‘Going Dynamic’ in Distributional Semantics

Alessandro Lenci

Università di Pisa
Dipartimento di Filologia Letteratura e Linguistica
and
Scuola Normale Superiore

Coling Lab
Computational Linguistics Laboratory
Context and Meaning in Distributional Semantics

The Distributional Hypothesis

The semantic similarity between two expressions \(E \) and \(E' \) is a function of their distribution in linguistic contexts.

Distributional Representations

The distributional representation of \(E \) is a mathematical object (e.g., a vector, matrix, etc.) representing the statistical distribution of \(E \) in contexts.

Semantic Similarity / Relatedness

Semantic similarity (relatedness) between \(E \) and \(E' \) is measured with the similarity between their distributional representations.
The Distributional Hypothesis

The semantic similarity between two expressions E and E' is a function of their distribution in *linguistic contexts*

Distributional Representations

The *distributional representation* of E is a mathematical object (e.g., a vector, matrix, etc.) representing the statistical distribution E in contexts

Semantic Similarity / Relatedness

Semantic similarity (relatedness) between E and E' is measured with the similarity between their distributional representations
The Distributional Hypothesis
The semantic similarity between two expressions E and E' is a function of their distribution in linguistic contexts.

Distributional Representations
The distributional representation of E is a mathematical object (e.g., a vector, matrix, etc.) representing the statistical distribution E in contexts.

Semantic Similarity / Relatedness
Semantic similarity (relatedness) between E and E' is measured with the similarity between their distributional representations.
If we consider words or morphemes A and B to be more different in meaning than A and C, then we will often find that the distributions of A and B are more different than the distributions of A and C. In other words, difference in meaning correlates with difference of distribution.

(Harris 1954: 156)
The contextual representation of a word is knowledge of how that word is used. […] That is to say, a word’s contextual representation […] is an abstract cognitive structure that accumulates from encounters with the word in various (linguistic) contexts. […] Two words are semantically similar to the extent that their contextual representations are similar.

(Miller and Charles 1991: 5)
Dynamic Semantics (= DRT, in this talk) assumes a two-way interaction between linguistic expressions and contexts (Kamp 1981, Kamp and Reyle 1993, Van Eijck and Kamp 2011, Kamp 2013):

i.) the content of an expression E used in a context C depends on C

ii.) once this content has been determined, it leads to an update of C to a new context C' and this updated context C' helps determine the content of the next expression.
Dynamic Semantics (= DRT, *in this talk*) assumes a two-way interaction between linguistic expressions and contexts (Kamp 1981, Kamp and Reyle 1993, Van Eijck and Kamp 2011, Kamp 2013):

i.) the content of an expression E used in a context C depends on C

ii.) once this content has been determined, it leads to an update of C to a new context C' and this updated context C' helps determine the content of the next expression.
Dynamic Semantics (= DRT, in this talk) assumes a two-way interaction between linguistic expressions and contexts (Kamp 1981, Kamp and Reyle 1993, Van Eijck and Kamp 2011, Kamp 2013):

i.) the content of an expression E used in a context C depends on C

ii.) once this content has been determined, it leads to an update of C to a new context C' and this updated context C' helps determine the content of the next expression.
Semantic content is a context-change potential, affecting the interpretation of following expressions (cf. also Heim 1983).

“The slogan ‘You know the meaning of a sentence if you know the conditions under which it is true’ is replaced by this one: ‘You know the meaning of a sentence if you know the change it brings about in the information state of anyone who accepts the news conveyed by it’. Thus, meaning becomes a dynamic notion: the meaning of a sentence is an operation on information states.” (Veltman 1996)
Two Different Notions of Context Dependence

- **Type (kind) level context dependence**
 - the content of the *type* E depends on the linguistic contexts in which the tokens of E occur

- **Token level context dependence**
 - the content of the *token* E depends on the linguistic context in which E occurs
Two Different Notions of Context Dependence

- **Type (kind) level context dependence**
 - the content of the type E depends on the linguistic contexts in which the tokens of E occur

- **Token level context dependence**
 - the content of the token E depends on the linguistic context in which E occurs
Two Different Notions of Context Dependence

- **Context-dependence in Distributional Semantics is at type (kind) level**
 - the content of the type *dog* depends on the tokens of linguistic contexts in which *dog* occurs
 - *The dog barks, The dog is running fast, I own a brown dog, ...* ⇒ *→ dog*

- Distributional vectors represent (part of) the conceptual content expressed by linguistic types and Distributional Semantics may be regarded as a model of semantic memory (Jones et al. 2015)

Context-dependence in Distributional Semantics is at type (kind) level.

- the content of the type *dog* depends on the tokens of linguistic contexts in which *dog* occurs.

- *The dog barks, The dog is running fast, I own a brown dog, ... ⇒ → dog*

Distributional vectors represent (part of) the conceptual content expressed by linguistic types and Distributional Semantics may be regarded as a model of semantic memory (Jones et al. 2015).

Two Different Notions of Context Dependence

- Context-dependence in Distributional Semantics is at type (kind) level
 - the content of the type *dog* depends on the tokens of linguistic contexts in which *dog* occurs
 - *The dog barks, The dog is running fast, I own a brown dog, ...* ⇒→ *dog*

- Distributional vectors represent (part of) the conceptual content expressed by linguistic types and Distributional Semantics may be regarded as a model of semantic memory (Jones et al. 2015)

Two Different Notions of Context Dependence

- Context-dependence in Dynamic Semantics is at **token level**

 A *man chased a dog*. The *dog chased another dog.*

<table>
<thead>
<tr>
<th>x y q z</th>
</tr>
</thead>
<tbody>
<tr>
<td>man(x)</td>
</tr>
<tr>
<td>dog(y)</td>
</tr>
<tr>
<td>dog(q)</td>
</tr>
<tr>
<td>q=y</td>
</tr>
<tr>
<td>dog(z)</td>
</tr>
<tr>
<td>chase(q,z)</td>
</tr>
</tbody>
</table>

- Some attempts at adding type-level context dependence by representing constants in DRT as distributional vectors (McNally 2015, McNally and Boleda 2016)

\[
\begin{array}{c}
\rightarrow \\
\text{man}(x) \\
\rightarrow \\
\text{dog}(y)
\end{array}
\]
Two Different Notions of Context Dependence

- Context-dependence in Dynamic Semantics is at token level

 A man chased a dog. The dog chased another dog.

$$
\begin{array}{c|c|c|c|c|c|}
 x & y & q & z \\
 \hline
 \text{man}(x) & \text{dog}(y) & \text{dog}(q) & q=y & \text{dog}(z) & \text{chase}(q,z)
\end{array}
$$

- Some attempts at adding type-level context dependence by representing constants in DRT as distributional vectors (McNally 2015, McNally and Boleda 2016)

$$
\begin{array}{c|c|c|c|c|c|}
 x & y \\
 \hline
 \xrightarrow{\text{man}}(x) & \xrightarrow{\text{dog}}(y)
\end{array}
$$
‘Going Dynamic’ in Distributional Semantics or ‘Going Distributional’ in Dynamic Semantics requires a strong integration of type-level and token-level context dependence.

This in turns requires a richer notion of context.
‘Going Dynamic’ in Distributional Semantics or ‘Going Distributional’ in Dynamic Semantics requires a strong integration of type-level and token-level context dependence.

This in turns requires a richer notion of context.
Articulated contexts

An **Articulated Context** is a 4-tuple \(\langle K_{\text{dis}}, K_{\text{enc}}, K_{\text{gen}}, K_{\text{env}} \rangle \), where

i.) \(K_{\text{dis}} \) is the representation of the discourse context (with possible occurrences of indexical discourse referents to capture the contributions of the utterance context)

ii.) \(K_{\text{enc}} \) is a set of representations of “known entities”

iii.) \(K_{\text{gen}} \) is a set of representations of items of “(generic) world knowledge”

iv.) \(K_{\text{env}} \) is a set of representations of elements from the immediate (perceptual) environment
Articulated contexts

An Articulated Context is a 4-tuple \(\langle K_{dis}, K_{enc}, K_{gen}, K_{env} \rangle \), where

i.) \(K_{dis} \) is the representation of the discourse context (with possible occurrences of indexical discourse referents to capture the contributions of the utterance context)

ii.) \(K_{enc} \) is a set of representations of “known entities”

iii.) \(K_{gen} \) is a set of representations of items of “(generic) world knowledge”

iv.) \(K_{env} \) is a set of representations of elements from the immediate (perceptual) environment
One Context, Many Contexts

Articulated contexts

An **Articulated Context** is a 4-tuple \(\langle K_{\text{dis}}, K_{\text{enc}}, K_{\text{gen}}, K_{\text{env}} \rangle\), where

i.) \(K_{\text{dis}}\) is the representation of the discourse context (with possible occurrences of indexical discourse referents to capture the contributions of the utterance context)

ii.) \(K_{\text{enc}}\) is a set of representations of “known entities”

iii.) \(K_{\text{gen}}\) is a set of representations of items of “(generic) world knowledge”

iv.) \(K_{\text{env}}\) is a set of representations of elements from the immediate (perceptual) environment
Articulated contexts

An **Articulated Context** is a 4-tuple \(\langle K_{\text{dis}}, K_{\text{enc}}, K_{\text{gen}}, K_{\text{env}} \rangle \), where

i.) \(K_{\text{dis}} \) is the representation of the discourse context (with possible occurrences of indexical discourse referents to capture the contributions of the utterance context)

ii.) \(K_{\text{enc}} \) is a set of representations of “known entities”

iii.) \(K_{\text{gen}} \) is a set of representations of items of “(generic) world knowledge”

iv.) \(K_{\text{env}} \) is a set of representations of elements from the immediate (perceptual) environment
“I will have next to nothing to say about content and form of K_{gen}. The problems presented by K_{gen} are very different from those connected with K_{enc} and K_{env}.” (Kamp 2016)

K_{gen} has a crucial role for the resolution of bridging definite descriptions (Clark 1997)

I walked into the room. The chandelier sparkled brightly.

“he has to know that entities like the one retrieved are always, or regularly or at least sometimes, coming in the company of entities of the kind described by α, so that he can infer with reasonable plausibility that the two of them are related in this way.” (ibid.)

“K_{gen} has been described as a collection of propositions that express general connections between things, states and events within our world” (ibid., fn. 73)
The Structure and Content of K_{gen}

- “I will have next to nothing to say about content and form of K_{gen}. The problems presented by K_{gen} are very different from those connected with K_{enc} and K_{env}.” (Kamp 2016)

- K_{gen} has a crucial role for the resolution of bridging definite descriptions (Clark 1997)

 > I walked into the room. The chandelier sparkled brightly.

- “he has to know that entities like the one retrieved are always, or regularly or at least sometimes, coming in the company of entities of the kind described by α, so that he can infer with reasonable plausibility that the two of them are related in this way.” (ibid.)

- “K_{gen} has been described as a collection of propositions that express general connections between things, states and events within our world” (ibid., fn. 73)
The Structure and Content of K_{gen}

- “I will have next to nothing to say about content and form of K_{gen}. The problems presented by K_{gen} are very different from those connected with K_{enc} and K_{env}.” (Kamp 2016)
- K_{gen} has a crucial role for the resolution of bridging definite descriptions (Clark 1997)

 > I walked into the room. The chandelier sparkled brightly.

- “he has to know that entities like the one retrieved are always, or regularly or at least sometimes, coming in the company of entities of the kind described by α, so that he can infer with reasonable plausibility that the two of them are related in this way.” (ibid.)

- “K_{gen} has been described as a collection of propositions that express general connections between things, states and events within our world” (ibid., fn. 73)
The Structure and Content of K_{gen}

- “I will have next to nothing to say about content and form of K_{gen}. The problems presented by K_{gen} are very different from those connected with K_{enc} and K_{env}.” (Kamp 2016)
- K_{gen} has a crucial role for the resolution of bridging definite descriptions (Clark 1997)

 I walked into the room. The chandelier sparkled brightly.

- “he has to know that entities like the one retrieved are always, or regularly or at least sometimes, coming in the company of entities of the kind described by α, so that he can infer with reasonable plausibility that the two of them are related in this way.” (ibid.)

- “K_{gen} has been described as a collection of propositions that express general connections between things, states and events within our world” (ibid., fn. 73)
Language comprehension consists in incrementally building a discourse semantic representation (DRS) from the linguistic input.

- DRSs are models for mental representations (Hamm et al. 2006, Kamp 2016).
- Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).
- The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).
- Language comprehension always occurs in an Articulated Context.
- K_{gen} contains (distributional) information about events and their participants that is activated by linguistic cues.
- The distributional content of a linguistic expression can be viewed as a context change potential that updates K_{disc} with information activated from K_{gen}, and from the other components of the Articulated Context.
Language comprehension consists in incrementally building a **discourse semantic representation** (DRS) from the linguistic input.

DRSs are models for **mental representations** (Hamm et al. 2006, Kamp 2016).

Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).

The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).

Language comprehension always occurs in an Articulated Context.

\(K_{gen} \) contains (distributional) information about events and their participants that is activated by linguistic cues.

The distributional content of a linguistic expression can be viewed as a context change potential that updates \(K_{disc} \) with information activated from \(K_{gen} \), and from the other components of the Articulated Context.
Language comprehension consists in incrementally building a **discourse semantic representation** (DRS) from the linguistic input.

DRSs are models for **mental representations** (Hamm et al. 2006, Kamp 2016).

Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).

The goal of the comprehender is to identify the event or situation the speakers want to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).

Language comprehension always occurs in an Articulated Context.

\(K_{gen} \) contains (distributional) information about events and their participants that is activated by linguistic cues.

The distributional content of a linguistic expression can be viewed as a context change potential that updates \(K_{disc} \) with information activated from \(K_{gen} \), and from the other components of the Articulated Context.
Towards Dynamic Distributional Semantics

Distributional Semantics Meet DRT

General assumptions

- Language comprehension consists in incrementally building a discourse semantic representation (DRS) from the linguistic input.
- DRSs are models for mental representations (Hamm et al. 2006, Kamp 2016).
- Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).
- The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).
- Language comprehension always occurs in an Articulated Context.
- K_{gen} contains (distributional) information about events and their participants that is activated by linguistic cues.
- The distributional content of a linguistic expression can be viewed as a context change potential that updates K_{disc} with information activated from K_{gen}, and from the other components of the Articulated Context.
Language comprehension consists in incrementally building a discourse semantic representation (DRS) from the linguistic input.

- DRSs are models for mental representations (Hamm et al. 2006, Kamp 2016).
- Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).
- The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).
- Language comprehension always occurs in an Articulated Context.

- K_{gen} contains (distributional) information about events and their participants that is activated by linguistic cues.
- The distributional content of a linguistic expression can be viewed as a context change potential that updates K_{disc} with information activated from K_{gen}, and from the other components of the Articulated Context.
Towards Dynamic Distributional Semantics

Distributional Semantics Meet DRT

General assumptions

- Language comprehension consists in incrementally building a **discourse semantic representation** (DRS) from the linguistic input.
- DRSs are models for **mental representations** (Hamm et al. 2006, Kamp 2016).
- Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998).
- The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016).
- Language comprehension always occurs in an Articulated Context.
- K_{gen} contains (distributional) information about events and their participants that is activated by linguistic cues.
- The distributional content of a linguistic expression can be viewed as a context change potential that updates K_{disc} with information activated from K_{gen}, and from the other components of the Articulated Context.
Language comprehension consists in incrementally building a discourse semantic representation (DRS) from the linguistic input. DRSs are models for mental representations (Hamm et al. 2006, Kamp 2016). Language is a set of instructions used to create a mental representation of an event or situation that is described by linguistic forms (Zwaan and Radvansky 1998). The goal of the comprehender is to identify the event or situation the speakers wants to convey, and this is the event that best explains the linguistic cues used in the sentence (Kuperberg 2016). Language comprehension always occurs in an Articulated Context. K_{gen} contains (distributional) information about events and their participants that is activated by linguistic cues. The distributional content of a linguistic expression can be viewed as a context change potential that updates K_{disc} with information activated from K_{gen}, and from the other components of the Articulated Context.
K_{gen} as Generalized Event Knowledge (GEK)

- K_{gen} stores generalized knowledge about events and their participants
- GEK derives from first-hand experience and from linguistic experience (e.g., from linguistic descriptions of events)
- Language provides multiple cues that can be used to focus and activate various aspects of events, participants, locations, etc. (McRae and Matsuki 2009: 1419)

“the specific choice of verb can be used to bring to mind somewhat different scenarios, such as eating versus dining. In terms of the possible entities that participate in such events, knowing that a waitress is involved, for example, invokes a certain type of eating event. The phrase hamburgers and hot dogs produces a different type of scenario than does turkey and stuffing, including perhaps information about location and time of year. Instrument nouns can cue certain types of eating, as in eating with a fork versus eating with a stick. Finally, event nouns like breakfast or location nouns like cafeteria cue specific types of eating scenarios.”
K_{gen} as Generalized Event Knowledge (GEK)

- K_{gen} stores generalized knowledge about events and their participants
- GEK derives from first-hand experience and from linguistic experience (e.g., from linguistic descriptions of events)
- Language provides multiple cues that can be used to focus and activate various aspects of events, participants, locations, etc. (McRae and Matsuki 2009: 1419)

“the specific choice of verb can be used to bring to mind somewhat different scenarios, such as eating versus dining. In terms of the possible entities that participate in such events, knowing that a waitress is involved, for example, invokes a certain type of eating event. The phrase hamburgers and hot dogs produces a different type of scenario than does turkey and stuffing, including perhaps information about location and time of year. Instrument nouns can cue certain types of eating, as in eating with a fork versus eating with a stick. Finally, event nouns like breakfast or location nouns like cafeteria cue specific types of eating scenarios.”
K_{gen} as Generalized Event Knowledge (GEK)

- K_{gen} stores generalized knowledge about events and their participants.
- GEK derives from first-hand experience and from linguistic experience (e.g., from linguistic descriptions of events).
- Language provides multiple cues that can be used to focus and activate various aspects of events, participants, locations, etc. (McRae and Matsuki 2009: 1419)

“the specific choice of verb can be used to bring to mind somewhat different scenarios, such as *eating* versus *dining*. In terms of the possible entities that participate in such events, knowing that a *waitress* is involved, for example, invokes a certain type of eating event. The phrase *hamburgers and hot dogs* produces a different type of scenario than does *turkey and stuffing*, including perhaps information about location and time of year. Instrument nouns can cue certain types of eating, as in *eating with a fork* versus *eating with a stick*. Finally, event nouns like *breakfast* or location nouns like *cafeteria* cue specific types of eating scenarios.”
Both dynamic and static situations or eventualities are included in GEK (Vendler 1967, Dowty 1979, Rothstein 2004)

- e.g., the information that student read books and that books have pages are both parts of GEK

GEK is highly structured, and organized under various levels of complexity, granularity, and schematicity

- fully-specified micro-events
 - e.g., students read books, surfers surf in the sea, etc.
- schematic events with entities that co-occur in the same situation, abstracting away from the specific events linking them
 - e.g., surfers, boards, waves, and wax tend to co-occur in the situations
- complex scenarios, much like scripts, frames or narrative schemas, which include various sub-events and complex temporal and causal relations about them
 - the surfing scenario includes events such as bringing a surf board, diving in the sea, swimming, etc.
We refer with GEK_{DS} to the distributional subset of GEK that can be derived from co-occurrences in the linguistic input.

Events in GEK_{DS} contain information directly extracted from parsed sentences in corpora.

We represent events in GEK_{DS} with attribute-value matrices (AVM) specifying their participants and roles:
- attributes are syntactic dependencies (e.g. SUBJ, COMP–IN, etc.), as a surface approximation of deeper semantic roles
- values are distributional vectors of dependent lexemes
 - “out-of-context” distributional vector encodings of lexical items
Towards Dynamic Distributional Semantics

GEK and Distributional Semantics

- We refer with GEK_{DS} to the distributional subset of GEK that can be derived from co-occurrences in the linguistic input.
- Events in GEK_{DS} contain information directly extracted from parsed sentences in corpora.
- We represent events in GEK_{DS} with attribute-value matrices (AVM) specifying their participants and roles:
 - Attributes are syntactic dependencies (e.g. SUBJ, COMP–IN, etc.), as a surface approximation of deeper semantic roles.
 - Values are distributional vectors of dependent lexemes.
 - “out-of-context” distributional vector encodings of lexical items.
We refer with GEK_{DS} to the distributional subset of GEK that can be derived from co-occurrences in the linguistic input.

Events in GEK_{DS} contain information directly extracted from parsed sentences in corpora.

We represent events in GEK_{DS} with attribute-value matrices (AVM) specifying their participants and roles:
- Attributes are syntactic dependencies (e.g. SUBJ, COMP–IN, etc.), as a surface approximation of deeper semantic roles.
- Values are distributional vectors of dependent lexemes.
 - “out-of-context” distributional vector encodings of lexical items.
The student reads the book on the beach.
The student reads the book on the beach.

EVENT

NSUBJ	student
HEAD	read
DOBJ	book
NMOD-ON	beach
Events in GEK are Hierarchically Structured

```
EVENT
NSUBJ  student
DOBJ  book

EVENT
NSUBJ  student
HEAD  read
DOBJ  book

EVENT
NSUBJ  student
HEAD  buy
DOBJ  book

EVENT
NSUBJ  student
HEAD  write
DOBJ  book
```
The lexicon is a repository of **constructions** (i.e., words and other more schematic elements) stored in long-term memory.

- Constructions cue (i.e. activate) portions of GEK in K_{gen}
- Each construction Cx_n is defined by a **FORM** and a **content** (**SEM**), represented with AVMs as in Sign-Based Construction Grammar (Sag 2012, Michaelis 2013)

SEM is formed by two types of information:
- a set of **events** stored in the GEK in K_{gen} and activated by the construction
- a set of **semantic neighbors** (**NEI**) of the construction

\[
\begin{bmatrix}
\text{FORM} & \text{student} \\
\text{SEM} & \begin{cases}
\text{GEK} & \langle e_1, \sigma_1 \rangle, \ldots, \langle e_n, \sigma_n \rangle \\
\text{NEI} & \langle n_1, s_1 \rangle, \ldots, \langle n_n, s_n \rangle
\end{cases}
\end{bmatrix}
\]
Lexical Items as Cues to GEK in K_{gen}

- The lexicon is a repository of constructions (i.e., words and other more schematic elements) stored in long-term memory.
- Constructions cue (i.e. activate) portions of GEK in K_{gen}.
- Each construction Cxn is defined by a FORM and a content (SEM), represented with AVMs as in Sign-Based Construction Grammar (Sag 2012, Michaelis 2013).
- SEM is formed by two types of information:
 - A set of events stored in the GEK in K_{gen} and activated by the construction.
 - A set of semantic neighbors (NEI) of the construction.

\[
\begin{bmatrix}
\text{FORM} & \text{SEM} \\
\text{student} & \begin{bmatrix}
\text{GEK} & \langle e_1, \sigma_1 \rangle, \ldots, \langle e_n, \sigma_n \rangle \\
\text{NEI} & \langle n_1, s_1 \rangle, \ldots, \langle n_n, s_n \rangle
\end{bmatrix}
\end{bmatrix}
\]
Lexical Items as Cues to GEK in K_{gen}

- The lexicon is a repository of constructions (i.e., words and other more schematic elements) stored in long-term memory.
- Constructions cue (i.e. activate) portions of GEK in K_{gen}.
- Each construction Cx_n is defined by a FORM and a content (SEM), represented with AVMs as in Sign-Based Construction Grammar (Sag 2012, Michaelis 2013).

SEM is formed by two types of information:
- A set of events stored in the GEK in K_{gen} and activated by the construction.
- A set of semantic neighbors (NEI) of the construction.

\[
\begin{bmatrix}
\text{FORM} & \text{student} \\
\text{SEM}
\end{bmatrix} \\
\begin{bmatrix}
\text{GEK} & \langle e_1, \sigma_1 \rangle, \ldots, \langle e_n, \sigma_n \rangle \\
\text{NEI} & \langle n_1, s_1 \rangle, \ldots, \langle n_n, s_n \rangle
\end{bmatrix}
\]
Lexical Items as Cues to GEK in K_{gen}

- The lexicon is a repository of constructions (i.e., words and other more schematic elements) stored in long-term memory.
- Constructions cue (i.e. activate) portions of GEK in K_{gen}.
- Each construction Cxn is defined by a FORM and a content (SEM), represented with AVMs as in Sign-Based Construction Grammar (Sag 2012, Michaelis 2013).
- SEM is formed by two types of information:
 - a set of events stored in the GEK in K_{gen} and activated by the construction.
 - a set of semantic neighbors (NEI) of the construction.

\[
\begin{bmatrix}
\text{FORM} & \text{student} \\
\text{SEM} & \begin{bmatrix}
\text{GEK} & \langle e_1, \sigma_1 \rangle, \ldots, \langle e_n, \sigma_n \rangle \\
\text{NEI} & \langle n_1, s_1 \rangle, \ldots, \langle n_n, s_n \rangle
\end{bmatrix}
\end{bmatrix}
\]
Lexical Items as Cues to GEK in K_{gen}

- We model K_{gen} as a set of pairs $\langle e, \sigma \rangle$, such that:
 - e is an event stored in GEK_{DS}
 - σ is a score expressing the salience of the event with respect to the construction that cues it (e.g., $P(e|Cxn)$)

- Each event in GEK_{DS} may be cued by several lexical items, as part of their semantic content.
We model K_{gen} as a set of pairs $\langle e, \sigma \rangle$, such that:
- e is an event stored in GEK_{DS}
- σ is a score expressing the salience of the event with respect to the construction that cues it (e.g., $P(e | Cxn)$)

Each event in GEK_{DS} may be cued by several lexical items, as part of their semantic content.
Lexical Items as Cues to GEK

\[
\begin{align*}
\text{FORM} & \quad \text{student} \\
\text{SEM} & \quad \text{EVENT} \\
\text{GEK} & \quad \begin{cases}
\text{NSUBJ} & \rightarrow \text{read} \\
\text{HEAD} & \rightarrow \text{book} \\
\text{NOBJ} & \rightarrow \text{beach} \\
\text{NMOD-ON} & \end{cases}, \sigma_1 \\
\text{NEI} & \quad \begin{cases}
\langle \text{pupil}, s_1 \rangle, \langle \text{learner}, s_1 \rangle, \ldots
\end{cases}
\end{align*}
\]
A Dynamic Interpretation of the Distributional Hypothesis

- The “standard” Distributional Hypothesis
 - You know the content of an expression E if you know the contexts in which E occurs
 - The Articulated Context of E contains information about likely events activated by E

The Dynamic Distributional Hypothesis

You know the content of an expression E if you know the changes it causes in the expectations about the likely events represented in the Articulated Context
A Dynamic Interpretation of the Distributional Hypothesis

- The “standard” Distributional Hypothesis
 - You know the content of an expression E if you know the contexts in which E occurs
 - The Articulated Context of E contains information about likely events activated by E

The Dynamic Distributional Hypothesis

You know the content of an expression E if you know the changes it causes in the expectations about the likely events represented in the Articulated Context
The surfer
- rides the waves in the ocean
- has a board
- is in the water
- is on the beach
- is naked
- has a wetsuit
- put the wax onto the board
- drinks a beer
- ...

The surfer reads
- is on the beach
- is naked
- reads a book
- reads a comic
- reads a newspaper
- has a board
- ...

Expectations Change Potentials
Expectations Change Potentials

The surfer
- rides the waves in the ocean
- has a board
- is in the water
- is on the beach
- is naked
- has a wetsuit
- put the wax onto the board
- drinks a beer
- ...

The surfer reads
- is on the beach
- is naked
- reads a book
- reads a comic
- reads a newspaper
- has a board
- ...

Alessandro Lenci
Expectations Change Potentials

The surfer
- rides the waves in the ocean
- has a board
- is in the water
- is on the beach
- is naked
- has a wetsuit
- put the wax onto the board
- drinks a beer
- ...

The surfer reads
- is on the beach
- is naked
- reads a book
- reads a comic
- reads a newspaper
- has a board
- ...

Alessandro Lenci
Reading surfer
The surfer reads
- is on the beach
- is naked
- reads a book
- reads a comic
- reads a newspaper
- has a board
- ...

The surfer reads in the library
- is at a table
- reads a book
- is dressed
- is sitting on a chair
- there are bookshelves
- ...
Towards Dynamic Distributional Semantics

Improbable Libraries
Self-paced reading and ERP studies show that the choice of agent noun alters the event the verb describes, by modifying the verb expectations about its patient argument.

(1) The \textit{journalist}_{AG} checked the \textit{spelling}_{PA} of his latest report (congruent)
(2) The \textit{mechanic}_{AG} checked the \textit{spelling}_{PA} of his latest report (incongruent)

\textbf{Fig. 1.} Mean residual reading times. Error bars show one standard error above and below the mean, calculated by participants.
Subjects activate elements in GEK related to a discourse representation even if these violate local linguistic restrictions

Michelle had a toothache for several months. She knew she should do something about it, but held off. She finally got checked out when she was told she could get some anesthetic to reduce the PAIN/ DENTIST/ DRIVER and ease her discomfort

- **PAIN** linguistically expected
- **DENTIST** linguistically unexpected, but event-related
- **DRIVER** linguistically unexpected, but event-unrelated
1. The surfer rides the waves in the ocean. The board is white

2. The surfer is in the ocean. The board is white.

3. The surfer is on the beach. The board is white

4. The surfer reads the book in the library. The board is white
1. The surfer rides the waves in the ocean. The board is white.

2. The surfer is in the ocean. The board is white.

3. The surfer is on the beach. ?The board is white.

4. The surfer reads the book in the library. *The board is white.
1. The surfer rides the waves in the ocean. The board is white.

2. The surfer is in the ocean. The board is white.

3. The surfer is on the beach. ?The board is white.

4. The surfer reads the book in the library. *The board is white.
1. The surfer rides the waves in the ocean. The board is white.

2. The surfer is in the ocean. The board is white.

3. The surfer is on the beach. *The board is white.

4. The surfer reads the book in the library. *The board is white.
Distributional Dynamics: First Hypothesis

- \(K_{gen} \) acts as long-term memory containing GEK activated by lexical items
- \(K_{disc} \) acts as a working memory which is updated with information coming from \(K_{gen} \) language processing

Given an Articulated Context \(\langle K_{dis}, K_{enc}, K_{gen}, K_{env} \rangle \), discourse comprehension is carried out online by the following steps:
 - activation in \(K_{disc} \) by a given lexical item \(w_i \) of the GEK associated with it in \(K_{gen} \), \(GEK_{w_i} \)
 - integration and update of the existing GEK in \(K_{disc} \) with \(GEK_{w_i} \)
Towards Dynamic Distributional Semantics

Dynamic Distributional Hypothesis

Distributional Dynamics: First Hypothesis

- \(K_{\text{gen}} \) acts as long-term memory containing GEK activated by lexical items
- \(K_{\text{disc}} \) acts as a working memory which is updated with information coming from \(K_{\text{gen}} \) language processing

Given an Articulated Context \(\langle K_{\text{dis}}, K_{\text{enc}}, K_{\text{gen}}, K_{\text{env}} \rangle \), discourse comprehension is carried out online by the following steps:
 - activation in \(K_{\text{disc}} \) by a given lexical item \(w_i \) of the GEK associated with it in \(K_{\text{gen}}, GEK_{w_i} \)
 - integration and update of the existing GEK in \(K_{\text{disc}} \) with \(GEK_{w_i} \)
Distributional Dynamics: First Hypothesis

- K_{gen} acts as long-term memory containing GEK activated by lexical items
- K_{disc} acts as a working memory which is updated with information coming from K_{gen} language processing

Given an Articulated Context $\langle K_{dis}, K_{enc}, K_{gen}, K_{env} \rangle$, discourse comprehension is carried out online by the following steps:

- activation in K_{disc} by a given lexical item w_i of the GEK associated with it in K_{gen}, GEK$_{w_i}$
- integration and update of the existing GEK in K_{disc} with GEK$_{w_i}$
The surfer reads

\[\left\langle K_{disc} \left[GEK \; F(\text{surfer}_{K_{gen}}, \text{read}_{K_{gen}}) \right] \right\rangle \]

The surfer reads in the library.

\[\left\langle K_{disc} \left[GEK \; F((\text{surfer read})_{K_{gen}}, \text{library}_{K_{gen}}) \right] \right\rangle \]
Distributional Dynamics: First Hypothesis

The surfer reads

\[K_{disc} \left[GEK \ F(\text{surfer}_{K_{gen}}, \text{read}_{K_{gen}}) \right] \]

The surfer reads in the library.

\[K_{disc} \left[GEK \ F((\text{surfer read})_{K_{gen}}, \text{library}_{K_{gen}}) \right] \]
The update function F is a compositional function that unifies the events AVMs of two lexical items and updates their scores:

1. F is actually formed by two functions F_e and F_σ:
 1. F_e unifies two event AVMs e_i and e_j, producing a new event AVM e_k:
 \[
 F_e(e_i, e_j) = e_k = e_i \sqcup e_j
 \] (1)
 2. F_σ updates the event weights of the successfully unified events, by combining the weights of e_i and e_j into a new weight assigned to e_k, e.g., by summation:
 \[
 F_\sigma(\sigma_i, \sigma_j) = \sigma_k = \sigma_i + \sigma_j
 \] (2)
The Update Function

- The update function F is a compositional function that unifies the events AVMs of two lexical items and updates their scores:
 - $F(GEK_{w_1}, GEK_{w_2}) = GEK_{w_1, w_2}$
 - F is actually formed by two functions F_e and F_σ:
 1. F_e unifies two event AVMs e_i and e_j, producing a new event AVM e_k:
 $$F_e(e_i, e_j) = e_k = e_i \sqcup e_j$$ (1)
 2. F_σ updates the event weights of the successfully unified events, by combining the weights of e_i and e_j into a new weight assigned to e_k, e.g., by summation:
 $$F_\sigma(\sigma_i, \sigma_j) = \sigma_k = \sigma_i + \sigma_j$$ (2)
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts.
- Actually, there is much more semantically relevant information that can be extracted from distributional data.
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}.
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics.
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth.
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}.
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data.
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts.
- Actually, there is much more semantically relevant information that can be extracted from distributional data.
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}.
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics.
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth.
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}.
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data.
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts
- Actually, there is much more semantically relevant information that can be extracted from distributional data
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts.
- Actually, there is much more semantically relevant information that can be extracted from distributional data.
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}.
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics.
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth.
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}.
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data.
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts.
- Actually, there is much more semantically relevant information that can be extracted from distributional data.
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}.
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics.
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth.
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}.
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data.
Some Conclusions

- Distributional Semantics is usually viewed as a method to “squeeze” semantic similarity from linguistic contexts.
- Actually, there is much more semantically relevant information that can be extracted from distributional data.
- Distributional Semantics can be used to model portions of event knowledge stored in K_{gen}.
- The notion of Articulated Context offers promising synergies between Distributional and Dynamic Semantics.
- K_{gen} and K_{disc} are likely to strongly interact during sentence processing and their interaction need to be explored in depth.
- The update of K_{disc} during language comprehension can include an update function of distributional data about GEK, activated in K_{gen}.
- Dynamic Distributional Semantics (or Distributional Dynamic Semantics) may offer new opportunities to model cognitive data.
This research is conducted in collaboration with:

- Emmanuele Chersoni
- Gianluca Lebani
Grazie!!!
Thank You!!!
Danke!!!