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Kratzer framework and conditionals
The formal framework introduced by Kratzer in 1981 is
closely related to the work on DSDL in the sixties and seven-
ties, such as the work of Hansson and Lewis discussed in the
handout of Lecture 1. Her semantics is therefore sometimes
referred to as the Lewis-Kratzer semantics. In the seman-
tics of Kratzer, the preference ordering is not given, but it is
constructed from two sets of propositions, called the modal
base and the ordering source. The modal base gives the
set of worlds of the preference ordering, namely the worlds
satisfying all the sentences of the modal base. The order-
ing source gives the preference relation between the worlds,
namely the subset ordering on the sentences of the order-
ing source. When the sentences of the ordering source are
taken as obligations, this represents that a maximal number
of obligations is fulfilled, or a minimal number of them is
violated. Conditional obligations are then evaluated as in
DSDL.

Poole system and abduction1

In the mid 80s it became clear that there are two different
activities that are going on in nonmonotonic logic: expla-
nation and prediction. Explanation is where the proposition
to be explained (the explanandum) is an observation in the
world, and we want to explain why this occurred (this is one
formalization of what C.S.Peirce called abduction). The sec-
ond, prediction is where the explanandum is unknown, and
the problem is to determine whether to predict the explanan-
dum or not (forming a formalization of default reasoning).

It became clear that these are quite different, but that they
naturally fit together. A common reasoning strategy is, given
an observation, to explain it (using normality and abnormal-
ity assumptions) and then make predictions (using normality
assumptions). One of the early applications was in diagno-
sis. This was in the form of what is now called ‘abductive
diagnosis’.

More recent work on probabilistic Horn abduction has
shown the close relationship between Bayesian conditioning
with abduction followed by prediction. The probabilities in
probabilistic Horn abduction give us a finer-grained control

1This section is taken from Poole’s website
https://www.cs.ubc.ca/∼poole/theorist.html.

than just normality and abnormality assumptions, and also
gives us a clean and simple model-theoretic semantics.

Definition of a Poole system2

Poole uses first order logic (FOL) as the underlying logic.
F is a set of closed formulae, which we are treating as

“facts”. We assume the facts are consistent. These are in-
tended to be statements which are true in the intended in-
terpretation. More precisely these are statements we are not
prepared to give up for some application.

∆ is a set of formulae, called the set of possible hypothe-
ses. Any ground instance of these can be used as a hypothe-
sis if it is consistent.

Definition 1. A scenario of F,∆ is a set D ∪ F where D is
a set of ground instances of elements of ∆ such that D ∪ F
is consistent.

Definition 2. If g is a closed formula then an explanation of
g from F,∆ is a scenario of F,∆ which implies g.

That is, g is explainable from F,∆ if there is a set D of
ground instances of elements of ∆ such that

1. F ∪D |= g and

2. F ∪D is consistent

F ∪ D is an explanation of g. The first condition says that
D predicts g, and the second says that D does not predict
something which we know is false.

Definition 3. An extension of F,∆ is the set of logical con-
sequences of a maximal (with respect to set inclusion) sce-
nario of F,∆.

The implementation of Poole’s system, called Theorist,
looks for minimal explanations.

Similarity between Kratzer and Poole
The similarity between Kratzer and Poole is striking, both
take maximal consistent subsets to define their logics. This
may not be as surprising at it is as first sight, because taking
the subset ordering and thus maximal consistent subsets is
a natural operation. For example, Rescher’s logic of com-
mands (1966) predates the development of DSDL, and thus

2This section is taken from Poole, A Logical Framework for
Default Reasoning. 1984/1988.



also the work of Kratzer and Poole. Moreover, as we will see
in Lecture 3, it was also used in the mid eighties to define the
standard framework for theory change (or AGM belief revi-
sion).3

Example
Assume that to achieve goal proposition g, there are action
propositions do(a1), do(a2), . . . , do(an). In other words,
do(ai) logically implies g, and g implies the disjunction
do(a1) ∨ do(a2) ∨ . . . ∨ do(an).

Now, on the one hand, you want to maximize your goals,
which is g. On the other hand, you want to do so with a
minimal number of actions. That is, you do not want to
derive do(a1) ∧ do(a2) ∧ . . . ∧ do(an). One way to model
such means end reasoning, is to associate implicit costs with
the actions, and there are implicit goals to minimize these
costs.

Example 1. Consider “If you want to go to Brooklyn, then
you should take the A-train.” In this example, g is “being
in Brooklyn”, a1 is “taking the A train”, a2 is “walking to
Brooklyn”, etc. Moreover, let c(a1) be consequences of a1
like paying money for ticket, c(a2) be consequences of a2
like being very tired etc.

F = {do(x) → g, g → do(a1) ∨ . . . ∨ do(an), do(x) →
c(x)}

∆ = {¬do(x), g}
F ∪∆ implies a contradiction, so an explanation F ∪D of
g has to exclude one of the ¬do(ai).

Likewise, you can create alternative orderings by repre-
senting the costs differently, for example:

∆ = {¬do(a1),¬do(a1) ∧ ¬do(a2), . . . , g}

Makinson 1994/2005 sceptical approach4

The relation between Kratzer and Poole becomes more ex-
plicit in the work of Makinson and Freund. They refer to the
1994 version of Poole’s system.5

As shown by Makinson in 19946 Poole’s original lib-
eral conception of the “extension family function” associ-
ated with the pair (A,K) can be modified to a sceptical ap-
proach, providing a preferential inference relation when the
Poole system is one “without constraints”, i.e. when its set
K of constraints is empty. Such a Poole system can be iden-
tified with a set of prerequisite-free normal defaults in the
sense of Reiter, and the associated preferential inference re-
lation then corresponds to the sceptical Reiter extension of

3More examples are given by David Makinson in “Five faces of
minimality” (1993).

4This is taken from Freund, Preferential reasoning in the per-
spective of Poole default logic. AIJ, 1998.

5D. Poole, Default logic, in: Gabbay, Hogger and Robinson,
eds., Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Vol. 3, Nonmonotonic and Uncertain Reasoning (Ox-
ford University Press, Oxford, 1994).

6Section 3.31 of D. Makinson, General patterns in nonmono-
tonic reasoning, in: D. Gabbay, Hogger and Robinson, eds., Hand-
book of Logic in Artificial Intelligence and Logic Programming,
Vol. irl, Nonmonotonic and Uncertain Reasoning (Oxford Univer-
sity Press, Oxford, 1994) 35-l 10.

A. It was noticed by Makinson and Poole that the preferen-
tial inference relation associated with such a Poole system
can be represented by a special kind of preferential model,
where the set of states is the set of all worlds. Makinson
mentioned that the converse of this property was not settled,
and conjectured that it may hold.

Freund proved that it holds in 1998.

Multiple extension problem
The move from Poole’s system to Makinson’s non-
monotonic logic is not as innocent as it may seem. An
important property of a Poole system is that there may be
multiple extensions. This idea is also present in many other
non-monotonic logics, such as logic programming, Reiter’s
default logic and Dung’s abstract argumentation. In answer
set programming, it is even argued that the possibility of
multiple extensions is one of the main advantages of such
approaches (because there can be multiple solutions to con-
straint based problems, like multiple solutions to a Sudoku
puzzle). However, traditionally the possibility of multiple
extensions was seen as a problem, because we do not know
which extension to choose.

In the example, we cannot derive yet that the best way to
go to Brooklyn is by do(a1), because alternative explana-
tions like walking there do(a2) exist as well. In general, this
multiple extension problem can be handled in various ways:

1. We can add formulas to the facts to exclude some exten-
sions. This solution has several drawbacks.

2. We can add constraints to the formal set up to exclude
some extensions (see appendix). This is the way Poole
himself handled it.

3. We can add preferences (priorities, or values) among ∆.
This may be most natural from a decision theoretic per-
spective, but less natural for other applications.

Finally, there are some more sophisticated ways to
achieve similar results. As mentioned above, in Theo-
rist one can represent minimal explanations. An alterna-
tive approach to diagnosis (by Reiter, from first principles)
would assume for each element of ∆ that it is either true
of false. This seems closer to Kratzer ordering. Finally,
in the nineties the so-called causal approach became popu-
lar, which is based on the principle that every observation
needs to be explained. This was implemented in the so-
called causal calculator.

Ability
Boutilier7 extends DSDL with a simple model of action
between controllable and uncontrollable propositions, This
makes it possible to distinguish between ought to be “there
should be a fence” and ought to do “you should build a
fence.” We can define the ability of an agent as a possi-
ble action (or a sequence of actions in planning) such that a
state is reached. Such models are used in decision and game
theory, as well as in STIT logic. We can define that an agent

7Towards a logic of qualitative decision theory, KR 1994.



sees to it that he is in Brooklyn, or a set of agents sees to it
that they are in Brooklyn.

In such a setting, it is tempting to define ought to do in
terms of ought to be: you ough tto do something iff it ought
to be that you do it. Horty (2001) shows that this does not
work for STIT theory, and he defines an alternative so-called
dominance ought instead.

Planning and non-monotonic logic
In our example, a single action could achieve the goal. We
say that the goal is the effect or postcondition of the ac-
tion. However, in most models of means-end reasoning, we
can consider also sequences of actions, or plans. To de-
fine whether actions can be executed in sequence, we as-
sociate not only postconditions with actions, but also pre-
conditions. The preconditions specify whether the action
can be done.

In so-called classical planning, the algorithms find ways
to order atomic actions in sequences such that on the one
hand, the postcondition of each action imply the precondi-
tion of the next action, and on the other hand, after the last
action, the goal is achieved. The prototypical example is the
block worlds, where blocks can be put on top of each other
to build stacks of blocks (mimicking the reasoning of a three
year old).

In planning, we can reason to find a plan like a1; a2; a3 in
two ways. In forward reasoning or data driven approach, we
first consider the actions we can do and choose a1. Then we
consider the actions we can do after a1 and we choose a2.
Finally we consider the actions we can do after a2 and we
choose a3. We reached the goal so we stop. In the backward
reasoning approach, we consider which actions can achieve
the goal, and we choose a3, then we consider which actions
can see to the preconditions of a3, and we choose a2. Sim-
ilarly, we choose a1. Only in the backward reasoning ap-
proach we use the goal in our search for a plan, and some-
times we refer to such backwards reasoning as means-end
reasoning. Also combinations of forward and backward rea-
soning are used in classical planning.

Non-monotonic logic is used extensively to deal with ac-
tion and change in planning. However, logic is not used
for the combinatorial search of plans, but for the reasoning
about the effects of actions. If the effect of taking the A train
is that you are in Brooklyn, then we want to derive also that
the rest of the world does not change after taking the A train.
This is known as the frame problem.

An advantage of classical planning in terms of pre and
postconditions is that it is similar to the model of states and
state transitions is similar to the model of computing. So
computer scientists like this model of action. However, a
drawback of classical planning is that it is rather inefficient,
as shown by planning competitions, so it is rarely used. Al-
ternatives are based, for example, on action refinement, or
graph planning. Classical planning mainly survives in mod-
els of folk psychology, for example in BDI theory.

If we abstract away from the search for plans, such as the
choice between forward and backward reasoning, and we
abstract away from the reasoning about the effects of plans,

such as the frame problem, then we end up with a choice
structure where at each moment the agents have to choose
among their actions. If there are multiple agents then we
have game theoretic structures. Instead of actions or plans,
we have strategies, or conditional plans. They make it possi-
ble to analyse agent interaction at a higher level of abstrac-
tion, such as the prisoner’s dilemma.

Appendix
Makinson’s bridge logic: Assumption consequence
This section is based on Makinson 2003.8

Makinson presents Poole systems as a method to go from
classical logic to non-monotonic logic, restricting the set of
background assumptions (as alternatives: the set of valua-
tions, or adding rules).

Pivotal-Assumption Consequence fixes a background
set K of formulae. K behaves as the modal base in Kratzer’s
theory.
Definition 4. A `K x (x ∈ CnK(A)) iff K ∪A ` x.

Class of all pivotal-assumption consequence relations:
`K for some set K

Theorem 1 (Representation). `K is pivotal-assumption
consequence iff it satisfies the following three properties (but
not necessarily substitution!):

1. Paraclassical
• Supraclassical (includes classical consequence)
• Closure operation (reflexivity + idempotence +

monotony)
2. Disjunction in premises (alias OR)
3. Compact

Default-Assumption Consequence allows background
assumptions K to vary with current premises A. Dimin-
ish K when inconsistent with A and work with maximal
subsets of K that are consistent with A. K behaves as the
ordering base in Kratzer’s approach.
Definition 5. A|∼Kx (x ∈ CK(A)) iff K ′∪A ` x for every
subset K ′ ⊆ K maxiconsistent with A.

Freund’s results
This is taken from Freund, Preferential reasoning in the per-
spective of Poole default logic. AIJ, 1998

The sceptical inference relation associated with a Poole
system without constraints is known to have a simple se-
mantic representation by means of a smooth order directly
defined on the set of interpretations associated with the un-
derlying language.

Conversely, Freund proves in his paper that, on a finite
propositional language, any preferential inference relation
defined by such a model is induced by a Poole system with-
out constraints. In the particular case of rational relations,
the associated set of defaults may be chosen to be minimal;
it then consists of a set of formulae, totally ordered through

8Bridges between Classical and Nonmonotonic Logic. Logic
Journal of the IGPL 11(1):69–96.



classical implication, with cardinality equal to the height of
the given relation. This result can be applied to knowledge
representation theory and corresponds, in revision theory, to
Grove’s family of spheres. In the framework of conditional
knowledge bases and default extensions, it implies that any
rational inference relation may be considered as the rational
closure of a minimal knowledge base. An immediate conse-
quence of this is the possibility of replacing any conditional
knowledge base by a minimal one that provides the same
amount of information.

Normative Systems
Normative systems can be developed as a generalisation of
assumption and rule based consequence, where the input A
is no longer necessarily in the output.

Definition 6. x ∈ outK(A) iff K ′ ` x for every subset
K ′ ⊆ K maxiconsistent with A.

Theorem 2. CnK(A) = Cn(A ∪ outK(A))

Definitions Poole system with constraints
This section is taken from Poole, A Logical Framework for
Default Reasoning. 1984/1988

Constraints are a way to say “this default should not be
applicable in this case”, without any side effect of doing
this. They have been found to be a very useful mechanism
in practice. Other systems overcome such derivations by al-
lowing the defaults as rules which can only be used in one
direction and have explicit exceptions [Reiter80] or by hav-
ing fixed and variable predicates [McCarthy86]. The idea
is to define a set of constraints used to prune the set of sce-
narios. They are just used to reject scenarios and cannot
be used to explain anything. Constraints are formulae with
which scenarios must be consistent.

We introduce a set C of closed formulae called the set of
constraints. The definition of scenario is revised as follows:

Definition 7. A scenario of F,C,∆ is a set D ∪ F where
D is a set of ground instances of elements of ∆ such that
D ∪ F ∪ C is consistent.

Makinson’s Rule consequence
Use additional rules.

Pivotal-Rule Consequence fixes a set R of rules, where a
rule is any ordered pair (a, x) of formulae.

Definition 8. A `R x iff x ∈ every superset of A closed
under both Cn and R

Class of all pivotal-rule consequence relations:
`R for some set R of rules.

Theorem 3 (Representation). Pivotal-rule consequence iff
following two properties (but not necessarily disjunction in
premises):

1. Paraclassical
2. Compact

Theorem 4. {pivotal assumption} = {pivotal rule}∩{OR}
= {pivotal rule} ∩ {pivotal valuation}

Equivalent definitions of CnR(A)

• ∩{X ⊆ A : X = Cn(X) = R(X)}
• ∪{An|n < ω} with A1 = A, An+1 = Cn(An ∪R(An))

• ∪{An|n < ω} with A1 = A, An+1 = Cn(An ∪ {x})
where (a, x) is first rule in 〈R〉 s.t. a ∈ An but x 6∈ An

(in the case that there is no such rule: An+1 = Cn(An))

Default-Rule Consequence fixes an ordering 〈R〉 of R.
Definition 9. C〈R〉(A) = ∪{An : n < ω} with
• A1 = A and
• An+1 = Cn(An ∪ {x})
where (a, x) is first rule in 〈R〉 such that:
a ∈ An, x 6∈ An, and x is consistent with An

(if no such rule: An+1 = Cn(An))
Facts:

• The sets C〈R〉(A) for an ordering 〈R〉 of R are precisely
the Reiter extensions of A using the normal default rules
(a, x) alias (a;x/x).

• The ordering makes a difference.
• Standard inductive definition versus fixpoints.
Definition 10 (Sceptical operation).
CR(A) = ∩{C〈R〉(A) : 〈R〉 an ordering of R}

Many variants of default assumption, valuation and rule
based consequence have been introduced.

Normative Systems
Normative systems can be developed as a generalisation of
assumption and rule based consequence, where the input A
is no longer necessarily in the output.

Method 1: Assumption output
Definition 11. x ∈ outK(A) iff K ′ ` x for every subset
K ′ ⊆ K maxiconsistent with A.
Theorem 5. CnK(A) = Cn(A ∪ outK(A))

Method 2: Rule output
Definition 12.
x ∈ outR(A) iff x ∈ R(B) = {x | (a, x) ∈ R, a ∈ A} for
every superset B of A closed under both Cn and R

Class of all pivotal-rule consequence relations:
outR = {(a, x) | x ∈ outR({a})} for some set R of

rules.
Theorem 6. {pivotal rule} = {rule output} ∩ {reflexivity}.
Theorem 7. CnR(A) = Cn(A ∪ outR(A))

Default-Rule output fixes an ordering 〈R〉 of R.
Definition 13. C〈R〉(A) = ∪{An : n < ω} with

• A1 = ∅ and
• An+1 = Cn(An ∪ {x})
where (a, x) is first rule in 〈R〉 such that:
a ∈ Cn(A ∪ An), x 6∈ Cn(A ∪ An), and x is consistent

with Cn(A ∪An)
(if no such rule: An+1 = Cn(An))


