COMPUTATIONAL SEMANTICS

Johan Bos

University of Groningen www.rug.nl/staff/johan.bos

WHAT IS COMPUTATIONAL SEMANTICS?

Reinterpretation

Turn left and or right to reach San Marco.

Truth Verification

Bolt is faster than everyone else. **YES** Bolt is in last position. **NO**

Checking for new information

.. when there's more trade, there's more commerce!

Checking for new information

.. when there's more trade, there's more commerce!

Checking for new information

.. when there's more trade, there's more commerce!

Advance Warning Road Closed Cycle Event 4th August www.tfl.gov.uk

DIANA WAS STILL DIANA WAS STILL ALIVE HOURS BEFORE SHE DIED

Contradiction Checking

What is semantics about?

Contradiction Checking

What is semantics about?

COMPUTATIONAL SEMANTICS IS ABOUT MAKING INFERENCES

With the help of meanings. But what are meanings?

The big idea of computational semantics

 Automate the process of associating semantic representations with expressions of natural language

 Use logical representations of natural language to automate the process of drawing inferences

Controlling Inference

Planet Semantics

Planet Semantics

Representation

Proof-Theoretical Semantics

Model-Theoretic Semantics

Model-Theoretic Semantics

Computational Semantics

- Day 1: Exploring Models
- Day 2: Meaning Representations
- Day 3: Computing Meanings
- Day 4: Drawing Inferences
- Day 5: Meaning Banking

Computational Semantics

- Day 1: Exploring Models
 - What are models?
 - Vocabularies
 - Static and dynamic situations
 - Modelling events

Computational Semantics

- Day 2: Meaning Representations
 - First-order logic syntax
 - Model checking (including an amazing demo)
 - DRS (Discourse Representation Structure)
 - AMR (Abstract Meaning Representation)

