Lexical Reciprocity

Yoad Winter

Utrecht Institute of Linguistics, Utrecht University

August 26, 2016 Referential Semantics, ESSLLI 2016

Forthcoming papers: *Empirical Issues in Syntax and Semantics* (Paris), *Cognitive Structures* (Dusseldorf), *NELS* 2016 (UMASS)

Experimental work: with Imke Kruitwagen and Eva Poortman

Lexical reciprocity

Morpho-semantic relation between:

• binary predicate

Sue dated Dan

Lexical reciprocity

Morpho-semantic relation between:

• binary predicate

Sue dated Dan

• collective-unary predicate

Sue and Dan dated

Types of predicates

Eventive verbsmarry, meet, hug, kiss, argueStative verbsmatch, rhyme, be in love, intersectNounspartner, cousin, friend, enemyAdjectivessimilar, adjacent, equal, parallel

Notes on symmetry

A binary predicate R is **symmetric** if for all x, y: $R(x, y) \Leftrightarrow R(y, x)$.

Notes on symmetry

- A binary predicate R is **symmetric** if for all x, y: $R(x, y) \Leftrightarrow R(y, x)$.
 - property of binary predicates
 - formally unrelated to reciprocity
 - **non**-symmetry \neq **a**symmetry

1 - Introduction

• Symmetry and non-symmetry:

Sue is Dan's cousin = Dan is Sue's cousin Sue is dating Dan = Dan is dating Sue

Sue is hugging $Dan \neq Dan$ is hugging Sue your car collided with mine \neq my car collided with yours

1 - Introduction

• Symmetry and non-symmetry:

Sue is Dan's cousin = Dan is Sue's cousin Sue is dating Dan = Dan is dating Sue

Sue is hugging $Dan \neq Dan$ is hugging Sue your car collided with mine \neq my car collided with yours the terminology "symmetric" for collectives obscures this non-symmetry

1 - Introduction

• Symmetry and non-symmetry:

Sue is Dan's cousin = Dan is Sue's cousin Sue is dating Dan = Dan is dating Sue

Sue is hugging $Dan \neq Dan$ is hugging Sue your car collided with mine \neq my car collided with yours the terminology "symmetric" for collectives obscures this non-symmetry

• **Symmetry predicts reciprocity**: the vast majority of the symmetric binary predicates in English have a reciprocal parallel.

1 - Introduction

• Symmetry and non-symmetry:

Sue is Dan's cousin = Dan is Sue's cousin Sue is dating Dan = Dan is dating Sue

Sue is hugging $Dan \neq Dan$ is hugging Sue your car collided with mine \neq my car collided with yours the terminology "symmetric" for collectives obscures this non-symmetry

• **Symmetry predicts reciprocity**: the vast majority of the symmetric binary predicates in English have a reciprocal parallel. notable exceptions: *far, near, resemble*

Plot

Reciprocity-Symmetry Generalization (RSG):

Symmetry (*date*) correlates with a different type of reciprocity than non-symmetry (*hug*).

Plot

Reciprocity-Symmetry Generalization (RSG):

Symmetry (*date*) correlates with a different type of reciprocity than non-symmetry (*hug*). plain reciprocity vs. pseudo-reciprocity

Plot

Reciprocity-Symmetry Generalization (RSG):

Symmetry (*date*) correlates with a different type of reciprocity than non-symmetry (*hug*). plain reciprocity vs. pseudo-reciprocity

Proposal:

- Symmetry is systematically derived from lexical collectivity (Lakoff & Peters 1969)
 no meanings postulates here, pace Partee (Monday)
- ② Non-symmetry (*hug*) reflects typical polysemy of the in/transitive forms, not logic pace virtually all previous works
- 3 Dowty's protoroles inspire a formal account of RSG: between concepts and lexicon

Broader perspectives

- On the nature of "resemble" et al. RSG as a language universal
- On the nature of "hug" et al. pseudo-reciprocity as a typicality phenomenon: experimental work with Imke Kruitwagen and Eva Poortman

General properties of lexical reciprocals

• Non-productive

#Sue and Dan praised

General properties of lexical reciprocals

• Non-productive

#Sue and Dan praised

No obvious relation to reciprocal quantifiers
 Sue and Dan praised each other

General properties of lexical reciprocals

• Non-productive

#Sue and Dan praised

- No obvious relation to reciprocal quantifiers Sue and Dan praised each other
- Productive morpho-syntax, notably Romance clitics set aside

Plan

- Reciprocity-symmetry generalization
- Protopredicates and the RSG
- On pseudo-reciprocity (Kruitwagen et al.)

2 - The reciprocity-symmetry generalization

Reciprocity and symmetry

- Two kinds of lexical reciprocity
- Correlate with (non) symmetry

Symmetric and non-symmetric predicates

Symmetric:

(1) Sue dated Dan⇔ Dan dated Sue

Non-symmetric:

(2) Sue hugged Dan⇔ Dan hugged Sue

Two kinds of lexical reciprocity

Plain reciprocity (plainR):

- (1) Sue and Dan dated
 - \Leftrightarrow Sue dated Dan and Dan dated Sue

Two kinds of lexical reciprocity

Plain reciprocity (plainR):

- (1) Sue and Dan dated
 - \Leftrightarrow Sue dated Dan and Dan dated Sue

Pseudo-reciprocity (pseudoR):

- (2) Sue and Dan hugged
 - \Leftrightarrow Sue hugged Dan and Dan hugged Sue

Two kinds of lexical reciprocity

Plain reciprocity (plainR):

- (1) Sue and Dan dated
 - \Leftrightarrow Sue dated Dan and Dan dated Sue

Pseudo-reciprocity (pseudoR):

- (2) Sue and Dan hugged
 - \Leftrightarrow Sue hugged Dan and Dan hugged Sue

Short history

1960s: symmetry assumed for lexical reciprocals

Dong (1971): pseudo-reciprocity and non-symmetry

1970s-now: missing formal semantic generalizations

Reciprocity-Symmetry Generalization

	reciprocity	symmetry
DATE	\Leftrightarrow	+
HUG	\Leftrightarrow	_
PRAISE	Х	_

Reciprocity-Symmetry Generalization

	reciprocity	symmetry
DATE	\Leftrightarrow	+
HUG	$\not\Leftrightarrow$	—
PRAISE	Х	_

Generalization:

Plain reciprocity (\Leftrightarrow) correlates with **symmetry**. **Pseudo**-reciprocity (\Leftrightarrow) correlates with **non**-symmetry.

Reciprocity-Symmetry Generalization

	reciprocity	symmetry
DATE	\Leftrightarrow	+
HUG	$\not\Leftrightarrow$	—
PRAISE	Х	_

Generalization:

Plain reciprocity (\Leftrightarrow) correlates with **symmetry**. **Pseudo**-reciprocity (\notin) correlates with **non**-symmetry.

- Apparently new, but hinted at in Gleitman et al. (1996)
- 2 Does not follow from definitions of symmetry and plain (pseudo) reciprocity
- 3 Stronger version: symmetry only appears due to plain reciprocity (praise)

Examples

Plain reciprocity & Symmetry:

talk (with) meet (with) share NP (with) rhyme (with) collaborate (with) marry (ACC) match (ACC) similar (to) identical (to) parallel (to) neighbor (of) partner (of) sibling (of) cousin (of) twin (of)

Pseudo-reciprocity & Non-symmetry:

talk (to) meet (ACC) fall in love (with) be in love (with) collide (with) hug (ACC) kiss (ACC) fuck (ACC) embrace (ACC) pet (ACC) cuddle (ACC) nuzzle (ACC)

Examples

Plain reciprocity & Symmetry:

talk (with) meet (with) share NP (with) rhyme (with) collaborate (with)

marry (ACC) match (ACC) similar (to) identical (to) parallel (to) neighbor (of) partner (of) sibling (of) cousin (of) twin (of)

Pseudo-reciprocity & Non-symmetry:

talk (to) meet (ACC) fall in love (with) be in love (with) collide (with) hug (ACC) kiss (ACC) fuck (ACC) embrace (ACC) pet (ACC) cuddle (ACC) nuzzle (ACC)

Examples

Plain reciprocity & Symmetry:

talk (with) meet (with) share NP (with) rhyme (with) collaborate (with)

marry (ACC) match (ACC) similar (to) identical (to) parallel (to) neighbor (of) partner (of) sibling (of) cousin (of) twin (of)

Pseudo-reciprocity & Non-symmetry:

talk (to) meet (ACC) fall in love (with) be in love (with) collide (with) hug (ACC) kiss (ACC) fuck (ACC) embrace (ACC) pet (ACC) cuddle (ACC) nuzzle (ACC)

kiss with, hug with... (Hebrew, Greek...)

An apparent counter-example

- (1) Sue and Kim are sisters⇔ Sue is Kim's sister and Kim is Sue's sister
- (2) Sue is Kim's sister

 ⇒ Kim is Sue's sister
- A counter-example for RSG?

An apparent counter-example

- (1) Sue and Kim are sisters⇔ Sue is Kim's sister and Kim is Sue's sister
- (2) Sue is Kim's sister

 ⇒ Kim is Sue's sister
- A counter-example for RSG?

Schwarz (2006), Partee (2008):

• x is sister of y asserts that x and y are siblings, and only **presupposes** that x is female.

An apparent counter-example

- (1) Sue and Kim are sisters⇔ Sue is Kim's sister and Kim is Sue's sister
- (2) Sue is Kim's sister

 ⇒ Kim is Sue's sister
- A counter-example for RSG?
- Schwarz (2006), Partee (2008):
 - x is sister of y asserts that x and y are siblings, and only **presupposes** that x is female.
 - Thus, *sister of* is "Strawson symmetric" truth-conditionally identical to *sibling/brother of*

Irreducibility of collective predication

Collectivity is a lexical primitive:

- simplex predicate ranging over sets
- not definable on the basis of other concepts

Irreducibility of collective predication

Collectivity is a lexical primitive:

- simplex predicate ranging over sets
- not definable on the basis of other concepts

lexically reciprocal predicates = one species of irreducible collectivity

Some plain reciprocals

Collective		Binary
collaborate	\mapsto	collaborate with
talk	\mapsto	talk with
meet	\mapsto	meet with
similar	\mapsto	similar to
parallel	\mapsto	parallel to
identical	\mapsto	identical to
neighbor	\mapsto	neighbor of
partner	\mapsto	partner of
sibling	\mapsto	partner of
cousin	\mapsto	cousin of

The collective predicate is primitive; the binary predicate is derived
Some plain reciprocals

Collective		Binary
collaborate	\mapsto	collaborate with
talk	\mapsto	talk with
meet	\mapsto	meet with
similar	\mapsto	similar to
parallel	\mapsto	parallel to
identical	\mapsto	identical to
neighbor	\mapsto	neighbor of
partner	\mapsto	partner of
sibling	\mapsto	partner of
cousin	\mapsto	cousin of

The collective predicate is primitive; the binary predicate is derived

Non-standard treatment of symmetric kinship terms...

x is cousin of $y \stackrel{\text{def}}{=} \text{COUSIN}(\{x, y\})$

 $\approx x$ and y share grandparents

x is cousin of $y \stackrel{\text{def}}{=} \text{COUSIN}(\{x, y\})$

 $pprox\,$ x and y share grandparents

x is similar to $y \stackrel{\text{def}}{=} \text{SIMILAR}(\{x, y\})$

pprox x and y share a property

x is cousin of $y \stackrel{def}{=} \operatorname{COUSIN}(\{x, y\})$

pprox x and y share grandparents

x is similar to $y \stackrel{\text{def}}{=} \text{SIMILAR}(\{x, y\})$

pprox x and y share a property

The plainR **Rule**: $R = \lambda x \cdot \lambda y \cdot P(\{x, y\})$

x is cousin of $y \stackrel{def}{=} \operatorname{COUSIN}(\{x, y\})$

pprox x and y share grandparents

x is similar to $y \stackrel{def}{=} SIMILAR(\{x, y\})$

 $pprox\,$ x and y share a property

The plainR **Rule**: $R = \lambda x \cdot \lambda y \cdot P(\{x, y\})$

Lakoff & Peters (1969):

- Iogical
- collective \mapsto binary
- symmetry with plain reciprocals part of RSG

x is cousin of $y \stackrel{def}{=} \operatorname{COUSIN}(\{x, y\})$

pprox x and y share grandparents

x is similar to $y \stackrel{def}{=} SIMILAR(\{x, y\})$

 $pprox\,$ x and y share a property

The plainR **Rule**: $R = \lambda x \cdot \lambda y \cdot P(\{x, y\})$

Lakoff & Peters (1969):

- Iogical
- collective \mapsto binary
- symmetry with plain reciprocals part of RSG

But how about pseudo-reciprocals?

- (1) Sue & Dan hugged
- (2) Sue hugged Dan and Dan hugged Sue
- **(2)** *⇒* **(1)**

- (1) Sue & Dan hugged
- (2) Sue hugged Dan and Dan hugged Sue

(2) *⇒* **(1)**

What does (1) "really mean"?

- (1) Sue & Dan hugged
- (2) Sue hugged Dan and Dan hugged Sue

(2) *⇒* **(1)**

What does (1) "really mean"?

• Does (1) really entail (2), as previous works assume?

- (1) Sue & Dan hugged
- (2) Sue hugged Dan and Dan hugged Sue

(2) *⇒* **(1)**

What does (1) "really mean"?

- Does (1) really entail (2), as previous works assume?
- Do we really want grammar to explain what collective hugs are?

A and B are hugging

?the woman is hugging the man

3 - Theory

A and B are hugging?

A and B are hugging?

A battery of tests, using illustrations and short films, which check things like:

A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?

Are A and B talking? / Did A and B talk?

A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?

Are A and B talking? / Did A and B talk?

Many participants answer "no" to 1, but "yes" to 2, depending on the reaction of B to the whole event.

A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?

Are A and B talking? / Did A and B talk?

Many participants answer "no" to 1, but "yes" to 2, depending on the reaction of B to the whole event.

Conclusion: Pseudo-reciprocity is a **preferential** strategy of a lexical concept, with no "logical" definition.

A hug is an act of collective intensionality.

A hug is an act of collective intensionality.

Searle (1990): "Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior."

A hug is an act of collective intensionality.

Searle (1990): "Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior."

An event e is **typical** for "Sue and Dan hugged" proportionally to two values:

- Sue and Dan's CI as demonstrated in e
- the number of uni-directional hugs in e

A hug is an act of collective intensionality.

Searle (1990): "Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior."

An event e is **typical** for "Sue and Dan hugged" proportionally to two values:

- Sue and Dan's CI as demonstrated in e
- the number of uni-directional hugs in e

Collective HUG is a complex concept, but logically it simplex – not defined on the basis of meaning postulates using the "simpler" concept for binary *hug*.

Protoroles = "entailments of a group of predicates with respect to one of the arguments or each" (Dowty 1991)

Protoroles = "entailments of a group of predicates with respect to one of the arguments or each" (Dowty 1991)

 \rightarrow distinct from morpho-syntax

Protoroles = "entailments of a group of predicates with respect to one of the arguments or each" (Dowty 1991)

 \rightarrow distinct from morpho-syntax

"group of predicates" \rightarrow non-standard types (unary+binary)

Protoroles = "entailments of a group of predicates with respect to one of the arguments or each" (Dowty 1991)

- \rightarrow distinct from morpho-syntax
- "group of predicates" \rightarrow non-standard types (unary+binary)
- thematic arguments \rightarrow
- \rightarrow Davidsonian

Protoroles = "entailments of a group of predicates with respect to one of the arguments or each" (Dowty 1991)

- \rightarrow distinct from morpho-syntax
- "group of predicates" \rightarrow non-standard types (unary+binary)
- thematic arguments \rightarrow Davidsonian

Protopredicates = typed Davidsonian predicates without morpho-syntactic features

Types of protopredicates

Implications for RSG

Type p-predicate	Reciprocity	Symmetry?
b	Х	_
С	plainR	+
bc	pseudoR plainR	- +

Summary: Protopredicates and the RSG

Acknowledgements

Joost Zwarts Sophie Chesney Heidi Klockmann

NWO VICI Grant 277-80-002

Partee (2008)

References I

- Dimitriadis, A. (2008), Irreducible symmetry in reciprocal constructions, *in* E. Konig & V. Gast, eds, 'Reciprocals and Reflexives: Theoretical and Typological Explorations', De Gruyter, Berlin.
- Dong, Q. P. (1971), A note on conjoined noun phrases, *in* A. M. Zwicky, P. H. Salus, R. I. Binnick & A. L. Vanek, eds, 'Studies out in left field: Studies presented to James D. McCawley on the occasion of his 33rd or 34th birthday', Linguistics Research, Inc., Edmonton, pp. 11–18.

Dowty, D. (1991), 'Thematic proto-roles and argument selection', Language 67, 547-619.

- Ginzburg, J. (1990), On the non-unity of symmetric predicates: Monadic comitatives and dyadic equivalence relations, *in* J. Carter, R.-M. Déchaine, B. Philip & T. Sherer, eds, 'Proceedings of the Twentieth Annual Meeting of the North Eastern Linguistic Society', University of Massachusetts at Amherst, pp. 135–149.
- Gleitman, L. R., Gleitman, H., Miller, C. & Ostrin, R. (1996), 'Similar, and similar concepts', Cognition 58(3), 321–376.
- Lakoff, G. & Peters, S. (1969), Phrasal conjunction and symmetric predicates, in D. A. Reibel & S. E. Schane, eds, 'Modern Studies in English', Englewood Cliffs, N.J., Prentice-Hall, pp. 113–142.

References II

Partee, B. H. (2008), Symmetry and symmetrical predicates, in A. E. Kibrik et al., eds, 'Computational Linguistics and Intellectual Technologies: Papers from the International Conference DIALOGUE"', Institut Problem Informatiki, pp. 606–611.

Schwarz, B. (2006), 'Covert reciprocity and Strawson-symmetry', Snippets 13, 9-10.

- Searle, J. R. (1990), Collective intentions and actions, in P. R. Cohen, J. Morgan & M. E. Pollack, eds, 'Intentions in communication', MIT Press, Cambridge, Massachusetts, pp. 401–416.
- Siloni, T. (2012), 'Reciprocal verbs and symmetry', *Natural Language & Linguistic Theory* **30**(1), 261–320.