for every $\mathcal{B} \in \operatorname{sem}(A T)$ there is an $a \in \mathcal{B}$ such that $\operatorname{Conc}(a)=A$.

Consequence Relations

Definition 5

Where $A T=\langle\operatorname{Arg}(A S, \mathcal{K}), \sim\rangle$ is a structured argumentation framework and the semantics sem is one of the Dung-semantics defined above, we define:

- AT $\sim_{\text {sem }}^{\cup} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for some $\mathcal{B} \in \operatorname{sem}(A T)$
- AT $\sim_{\text {sem }}^{\cap} A$ iff there is an $a \in \mathcal{B}$ with $\operatorname{Conc}(a)=A$ for every $\mathcal{B} \in \operatorname{sem}(A T)$
- AT $\sim_{\text {sem }}^{n} A$ iff for every $\mathcal{B} \in \operatorname{sem}(A T)$ there is an $a \in \mathcal{B}$ such that $\operatorname{Conc}(a)=A$.

Note: $\sim_{\text {sem }}^{\cap}$ admits floating conclusions, while $\sim_{\text {sem }}^{n}$ blocks them.

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- \mathcal{D} consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- \mathcal{D} consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle
- $a_{3}=\left\langle a_{1} \Rightarrow\right.$ polMotivated \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle
- $a_{3}=\left\langle a_{1} \Rightarrow\right.$ polMotivated \rangle
- $a_{4}=\langle\langle$ republican $\rangle \Rightarrow$ hawk \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle
- $a_{3}=\left\langle a_{1} \Rightarrow\right.$ polMotivated \rangle
- $a_{4}=\langle\langle$ republican $\rangle \Rightarrow$ hawk \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow \neg\right.$ dove \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow
polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle
- $a_{3}=\left\langle a_{1} \Rightarrow\right.$ polMotivated \rangle
- $a_{4}=\langle\langle$ republican $\rangle \Rightarrow$ hawk \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow \neg\right.$ dove \rangle
- $a_{6}=\left\langle a_{4} \Rightarrow\right.$ polMotivated \rangle

Example: Nixon

- $\mathcal{K}_{a}=$
\{quaker, republican\}
- D consists of
- quaker \Rightarrow dove
- republican \Rightarrow hawk
- dove $\Rightarrow \neg$ hawk
- hawk $\Rightarrow \neg$ dove
- dove \Rightarrow polMotivated
- hawk \Rightarrow polMotivated

We have, e.g., the following arguments

- $a_{1}=\langle\langle$ quaker $\rangle \Rightarrow$ dove \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow \neg\right.$ hawk \rangle
- $a_{3}=\left\langle a_{1} \Rightarrow\right.$ polMotivated \rangle
- $a_{4}=\langle\langle$ republican $\rangle \Rightarrow$ hawk \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow \neg\right.$ dove \rangle
- $a_{6}=\left\langle a_{4} \Rightarrow\right.$ polMotivated \rangle

We have three preferred extensions (highlighted arguments for polMotivated),

- one including a_{1}, a_{2}, a_{3}
- one including a_{4}, a_{5}, a_{6}
- one including $a_{1}, a_{3}, a_{4}, a_{6}$

Introducing priorities

On the level of arguments

Definition 6 (Structured Argumentation Framework)

A structured argumentation framework
$\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$ where AS is an argumentation theory, \mathcal{K} a knowledge base, $\leadsto \subseteq \operatorname{Arg}(A S, \mathcal{K}) \times \operatorname{Arg}(A S, \mathcal{K})$ an attack relation and $\preceq \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ an preorder (reflexive and transitive) on $\operatorname{Arg}(A S, \mathcal{K})$.

On the level of arguments

Definition 6 (Structured Argumentation Framework)

A structured argumentation framework
$\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$ where AS is an argumentation theory, \mathcal{K} a knowledge base, $\sim \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ an attack relation and $\preceq \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ an preorder (reflexive and transitive) on $\operatorname{Arg}(\mathrm{AS}, \mathcal{K})$.

Definition 7 (Defeat)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$, a defeats b iff $a \sim b$ and

- either a undercuts b or
- a rebuts/undermines b and either $a \nprec b$ or a contrary rebuts/undermines b.

On the level of arguments

Definition 6 (Structured Argumentation Framework)

A structured argumentation framework
$\mathrm{AT}=\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$ where AS is an argumentation theory, \mathcal{K} a knowledge base, $\sim \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ an attack relation and $\preceq \subseteq \operatorname{Arg}(\mathrm{AS}, \mathcal{K}) \times \operatorname{Arg}(\mathrm{AS}, \mathcal{K})$ an preorder (reflexive and transitive) on $\operatorname{Arg}(\mathrm{AS}, \mathcal{K})$.

Definition 7 (Defeat)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$, a defeats b iff $a \sim b$ and

- either a undercuts b or
- a rebuts/undermines b and either $a \nprec b$ or a contrary rebuts/undermines b.

We can now define the argumentation semantics relative to the notion of defeat instead of the notion of argumentative attack.

Example

suppose we have:

- $\mathcal{K}_{a}=$
\{WearsRing, PartyAnimal\}
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow

Married, $r_{2}=$ PartyAnimal \Rightarrow
Bachelor\}

- $\mathcal{S}=\{$ Married \rightarrow
\neg Bachelor, Bachelor \rightarrow
\neg Married $\}$
... and we have the arguments:
- $a_{1}=\langle$ WearsRing \rangle,
- $b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle
- $b_{3}=\left\langle b_{2} \mapsto \neg\right.$ Married \rangle

Example

suppose we have:

- $\mathcal{K}_{a}=$
\{WearsRing, PartyAnimal\}
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow

Married, $r_{2}=$ PartyAnimal \Rightarrow
Bachelor $\}$

- $\mathcal{S}=\{$ Married \rightarrow
\neg Bachelor, Bachelor \rightarrow
\neg Married $\}$
... and we have the arguments:
- $a_{1}=\langle$ WearsRing \rangle,
- $b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle
- $b_{3}=\left\langle b_{2} \mapsto \neg\right.$ Married \rangle

Where $a_{2}, a_{3} \prec b_{2}, b_{3}$ then we have the following defeat graph:

Calculating Argument Strength bottom-up

Suppose we are equipped with priority ordering
$\leq \subseteq\left(\mathcal{K}_{a} \times \mathcal{K}_{a}\right) \cup(\mathcal{D} \times \mathcal{D})$ on

- the defeasible premises \mathcal{K}_{a} and
- the defeasible rules \mathcal{D}

Calculating Argument Strength bottom-up

Suppose we are equipped with priority ordering
$\leq \subseteq\left(\mathcal{K}_{a} \times \mathcal{K}_{a}\right) \cup(\mathcal{D} \times \mathcal{D})$ on

- the defeasible premises \mathcal{K}_{a} and
- the defeasible rules \mathcal{D}

We are interested in lifting this on the level of arguments constructed using information in $\mathcal{K}_{a} \cup \mathcal{K}_{n}$ and rules in $\mathcal{D} \cup \mathcal{S}$.

Calculating Argument Strength bottom-up

Suppose we are equipped with priority ordering
$\leq \subseteq\left(\mathcal{K}_{a} \times \mathcal{K}_{a}\right) \cup(\mathcal{D} \times \mathcal{D})$ on

- the defeasible premises \mathcal{K}_{a} and
- the defeasible rules \mathcal{D}

We are interested in lifting this on the level of arguments constructed using information in $\mathcal{K}_{a} \cup \mathcal{K}_{n}$ and rules in $\mathcal{D} \cup \mathcal{S}$.

We introduce two possible ways of doing so, via

1. the weakest-link principle
2. the last-link principle

The idea behind weakest-link is that an argument is as strong as its weakest link, which can be a used assumption in \mathcal{K}_{a} or a used defeasible rule in \mathcal{D}.

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\overline{\text { I }} \bar{\Xi}^{\prime} \in 2^{\mathcal{K}}{ }^{\mathcal{L}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K} a} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\Xi \unlhd \Xi^{\prime}$

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K} a} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\Xi \unlhd \Xi^{\prime}$
3. $\Xi \unlhd \Xi^{\prime}$ if there is an $A \in \Xi$ such that for all $B \in \Xi^{\prime}, A \leq B$.

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}}{ }^{\mathcal{K}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\equiv=\emptyset$ then $\equiv \nsubseteq \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\equiv \unlhd \Xi^{\prime}$
3. $\equiv \unlhd \Xi^{\prime}$ if there is an $A \in \equiv$ such that for all $B \in \Xi^{\prime}, A \leq B$.

Definition 9 (Weakest Link Ordering, from \unlhd to \preceq)

Where $a, b \in \operatorname{Arg}(A S, \mathcal{K}), a \preceq b$ iff

1. if both a and b are strict, then
$\operatorname{Prem}(a) \cap \mathcal{K}_{a} \unlhd \operatorname{Prem}(b) \cap \mathcal{K}_{a}$

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}_{a}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\equiv=\emptyset$ then $\equiv \nsubseteq \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\equiv \unlhd \Xi^{\prime}$
3. $\equiv \unlhd \Xi^{\prime}$ if there is an $A \in \equiv$ such that for all $B \in \Xi^{\prime}, A \leq B$.

Definition 9 (Weakest Link Ordering, from \unlhd to \preceq)

Where $a, b \in \operatorname{Arg}(A S, \mathcal{K}), a \preceq b$ iff

1. if both a and b are strict, then
$\operatorname{Prem}(a) \cap \mathcal{K}_{a} \unlhd \operatorname{Prem}(b) \cap \mathcal{K}_{a}$
2. if both a and b are firm, then $\operatorname{DefRules}(a) \unlhd \operatorname{DefRules}(b)$.

We first lift \leq to sets of formulas:

Definition 8 (Elitist Lifting, from \leq to \unlhd)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}_{a}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\equiv=\emptyset$ then $\equiv \nsubseteq \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\equiv \unlhd \Xi^{\prime}$
3. $\equiv \unlhd \Xi^{\prime}$ if there is an $A \in \equiv$ such that for all $B \in \Xi^{\prime}, A \leq B$.

Definition 9 (Weakest Link Ordering, from \unlhd to \preceq)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K}), a \preceq b$ iff

1. if both a and b are strict, then
$\operatorname{Prem}(a) \cap \mathcal{K}_{a} \unlhd \operatorname{Prem}(b) \cap \mathcal{K}_{a}$
2. if both a and b are firm, then $\operatorname{DefRules}(a) \unlhd \operatorname{DefRules}(b)$.
3. else: $\operatorname{Prem}(a) \cap \mathcal{K}_{a} \unlhd \operatorname{Prem}(b) \cap \mathcal{K}_{a}$ and DefRules $(a) \unlhd$ DefRules (b)

The rationale behind last-link is that arguments are compared in their last link. As a result, an argument a is preferred over b if its last used defeasible rules are preferred over the last defeasible rules used in b.

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$
- else, where $a=\left\langle a_{1}, \ldots, a_{n} \mapsto A\right\rangle$, LastDefRules $(a)=$ $\operatorname{LastDefRules~}\left(a_{1}\right) \cup \ldots \cup$ LastDefRules $\left(a_{n}\right)$.

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$
- else, where $a=\left\langle a_{1}, \ldots, a_{n} \mapsto A\right\rangle$, LastDefRules $(a)=$ $\operatorname{LastDefRules~}\left(a_{1}\right) \cup \ldots \cup$ LastDefRules $\left(a_{n}\right)$.

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$
- else, where $a=\left\langle a_{1}, \ldots, a_{n} \mapsto A\right\rangle$, LastDefRules $(a)=$ LastDefRules $\left(a_{1}\right) \cup \ldots \cup$ LastDefRules $\left(a_{n}\right)$.

Definition 11 (Last Link principle)

Where $a, b \in \operatorname{Arg}(A S, \mathcal{K})$, then $a \preceq b$ iff

1. a is a defeasible argument and b a strict argument, or

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$
- else, where $a=\left\langle a_{1}, \ldots, a_{n} \mapsto A\right\rangle$, LastDefRules $(a)=$ LastDefRules $\left(a_{1}\right) \cup \ldots \cup$ LastDefRules $\left(a_{n}\right)$.

Definition 11 (Last Link principle)

Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$, then $a \preceq b$ iff

1. a is a defeasible argument and b a strict argument, or
2. LastDefRules $(a) \unlhd$ LastDefRules(b) and both are defeasible arguments, or

Definition 10 (Last defeasible rules)

Where a is a defeasible argument:

- if $a=\left\langle a_{1}, \ldots, a_{n} \Rightarrow A\right\rangle$ then
$\operatorname{LastDefRules}(a)=\left\{\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \Rightarrow A\right\}$
- else, where $a=\left\langle a_{1}, \ldots, a_{n} \mapsto A\right\rangle$, LastDefRules $(a)=$ LastDefRules $\left(a_{1}\right) \cup \ldots \cup$ LastDefRules $\left(a_{n}\right)$.

Definition 11 (Last Link principle)
Where $a, b \in \operatorname{Arg}(\operatorname{AS}, \mathcal{K})$, then $a \preceq b$ iff

1. a is a defeasible argument and b a strict argument, or
2. LastDefRules $(a) \unlhd$ LastDefRules(b) and both are defeasible arguments, or
3. $\operatorname{Prem}(a) \cap \mathcal{K}_{a} \unlhd \operatorname{Prem}(b) \cap \mathcal{K}_{a}$ if both are strict arguments.

Remark: Lifting

Instead of using the elitist lifting, one may also consider the democratic lifting principle, according to which:

Definition 12 (Democratic Lifting)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}_{a}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$

Remark: Lifting

Instead of using the elitist lifting, one may also consider the democratic lifting principle, according to which:

Definition 12 (Democratic Lifting)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}_{a}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\Xi \unlhd \Xi^{\prime}$

Remark: Lifting

Instead of using the elitist lifting, one may also consider the democratic lifting principle, according to which:

Definition 12 (Democratic Lifting)

Where $\equiv, \Xi^{\prime} \in 2^{\mathcal{K}_{a}} \cup 2^{\mathcal{D}}$ are finite,

1. If $\Xi=\emptyset$ then $\equiv \nexists \Xi^{\prime}$
2. If $\Xi^{\prime}=\emptyset$ and $\equiv \neq \emptyset$ then $\equiv \unlhd \Xi^{\prime}$
3. $\Xi \unlhd \Xi^{\prime}$ if for all $A \in$ 三 there is a $B \in \Xi^{\prime}, A \leq B$.
... time for the snoring professor ...

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow
accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$
accessDenied〉

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$
accessDenied \rangle
- $a_{4}=\langle$ prof \rangle

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}.

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}. We first compare with Last-Link.

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=\operatorname{prof} \Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}. We first compare with Last-Link.

- LastDefRules $\left(a_{3}\right)=r_{2}$
- LastDefRules $\left(a_{5}\right)=r_{3}$

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}. We first compare with Last-Link.

- LastDefRules $\left(a_{3}\right)=r_{2}$
- LastDefRules $\left(a_{5}\right)=r_{3}$

Since $r_{3}<r_{2}$ we have $a_{5} \prec a_{3}$ and so a_{3} strictly defeats a_{5}.

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}.

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}. We now compare with Weakest-Link.

- $\operatorname{Prem}\left(a_{3}\right) \cap \mathcal{K}_{a}=\{$ snores $\} \unlhd\{\operatorname{prof}\}=\operatorname{Prem}\left(a_{5}\right) \cap \mathcal{K}_{a}$

Suppose we have:

- $\mathcal{K}_{a}=\{$ snores, prof $\}$
- \mathcal{D} consists of
- $r_{1}=$ snores \Rightarrow misbehaves
- $r_{2}=$ misbehaves \Rightarrow accessDenied
- $r_{3}=$ prof $\Rightarrow \neg$ accessDenied
- snores $<$ prof and $r_{1}<r_{3}<r_{2}$, $r_{1}<r_{2}$

We have, e.g., the following:

- $a_{1}=\langle$ snores \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ misbehaves \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ accessDenied \rangle
- $a_{4}=\langle$ prof \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow\right.$
\neg accessDenied \rangle

We are interested in the conflict between a_{3} and a_{5}. We now compare with Weakest-Link.

- $\operatorname{Prem}\left(a_{3}\right) \cap \mathcal{K}_{a}=\{$ snores $\} \unlhd\{\operatorname{prof}\}=\operatorname{Prem}\left(a_{5}\right) \cap \mathcal{K}_{a}$
- $\operatorname{DefRules}\left(a_{3}\right)=\left\{r_{1}, r_{2}\right\} \unlhd\left\{r_{3}\right\}=\operatorname{DefRules}\left(a_{5}\right)$

Changing the Interpretation to an epistemic one

Suppose we have:

- $\mathcal{K}_{a}=$
\{bornInScotland, fitnessLover\} We have, e.g., the following:
- D consists of
- $r_{1}=$ bornInScotland \Rightarrow Scottish
- $r_{2}=$ Scottish \Rightarrow likesWhisky
- $r_{3}=$ fitnessLover \Rightarrow \neg likesWhisky
- $a_{1}=\langle$ bornInScotland \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Scottish \rangle
- $a_{3}=\left\langle a_{2} \Rightarrow\right.$ likesWhisky \rangle
- $a_{4}=\langle$ fitnessLover \rangle
- $a_{5}=\left\langle a_{4} \Rightarrow \neg\right.$ likesWhisky \rangle
- bornInScotland $<$ fitnessLover
and $r_{1}<r_{3}<r_{2}, r_{1}<r_{2}$
Now it seems more reasonable to go with Weakest-Link!

Rationality Postulates

Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates for extensions \mathcal{E} of a given argumentation framework $\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$

1. Sub-argument closure: where $a \in \mathcal{E}, \operatorname{Sub}(a) \subseteq \mathcal{E}$

Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates for extensions \mathcal{E} of a given argumentation framework $\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$

1. Sub-argument closure: where $a \in \mathcal{E}, \operatorname{Sub}(a) \subseteq \mathcal{E}$
2. Closure under strict rules: where $a_{1}, \ldots, a_{n} \in \mathcal{E}$ and $\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$ also $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle \in \mathcal{E}$

Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates for extensions \mathcal{E} of a given argumentation framework $\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \preceq\rangle$

1. Sub-argument closure: where $a \in \mathcal{E}, \operatorname{Sub}(a) \subseteq \mathcal{E}$
2. Closure under strict rules: where $a_{1}, \ldots, a_{n} \in \mathcal{E}$ and $\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$ also $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle \in \mathcal{E}$
3. Direct consistency: $\{\operatorname{Conc}(a) \mid a \in \mathcal{E}\}$ is consistent, where a set $\equiv \subseteq \mathcal{L}$ is consistent iff there are no $A, B \in \equiv$ for which $A \in \bar{B}$

Caminada and Amgoud (2007)

Caminada and Amgoud stated 4 central rationality postulates for extensions \mathcal{E} of a given argumentation framework $\langle\operatorname{Arg}(\mathrm{AS}, \mathcal{K}), \sim, \simeq\rangle$

1. Sub-argument closure: where $a \in \mathcal{E}, \operatorname{Sub}(a) \subseteq \mathcal{E}$
2. Closure under strict rules: where $a_{1}, \ldots, a_{n} \in \mathcal{E}$ and $\operatorname{Conc}\left(a_{1}\right), \ldots, \operatorname{Conc}\left(a_{n}\right) \rightarrow B \in \mathcal{S}$ also $\left\langle a_{1}, \ldots, a_{n} \mapsto B\right\rangle \in \mathcal{E}$
3. Direct consistency: $\{\operatorname{Conc}(a) \mid a \in \mathcal{E}\}$ is consistent, where a set $\equiv \subseteq \mathcal{L}$ is consistent iff there are no $A, B \in \equiv$ for which $A \in \bar{B}$
4. indirect consistency: the set obtained by closing $\{\operatorname{Conc}(a) \mid a \in \mathcal{E}\}$ under the strict rules in \mathcal{S} is consistent.

When are these postulates met?

1. the underlying argument theory should be well formed, meaning that whenever A is a contrary of some B then B is not a strict premise or the consequent of a strict rule.

When are these postulates met?

1. the underlying argument theory should be well formed, meaning that whenever A is a contrary of some B then B is not a strict premise or the consequent of a strict rule.
2. the underlying argument theory is closed under

When are these postulates met?

1. the underlying argument theory should be well formed, meaning that whenever A is a contrary of some B then B is not a strict premise or the consequent of a strict rule.
2. the underlying argument theory is closed under

- transposition: if $A_{1}, \ldots, A_{n} \rightarrow B \in \mathcal{S}$ then $A_{1}, \ldots, A_{i-1}, B^{\prime}, A_{i}, \ldots, A_{n} \rightarrow A_{i}^{\prime}$ where $1 \leq i \leq n, B^{\prime}$ is a contrapositary of B and A_{i} is a contrapositary of A_{j}^{\prime}; or

When are these postulates met?

1. the underlying argument theory should be well formed, meaning that whenever A is a contrary of some B then B is not a strict premise or the consequent of a strict rule.
2. the underlying argument theory is closed under

- transposition: if $A_{1}, \ldots, A_{n} \rightarrow B \in \mathcal{S}$ then $A_{1}, \ldots, A_{i-1}, B^{\prime}, A_{i}, \ldots, A_{n} \rightarrow A_{i}^{\prime}$ where $1 \leq i \leq n, B^{\prime}$ is a contrapositary of B and A_{i} is a contrapositary of A_{j}^{\prime}; or
- contraposition: for all $\equiv \subseteq \mathcal{L}$ and $A \in \equiv$, if $\equiv \vdash_{\mathcal{S}} B$ then
$\equiv \backslash\{A\} \cup\left\{B^{\prime}\right\} \vdash_{\mathcal{S}} A^{\prime}$ where B^{\prime} is a contrapositary of B and A^{\prime} is a contrapositary of A

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent
4. the preference ordering is reasonable, meaning

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent
4. the preference ordering is reasonable, meaning

- strict and firm arguments are (i) (strictly) preferred over arguments that are plausible and /or defeasible and (ii) are incomparible with other strict and firm arguments

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent
4. the preference ordering is reasonable, meaning

- strict and firm arguments are (i) (strictly) preferred over arguments that are plausible and/or defeasible and (ii) are incomparible with other strict and firm arguments
- the preference ordering is acyclic

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent
4. the preference ordering is reasonable, meaning

- strict and firm arguments are (i) (strictly) preferred over arguments that are plausible and/or defeasible and (ii) are incomparible with other strict and firm arguments
- the preference ordering is acyclic
- extending an argument with only strict rules and strict premises doesn't change its strength

When are these postulates met? (cont.)

3. the strict premises \mathcal{K}_{n} are indirectly consistent
4. the preference ordering is reasonable, meaning

- strict and firm arguments are (i) (strictly) preferred over arguments that are plausible and/or defeasible and (ii) are incomparible with other strict and firm arguments
- the preference ordering is acyclic
- extending an argument with only strict rules and strict premises doesn't change its strength

Note: the Weakest/Last-Link principles as defined above are reasonable.

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal\}
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow

Bachelor\}

- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal\}
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal\}
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle
(We removed Bachelor $\rightarrow \neg$ Married from $\mathcal{S}!$)

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle
(We removed Bachelor $\rightarrow \neg$ Married from $\mathcal{S}!$)
We have the following arguments:
- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle
(We removed Bachelor $\rightarrow \neg$ Married from $\mathcal{S}!$)
We have the following arguments:
- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle
(We removed Bachelor $\rightarrow \neg$ Married from $\mathcal{S}!$)
We have the following arguments:
- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle

Why Transposition

Suppose we use:

- $\mathcal{K}_{a}=\{$ WearsRing, PartyAnimal $\}$
- $\mathcal{D}=\left\{r_{1}=\right.$ WearsRing \Rightarrow Married, $r_{2}=$ PartyAnimal \Rightarrow Bachelor\}
- $\mathcal{S}=\{$ Married $\rightarrow \neg$ Bachelor $\}$
- and $r_{1}<r_{2}$
- last-link principle
(We removed Bachelor $\rightarrow \neg$ Married from $\mathcal{S}!$)
We have the following arguments:
- $a_{1}=\langle$ WearsRing $\rangle, b_{1}=\langle$ PartyAnimal \rangle
- $a_{2}=\left\langle a_{1} \Rightarrow\right.$ Married \rangle
- $b_{2}=\left\langle b_{1} \Rightarrow\right.$ Bachelor \rangle
- $a_{3}=\left\langle a_{2} \mapsto \neg\right.$ Bachelor \rangle

Why well-formedness?

Recall: whenever A is the contrary of some B, B is not a strict premise or the consequent of a strict rule.

We come back to our application with negation-as-failure.
Suppose we have:

- $\mathcal{K}_{n}=\{\sim$ penguin, livesInAlaska, bird $\}$
- $\mathcal{K}_{a}=\emptyset$
- $\mathcal{D}=\{$ bird, livesInAlaska \Rightarrow penguin $\}$

Can you see why direct consistency doesn't hold for this example?

Contamination, Interference Wu (2012); Caminada et al. (2012)

Another rationality postulate is Non-Interference: it says that for two sets of formulas ミ and Ξ^{\prime} that are syntactically disjoint (they share no atoms) we have
$\operatorname{Cn}(\equiv)_{\mid \operatorname{Atoms}(\equiv)}=\operatorname{Cn}\left(\equiv \cup \Xi^{\prime}\right)_{\mid \operatorname{Atoms}(\equiv)}$.

Contamination, Interference Wu (2012); Caminada et al. (2012)

Another rationality postulate is Non-Interference: it says that for two sets of formulas \equiv and Ξ^{\prime} that are syntactically disjoint (they share no atoms) we have
$\operatorname{Cn}(\equiv)_{\mid \operatorname{Atoms}(\equiv)}=C n\left(\equiv \cup \Xi^{\prime}\right)_{\mid \operatorname{Atoms}(\equiv)}$.

In particular, there should not be a contaminating set, that is a set $\Lambda($ where $\operatorname{Atoms}(\Lambda) \subset \operatorname{Atoms}(\mathcal{L}))$ such that for every \equiv that is syntactically disjoint from $\Lambda, C n(\Lambda)=C n(\Lambda \cup \equiv)$.

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of
- Wr, Wrel \Rightarrow r (If Walter says it rains and he is reliable, it rains.)

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of
- Wr, Wrel \Rightarrow r (If Walter says it rains and he is reliable, it rains.)
- for \mathcal{D}^{1} we add:

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of
- Wr, Wrel $\Rightarrow r$ (If Walter says it rains and he is reliable, it rains.)
- for \mathcal{D}^{1} we add:
- Js, Jrel $\Rightarrow s$ (If John says there is sugar in the coffee and he is reliable then there is sugar in the coffee)

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of
- Wr, Wrel $\Rightarrow r$ (If Walter says it rains and he is reliable, it rains.)
- for \mathcal{D}^{1} we add:
- Js, Jrel $\Rightarrow s$ (If John says there is sugar in the coffee and he is reliable then there is sugar in the coffee)
- Mns, Mrel $\Rightarrow \neg$ S

An example Wu (2012)

- $\mathcal{K}_{a}^{0}=\{\mathrm{Wr}, \mathrm{Wrel}\}$
- $\mathcal{K}_{a}^{1}=\{\mathrm{Js}$, Jrel, Mns, Mrel, Wr, Wrel $\}$,
- \mathcal{D}^{0} consists of
- Wr, Wrel $\Rightarrow r$ (If Walter says it rains and he is reliable, it rains.)
- for \mathcal{D}^{1} we add:
- Js, Jrel $\Rightarrow \mathrm{s}$ (If John says there is sugar in the coffee and he is reliable then there is sugar in the coffee)
- Mns, Mrel $\Rightarrow \neg s$
- suppose our strict rules allow for all the inferences of classical logics, in particular $s, \neg s \rightarrow \neg r$
- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b=\langle\langle\mathrm{Mns}\rangle,\langle$ Mrel $\rangle \Rightarrow \neg \mathrm{s}\rangle$
- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b=\langle\langle$ Mns \rangle,\langle Mrel $\rangle \Rightarrow \neg s\rangle$
- $c=\langle a, b \mapsto \neg r\rangle$
- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b=\langle\langle$ Mns \rangle,\langle Mrel $\rangle \Rightarrow \neg s\rangle$
- $c=\langle a, b \mapsto \neg r\rangle$
- $d=\langle\langle\mathrm{Wr}\rangle,\langle\mathrm{Wrel}\rangle \Rightarrow r\rangle$
- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b=\langle\langle$ Mns \rangle,\langle Mrel $\rangle \Rightarrow \neg s\rangle$
- $c=\langle a, b \mapsto \neg r\rangle$
- $d=\langle\langle\mathrm{Wr}\rangle,\langle\mathrm{Wrel}\rangle \Rightarrow r\rangle$

- $a=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b=\langle\langle\mathrm{Mns}\rangle,\langle$ Mrel $\rangle \Rightarrow \neg \mathrm{s}\rangle$
- $c=\langle a, b \mapsto \neg r\rangle$
- $d=\langle\langle\mathrm{Wr}\rangle,\langle\mathrm{Wrel}\rangle \Rightarrow r\rangle$

Exercise

- See what happens in grounded semantics!
- Does it help to move to e.g., preferred semantics?

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,
- \mathcal{D} consists of

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr $\}$,
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg s$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg s$

We have, for instance, the following arguments:

- $a_{1}=\langle\langle\mathrm{Junr}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \neg \mathrm{Jrel}\rangle$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg s$

We have, for instance, the following arguments:

- $a_{1}=\langle\langle$ Junr \rangle,\langle Jrel $\rangle \Rightarrow \neg$ Jrel \rangle
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg$ S

We have, for instance, the following arguments:

- $a_{1}=\langle\langle\mathrm{Junr}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \neg \mathrm{Jrel}\rangle$
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b_{1}=\langle\langle$ Munr \rangle,\langle Mrel $\rangle \Rightarrow \neg$ Mrel \rangle

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg$ S

We have, for instance, the following arguments:

- $a_{1}=\langle\langle\mathrm{Junr}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \neg \mathrm{Jrel}\rangle$
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b_{1}=\langle\langle$ Munr \rangle,\langle Mrel $\rangle \Rightarrow \neg$ Mrel \rangle
- $b_{2}=\langle\langle\mathrm{Mns}\rangle,\langle\mathrm{Mrel}\rangle \Rightarrow \neg \mathrm{S}\rangle$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- D consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg$ S

We have, for instance, the following arguments:

- $a_{1}=\langle\langle$ Junr \rangle,\langle Jrel $\rangle \Rightarrow \neg$ Jrel \rangle
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b_{1}=\langle\langle$ Munr \rangle,\langle Mrel $\rangle \Rightarrow \neg$ Mrel \rangle
- $b_{2}=\langle\langle\mathrm{Mns}\rangle,\langle\mathrm{Mrel}\rangle \Rightarrow \neg S\rangle$
- $c=a_{2}, b_{2} \mapsto \neg r$

A complication

- $\mathcal{K}_{a}=\{$ Js, Jrel, Mns, Mrel, Wr, Wrel, Junr, Munr\},
- \mathcal{D} consists of
- Wr, Wrel $\Rightarrow r$
- Junr, Jrel $\Rightarrow \neg$ Jrel (If John says he's unreliable and he's reliable, then he's unreliable.)
- Munr, Mrel $\Rightarrow \neg$ Mrel
- Js, Jrel \Rightarrow s
- Mns, Mrel $\Rightarrow \neg$ S

We have, for instance, the following arguments:

- $a_{1}=\langle\langle$ Junr \rangle,\langle Jrel $\rangle \Rightarrow \neg$ Jrel \rangle
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow s\rangle$
- $b_{1}=\langle\langle$ Munr \rangle,\langle Mrel $\rangle \Rightarrow \neg$ Mrel \rangle
- $b_{2}=\langle\langle\mathrm{Mns}\rangle,\langle\mathrm{Mrel}\rangle \Rightarrow \neg \mathrm{s}\rangle$
- $c=a_{2}, b_{2} \mapsto \neg r$
$\cdot d=\langle\langle\mathrm{Wr}\rangle,\langle\mathrm{Wrel}\rangle \Rightarrow r\rangle$

A complication (cont.)

- $a_{1}=\langle\langle$ Junr \rangle,\langle Jrel $\rangle \Rightarrow \neg$ Jrel \rangle
- $a_{2}=\langle\langle\mathrm{Js}\rangle,\langle\mathrm{Jrel}\rangle \Rightarrow \mathrm{s}\rangle$
- $b_{1}=\langle\langle$ Munr \rangle,\langle Mrel $\rangle \Rightarrow \neg$ Mrel \rangle
- $b_{2}=\langle\langle\mathrm{Mns}\rangle,\langle$ Mrel $\rangle \Rightarrow \neg s\rangle$
- $c=\left\langle a_{2}, b_{2} \mapsto \neg r\right\rangle$
- $d=\langle\langle\mathrm{Wr}\rangle,\langle\mathrm{Wrel}\rangle \Rightarrow r\rangle$

Bibliography

Bibliography i

References

Arieli, O.: 2013, 'A sequent-based representation of logical argumentation'.
In: Proc. CLIMA'13. pp. 69-85, Springer.
Arieli, O. and C. Straßer: 2015, 'Sequent-Based Logical Argumentation'.
Argument and Computation. 6(1), 73-99.
Besnard, P. and A. Hunter: 2001, 'A logic-based theory of deductive arguments'. Artifical Intelligence 128(1), 203-235.

Besnard, P. and A. Hunter: 2009, 'Argumentation based on classical logic'. In:
I. Rahwan and G. R. Simary (eds.): Argumentation in Artificial Intelligence. Springer, pp. 133-152.

Caminada, M. and L. Amgoud: 2007, ‘On the evaluation of argumentation formalisms'. Artifical Intelligence 171, 286-310.

Bibliography ii

Caminada, M. W., W. A. Carnielli, and P. E. Dunne: 2012, ‘Semi-stable semantics'. Journal of Logic and Computation 22(5), 1207-1254.

Dung, P., R. Kowalski, and F. Toni: 2009, 'Assumption-based argumentation'. Argumentation in Artificial Intelligence pp. 199-218.

Dung, P. M.: 1995, 'On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games'. Artifical Intelligence 77, 321-358.

García, A. J. and G. R. Simari: 2004, 'Defeasible logic programming: An argumentative approach'. Theory and practice of logic programming 4(1+ 2), 95-138.

Governatori, G., M. J. Maher, G. Antoniou, and D. Billington: 2004, 'Argumentation Semantics for Defeasible Logic'. Journal of Logic and Computation 14(5), 675-702.

Mercier, H. and D. Sperber: 2011, 'Why do humans reason? Arguments for an argumentative theory'. Behavioral and Brain Sciences 34(2), 57-74.

Bibliography iii

Modgil, S. and H. Prakken: 2013, 'A general account of argumentation with preferences'. Artificial Intelligence 195, 361-397.

Modgil, S. and H. Prakken: 2014, 'The ASPIC+ framework for structured argumentation: a tutorial'. Argument \& Computation 5(1), 31-62.

Nute, D.: 1994, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, Chapt. Defeasible Logic, pp. 353-395. Oxford University Press.
Pollock, J.: 1995, Cognitive Carpentry. Bradford/MIT Press.
Prakken, H.: 2011, 'An Abstract Framework for Argumentation with Structured Arguments'. Argument and Computation 1(2), 93-124.

Verheij, B.: 2000, 'DEFLOG - a logic of dialectical justification and defeat'. Manuscript. See http://www. rechten. unimaas. nl/metajuridica/verheij/publications. htm.
Verheij, B.: 2003, 'Deflog: on the logical interpretation of prima facie justified assumptions'. Journal of Logic and Computation 13(3), 319-346.

Bibliography iv

Wu, Y.: 2012, ‘Between Argument and Conclusion. Argument-based Approaches to Discussion, Inference and Uncertainty'. Ph.D. thesis, Universite Du Luxembourg.

