Lexical Reciprocity

Yoad Winter

Utrecht Institute of Linguistics, Utrecht University

August 26, 2016

Referential Semantics, ESSLLI 2016

Forthcoming papers: Empirical Issues in Syntax and Semantics (Paris), Cognitive Structures (Dusseldorf), NELS 2016 (UMASS)

Experimental work: with Imke Kruitwagen and Eva Poortman
Lexical reciprocity

Morpho-semantic relation between:

- **binary** predicate

 Sue *dated* Dan
Lexical reciprocity

Morpho-semantic relation between:

- **binary** predicate

 Sue *dated* Dan

- **collective-unary** predicate

 Sue and Dan *dated*
Types of predicates

Eventive verbs marry, meet, hug, kiss, argue

Stative verbs match, rhyme, be in love, intersect

Nouns partner, cousin, friend, enemy

Adjectives similar, adjacent, equal, parallel
Notes on symmetry

A binary predicate R is **symmetric** if for all x, y:

$$R(x, y) \iff R(y, x).$$
Notes on symmetry

A binary predicate R is **symmetric** if for all x, y:

$$R(x, y) \iff R(y, x).$$

- property of binary predicates
- formally unrelated to reciprocity
- **non**-symmetry \neq asymmetry
Familiar facts about lexical reciprocity

- **Symmetry and non-symmetry:**

 Sue is Dan’s cousin = Dan is Sue’s cousin
 Sue is dating Dan = Dan is dating Sue

 Sue is hugging Dan ≠ Dan is hugging Sue
 your car collided with mine ≠ my car collided with yours

 The terminology “symmetric” for collectives obscures this non-symmetry.

Symmetry predicts reciprocity: the vast majority of the symmetric binary predicates in English have a reciprocal parallel. Notable exceptions: far, near, resemble.
Familiar facts about lexical reciprocity

- **Symmetry and non-symmetry:**

 Sue is Dan’s cousin = Dan is Sue’s cousin
 Sue is dating Dan = Dan is dating Sue

 Sue is hugging Dan ≠ Dan is hugging Sue
 your car collided with mine ≠ my car collided with yours

 the terminology “symmetric” for collectives obscures this non-symmetry
Familiar facts about lexical reciprocity

- **Symmetry and non-symmetry:**

 Sue is Dan’s cousin = Dan is Sue’s cousin
 Sue is dating Dan = Dan is dating Sue

 Sue is hugging Dan ≠ Dan is hugging Sue

 your car collided with mine ≠ my car collided with yours

 The terminology “symmetric” for collectives obscures this non-symmetry

- **Symmetry predicts reciprocity:** the vast majority of the symmetric binary predicates in English have a reciprocal parallel.
Familiar facts about lexical reciprocity

- **Symmetry and non-symmetry:**

 \[
 \text{Sue is Dan’s cousin} = \text{Dan is Sue’s cousin} \\
 \text{Sue is dating Dan} = \text{Dan is dating Sue} \\
 \text{Sue is hugging Dan} \neq \text{Dan is hugging Sue} \\
 \text{your car collided with mine} \neq \text{my car collided with yours}
 \]

 the terminology “symmetric” for collectives obscures this non-symmetry

- **Symmetry predicts reciprocity:** the vast majority of the symmetric binary predicates in English have a reciprocal parallel.

 notable exceptions: *far, near, resemble*
Reciprocity-Symmetry Generalization (RSG): Symmetry (date) correlates with a different type of reciprocity than non-symmetry (hug).
Reciprocity-Symmetry Generalization (RSG): Symmetry (date) correlates with a different type of reciprocity than non-symmetry (hug). plain reciprocity vs. pseudo-reciprocity
Reciprocity-Symmetry Generalization (RSG):
Symmetry (date) correlates with a different type of reciprocity than non-symmetry (hug). plain reciprocity vs. pseudo-reciprocity

Proposal:

1. Symmetry is systematically derived from lexical collectivity (Lakoff & Peters 1969)
 no meanings postulates here, pace Partee (Monday)

2. Non-symmetry (hug) reflects typical polysemy of the in/transitive forms, not logic
 pace virtually all previous works

3. Dowty’s protoroles inspire a formal account of RSG: between concepts and lexicon
Broader perspectives

1. On the nature of “resemble” et al. – RSG as a language universal

2. On the nature of “hug” et al. – pseudo-reciprocity as a typicality phenomenon: experimental work with Imke Kruitwagen and Eva Poortman
General properties of lexical reciprocals

- Non-productive

\#Sue and Dan praised
General properties of lexical reciprocals

- Non-productive

 \#Sue and Dan praised

- No obvious relation to reciprocal quantifiers

 Sue and Dan praised each other
General properties of lexical reciprocals

- Non-productive
 \[\#Sue\ and\ Dan\ praised\]

- No obvious relation to reciprocal quantifiers
 \[Sue\ and\ Dan\ praised\ each\ other\]

- Productive morpho-syntax, notably Romance clitics – set aside
Plan

- Reciprocity-symmetry generalization
- Protopredicates and the RSG
- On pseudo-reciprocity (Kruitwagen et al.)
Reciprocity and symmetry

- Two kinds of lexical reciprocity
- Correlate with (non) symmetry
Symmetric and non-symmetric predicates

Symmetric:

(1) Sue dated Dan
 \(\iff\) Dan dated Sue

Non-symmetric:

(2) Sue hugged Dan
 \(\not\iff\) Dan hugged Sue
Two kinds of lexical reciprocity

Plain reciprocity \(\text{(plainR)}\):

(1) Sue and Dan dated

\(\Leftrightarrow\) Sue dated Dan and Dan dated Sue
Two kinds of lexical reciprocity

Plain reciprocity (plainR):

(1) Sue and Dan dated
 \[⇔\] Sue dated Dan and Dan dated Sue

Pseudo-reciprocity (pseudoR):

(2) Sue and Dan hugged
 \[\n\not⇔\n\] Sue hugged Dan and Dan hugged Sue
Two kinds of lexical reciprocity

Plain reciprocity *(plainR)*:

1. Sue and Dan dated
 \[\iff\text{Sue dated Dan and Dan dated Sue}\]

Pseudo-reciprocity *(pseudoR)*:

2. Sue and Dan hugged
 \[\not\iff\text{Sue hugged Dan and Dan hugged Sue}\]

<table>
<thead>
<tr>
<th>Sue hugs Dan</th>
<th>Dan hugs Sue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan is asleep</td>
<td>Sue is asleep</td>
</tr>
</tbody>
</table>
Short history

1960s: symmetry assumed for lexical reciprocals

Dong (1971): pseudo-reciprocity and non-symmetry

1970s-now: missing formal semantic generalizations
Reciprocity-Symmetry Generalization

<table>
<thead>
<tr>
<th></th>
<th>Reciprocity</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>⇔</td>
<td>+</td>
</tr>
<tr>
<td>HUG</td>
<td>⊖</td>
<td>-</td>
</tr>
<tr>
<td>PRAISE</td>
<td>✗</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Apparently new, but hinted at in Gleitman et al. (1996)
2. Does not follow from definitions of symmetry and plain (pseudo) reciprocity
3. Stronger version: symmetry only appears due to plain reciprocity (praise)
Reciprocity-Symmetry Generalization

<table>
<thead>
<tr>
<th>reciprocity</th>
<th>symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>⇔</td>
</tr>
<tr>
<td>HUG</td>
<td>☐</td>
</tr>
<tr>
<td>PRAISE</td>
<td>X</td>
</tr>
</tbody>
</table>

Generalization:

Plain reciprocity (⇔) correlates with *symmetry*.

Pseudo-reciprocity (☐) correlates with *non*-symmetry.
Reciprocity-Symmetry Generalization

<table>
<thead>
<tr>
<th>reciprocity</th>
<th>symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>⇔</td>
</tr>
<tr>
<td>HUG</td>
<td>☞</td>
</tr>
<tr>
<td>PRAISE</td>
<td>X</td>
</tr>
</tbody>
</table>

Generalization:

Plain reciprocity (⇔) correlates with **symmetry**.

Pseudo-reciprocity (☞) correlates with **non**-symmetry.

1. Apparently new, but hinted at in Gleitman et al. (1996)
2. Does not follow from definitions of symmetry and plain (pseudo) reciprocity
3. Stronger version: symmetry only appears due to plain reciprocity (praise)
Examples

Plain reciprocity & Symmetry:

- *talk* (with)
- *meet* (with)
- *share NP* (with)
- *rhyme* (with)
- *collaborate* (with)

<table>
<thead>
<tr>
<th>Plain reciprocity & Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk (with)</td>
</tr>
<tr>
<td>meet (with)</td>
</tr>
<tr>
<td>share NP (with)</td>
</tr>
<tr>
<td>rhyme (with)</td>
</tr>
<tr>
<td>collaborate (with)</td>
</tr>
</tbody>
</table>

Pseudo-reciprocity & Non-symmetry:

- *talk* (to)
- *meet* (ACC)
- *fall in love* (with)
- *be in love* (with)

<table>
<thead>
<tr>
<th>Pseudo-reciprocity & Non-symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk (to)</td>
</tr>
<tr>
<td>meet (ACC)</td>
</tr>
<tr>
<td>fall in love (with)</td>
</tr>
<tr>
<td>be in love (with)</td>
</tr>
</tbody>
</table>
Examples

Plain reciprocity & Symmetry:

<table>
<thead>
<tr>
<th>Action</th>
<th>Initial Argument</th>
<th>Complement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk (with)</td>
<td></td>
<td></td>
<td>marry (ACC)</td>
</tr>
<tr>
<td>meet (with)</td>
<td></td>
<td></td>
<td>neighbor (of)</td>
</tr>
<tr>
<td>share NP (with)</td>
<td></td>
<td></td>
<td>match (ACC)</td>
</tr>
<tr>
<td>rhyme (with)</td>
<td></td>
<td></td>
<td>partner (of)</td>
</tr>
<tr>
<td>collaborate (with)</td>
<td></td>
<td></td>
<td>similar (to)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sibling (of)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>identical (to)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cousin (of)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>parallel (to)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>twin (of)</td>
</tr>
</tbody>
</table>

Pseudo-reciprocity & Non-symmetry:

<table>
<thead>
<tr>
<th>Action</th>
<th>Initial Argument</th>
<th>Complement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk (to)</td>
<td></td>
<td></td>
<td>collide (with)</td>
</tr>
<tr>
<td>meet (ACC)</td>
<td></td>
<td></td>
<td>hug (ACC)</td>
</tr>
<tr>
<td>fall in love (with)</td>
<td></td>
<td></td>
<td>kiss (ACC)</td>
</tr>
<tr>
<td>be in love (with)</td>
<td></td>
<td></td>
<td>fuck (ACC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>embrace (ACC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pet (ACC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cuddle (ACC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nuzzle (ACC)</td>
</tr>
</tbody>
</table>
Examples

Plain reciprocity & Symmetry:

- talk (with)
- meet (with)
- share NP (with)
- rhyme (with)
- collaborate (with)

merry (ACC)
match (ACC)
similar (to)
identical (to)
parallel (to)

neighbor (of)
partner (of)
sibling (of)
cousin (of)
twin (of)

Pseudo-reciprocity & Non-symmetry:

- talk (to)
- meet (ACC)
- fall in love (with)
- be in love (with)

collide (with)
hug (ACC)
kiss (ACC)
Fuck (ACC)

embrace (ACC)
pet (ACC)
cuddle (ACC)
nuzzle (ACC)

kiss with, hug with... (Hebrew, Greek...
An apparent counter-example

(1) Sue and Kim are sisters
 ⇔ Sue is Kim’s sister and Kim is Sue’s sister

(2) Sue is Kim’s sister
 \(\not\Rightarrow\) Kim is Sue’s sister

A counter-example for RSG?
An apparent counter-example

(1) Sue and Kim are sisters
 ⇐ Sue is Kim’s sister and Kim is Sue’s sister

(2) Sue is Kim’s sister
 ⇨ Kim is Sue’s sister

A counter-example for RSG?

- x is sister of y asserts that x and y are siblings, and only presupposes that x is female.
An apparent counter-example

(1) Sue and Kim are sisters
⇔ Sue is Kim’s sister and Kim is Sue’s sister

(2) Sue is Kim’s sister
⇏ Kim is Sue’s sister

A counter-example for RSG?

- \(x \) is sister of \(y \) asserts that \(x \) and \(y \) are siblings, and only presupposes that \(x \) is female.

- Thus, sister of is “Strawson symmetric” – truth-conditionally identical to sibling/brother of
Irreducibility of collective predication

Collectivity is a lexical primitive:

- simplex predicate ranging over sets
- not definable on the basis of other concepts
Irreducibility of collective predication

Collectivity is a lexical primitive:
- simplex predicate ranging over sets
- not definable on the basis of other concepts

lexically reciprocal predicates = one species of irreducible collectivity
Some plain reciprocals

<table>
<thead>
<tr>
<th>Collective</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>collaborate</td>
<td>collaborate with</td>
</tr>
<tr>
<td>talk</td>
<td>talk with</td>
</tr>
<tr>
<td>meet</td>
<td>meet with</td>
</tr>
<tr>
<td>similar</td>
<td>similar to</td>
</tr>
<tr>
<td>parallel</td>
<td>parallel to</td>
</tr>
<tr>
<td>identical</td>
<td>identical to</td>
</tr>
<tr>
<td>neighbor</td>
<td>neighbor of</td>
</tr>
<tr>
<td>partner</td>
<td>partner of</td>
</tr>
<tr>
<td>sibling</td>
<td>partner of</td>
</tr>
<tr>
<td>cousin</td>
<td>cousin of</td>
</tr>
</tbody>
</table>

The collective predicate is primitive; the binary predicate is derived
Some plain reciprocals

<table>
<thead>
<tr>
<th>Collective</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>collaborate</td>
<td>collaborate with</td>
</tr>
<tr>
<td>talk</td>
<td>talk with</td>
</tr>
<tr>
<td>meet</td>
<td>meet with</td>
</tr>
<tr>
<td>similar</td>
<td>similar to</td>
</tr>
<tr>
<td>parallel</td>
<td>parallel to</td>
</tr>
<tr>
<td>identical</td>
<td>identical to</td>
</tr>
<tr>
<td>neighbor</td>
<td>neighbor of</td>
</tr>
<tr>
<td>partner</td>
<td>partner of</td>
</tr>
<tr>
<td>sibling</td>
<td>partner of</td>
</tr>
<tr>
<td>cousin</td>
<td>cousin of</td>
</tr>
</tbody>
</table>

The collective predicate is primitive; the binary predicate is derived

Non-standard treatment of symmetric kinship terms...
The plainR Rule

\[x \text{ is cousin of } y \overset{\text{def}}{=} \text{Cousin}(\{x, y\}) \]
\[\approx x \text{ and } y \text{ share grandparents} \]
The plainR Rule

\(x \text{ is cousin of } y \quad \overset{\text{def}}{=} \quad \text{Cousin}(\{x, y\}) \)
\[\approx \quad x \text{ and } y \text{ share grandparents} \]

\(x \text{ is similar to } y \quad \overset{\text{def}}{=} \quad \text{Similar}(\{x, y\}) \)
\[\approx \quad x \text{ and } y \text{ share a property} \]
The plain\text{R} Rule

\(x \text{ is cousin of } y \overset{\text{def}}{=} \text{Cousin}(\{x, y\}) \)
\[\approx x \text{ and } y \text{ share grandparents} \]

\(x \text{ is similar to } y \overset{\text{def}}{=} \text{Similar}(\{x, y\}) \)
\[\approx x \text{ and } y \text{ share a property} \]

The plain\text{R} Rule: \(R = \lambda x.\lambda y. P(\{x, y\}) \)
The plainR Rule

\[x \text{ is cousin of } y \overset{\text{def}}{=} \text{Cousin}(\{x, y\}) \approx x \text{ and } y \text{ share grandparents} \]

\[x \text{ is similar to } y \overset{\text{def}}{=} \text{Similar}(\{x, y\}) \approx x \text{ and } y \text{ share a property} \]

The plainR Rule: \[R = \lambda x.\lambda y. P(\{x, y\}) \]

Lakoff & Peters (1969):
- logical
- collective \(\rightarrow\) binary
- symmetry with plain reciprocals – part of RSG
The plainR Rule

\[x \text{ is cousin of } y \overset{\text{def}}{=} \text{Cousin}(\{x, y\}) \]
\[\approx \text{x and y share grandparents} \]

\[x \text{ is similar to } y \overset{\text{def}}{=} \text{Similar}(\{x, y\}) \]
\[\approx \text{x and y share a property} \]

The plainR Rule: \[R = \lambda x. \lambda y. P(\{x, y\}) \]

Lakoff & Peters (1969):

- logical
- collective \(\rightarrow\) binary
- symmetry with plain reciprocals – part of RSG

But how about pseudo-reciprocals?
The puzzle of pseudo-reciprocals

(1) Sue & Dan hugged
(2) Sue hugged Dan and Dan hugged Sue

(2) $\not\Rightarrow$ (1)
The puzzle of pseudo-reciprocals

(1) Sue & Dan hugged
(2) Sue hugged Dan and Dan hugged Sue

(2) \not\Rightarrow (1)

What does (1) “really mean”?
The puzzle of pseudo-reciprocals

(1) Sue & Dan hugged

(2) Sue hugged Dan and Dan hugged Sue

(2) \nRightarrow (1)

What does (1) “really mean”?

• Does (1) really entail (2), as previous works assume?
The puzzle of pseudo-reciprocals

(1) Sue & Dan hugged
(2) Sue hugged Dan and Dan hugged Sue

(2) $\not\Rightarrow$ (1)

What does (1) “really mean”?

- Does (1) really entail (2), as previous works assume?
- Do we really want grammar to explain what collective hugs are?
A and B are hugging

?the woman is hugging the man
A and B are hugging?
A and B are hugging?
A battery of tests, using illustrations and short films, which check things like:

Kruitwagen et al.
A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?

Are A and B talking? / Did A and B talk?
A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?
Are A and B talking? / Did A and B talk?

Many participants answer “no” to 1, but “yes” to 2, depending on the reaction of B to the whole event.
A battery of tests, using illustrations and short films, which check things like:

In a given situation:

Is B talking to A? / Did B talk to A?
Are A and B talking? / Did A and B talk?

Many participants answer “no” to 1, but “yes” to 2, depending on the reaction of B to the whole event.

Conclusion: Pseudo-reciprocity is a preferential strategy of a lexical concept, with no “logical” definition.
Collective intentionality

A hug is an act of collective intensionality.
Collective intentionality

A hug is an act of **collective intensionality**.

Searle (1990): “Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior.”
A hug is an act of collective intensionality.

Searle (1990): “Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior.”

An event e is typical for “Sue and Dan hugged” proportionally to two values:
- Sue and Dan’s CI as demonstrated in e
- the number of uni-directional hugs in e
A hug is an act of collective intensionality.

Searle (1990): “Collective intentional behavior is a primitive that cannot be analyzed as just the summation of individual behavior.”

An event e is **typical** for “Sue and Dan hugged” proportionally to two values:

- Sue and Dan’s CI as demonstrated in e
- the number of uni-directional hugs in e

Collective **HUG** is a complex concept, but logically it simplex – not defined on the basis of meaning postulates using the “simpler” concept for binary **hug**.
Protoroles and protopredicates

Protoroles = “entailments of a group of predicates with respect to one of the arguments or each” (Dowty 1991)
Protoroles and protopredicates

Protoroles = “entailments of a group of predicates with respect to one of the arguments or each” (Dowty 1991)

→ distinct from morpho-syntax
Protoroles and protopredicates

Protoroles = “entailments of a group of predicates with respect to one of the arguments or each” (Dowty 1991)

→ distinct from morpho-syntax

“group of predicates” → non-standard types (unary+binary)
Protoroles and protopredicates

Protoroles = “entailments of a group of predicates with respect to one of the arguments or each” (Dowty 1991)

- distinct from morpho-syntax
- “group of predicates” → non-standard types (unary + binary)
- thematic arguments → Davidsonian
Protoroles and protopredicates

Protoroles = “entailments of a group of predicates with respect to one of the arguments or each” (Dowty 1991)

- distinct from morpho-syntax
- “group of predicates” → non-standard types (unary + binary)
- thematic arguments → Davidsonian

Protopredicates = typed Davidsonian predicates without morpho-syntactic features
Types of protopredicates

<table>
<thead>
<tr>
<th></th>
<th>agent</th>
<th>patient</th>
<th>collective</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>DRAW</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>collective</td>
<td>SHAKE-HANDS</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>binary/collection</td>
<td>HUG</td>
<td>A,B</td>
<td>A,B</td>
</tr>
</tbody>
</table>
Implications for RSG

<table>
<thead>
<tr>
<th>Type p-predicate</th>
<th>Reciprocity</th>
<th>Symmetry?</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>plainR</td>
<td>+</td>
</tr>
<tr>
<td>bc</td>
<td>pseudoR</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>plainR</td>
<td>+</td>
</tr>
</tbody>
</table>
Summary: Protopredicates and the RSG

- **DRAW**
 - Binary
 - Binary, \neg-sym

- **MARRY**
 - Collective
 - Binary, sym \Leftrightarrow plainR
 - Collective
 - marry1
 - marry2

- **HUG**
 - Binary, Collective
 - Binary, \neg-sym \Leftrightarrow pseudoR

- **PlainR**
 - Hug
 - Hug with

- **Draw**
 - Draw2
Acknowledgements

Joost Zwarts
Sophie Chesney
Heidi Klockmann

NWO VICI Grant 277-80-002

Partee (2008)
References I

