
Model Counting for Logical Theories
Monday

Dmitry Chistikov Rayna Dimitrova

Department of Computer Science
University of Oxford, UK

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

ESSLLI 2016

How do we count?

How do we count the elements of a set given as a linked list?

2/33

How do we count?

How do we count the elements of a set given as a linked list?

What if the set is not given explicitly, but we can only check if an
element from a given universe is in this set or not?

What can we say about the size of a set if we are able to check this
and other implicitly given sets for emptiness?

2/33

How do we count?

How do we count the elements of a set given as a linked list?

What if the set is not given explicitly, but we can only check if an
element from a given universe is in this set or not?

What can we say about the size of a set if we are able to check this
and other implicitly given sets for emptiness?

2/33

How do we count?

How do we count the elements of a set given as a linked list?

What if the set is not given explicitly, but we can only check if an
element from a given universe is in this set or not?

What can we say about the size of a set if we are able to check this
and other implicitly given sets for emptiness?

2/33

Counting the number of arrangements

A summer school offers 6 courses, each with one lecture per day.

Day 1 Day 2 . . .

Course 1 Course 1 . . .

Course 2 Course 2 . . .

.

Course 6 Course 6 . . .

Ada wants to attend some subset of lectures per day so that:

(1) she takes at least one lecture per day,

(2) she rests between each two lectures, and

(3) she takes at most 3 lectures per day.

For how many days should the school last, so that Ada can try out
all arrangements that meet her constraints?

3/33

Counting the number of arrangements
We focus on the constraints for an arbitrary day of the school.
We can model Ada’s choice with Boolean variables x1, x2, . . . , x6

xi = T : attend lecture i
xi = F : do not attend lecture i

and express her constraints in a logical form.

(1) She takes at least one lecture per day.

x1 or x2 or x3 or x4 or x5 or x6

(2) She rests between each two lectures.

(¬x1 or ¬x2) and (¬x2 or ¬x3) and . . .

(3) She takes at most 3 lectures per day.(
(x1 and x2 and x3)→ (¬x4 and ¬x5 and ¬x6)

)
and . . .

3/33

Counting the number of arrangements
We focus on the constraints for an arbitrary day of the school.
We can model Ada’s choice with Boolean variables x1, x2, . . . , x6

xi = T : attend lecture i
xi = F : do not attend lecture i

and express her constraints in a logical form.

(1) She takes at least one lecture per day.

x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

(2) She rests between each two lectures.

(¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∧ . . .

(3) She takes at most 3 lectures per day.(
(x1 ∧ x2 ∧ x3)→ (¬x4 ∧ ¬x5 ∧ ¬x6)

)
∧ . . .

3/33

Counting the number of arrangements
We focus on the constraints for an arbitrary day of the school.
We can model Ada’s choice with Boolean variables x1, x2, . . . , x6

xi = T : attend lecture i
xi = F : do not attend lecture i

and express her constraints in a logical form.

The number of days the school should last is equal to the number
of truth assignments to x1, x2, . . . , x6 that satisfy the constraints.

We can compute this number by counting the satisfying assignments.

3/33

Counting the number of arrangements
We focus on the constraints for an arbitrary day of the school.
We can model Ada’s choice with Boolean variables x1, x2, . . . , x6

xi = T : attend lecture i
xi = F : do not attend lecture i

and express her constraints in a logical form.

Now, suppose that the school lasts the computed number of days.
We want to know how many evenings can Ada go out partying, if
course i makes her tired for the evening with probability pi.

weight for xi = T : wi(T) = 1− pi
weight for xi = F : wi(F) = 1

The weight of a truth assignment (a1, . . . , a6) is
∏6
i=1wi(ai).

3/33

Counting the number of arrangements
We focus on the constraints for an arbitrary day of the school.
We can model Ada’s choice with Boolean variables x1, x2, . . . , x6

xi = T : attend lecture i
xi = F : do not attend lecture i

and express her constraints in a logical form.

Now, suppose that the school lasts the computed number of days.
We want to know how many evenings can Ada to go out partying,
if course i makes her tired for the evening with probability pi.

The expected number of nights that Ada can party is the
weighted count of the assignments satisfying the constraints.

3/33

Counting integral points

A summer school lecture hall has the following shape.

y

x

If the chairs are arranged in a grid-like fashion at a given distance,
what is the number of students that can attend a lecture?

4/33

Counting integral points

A summer school lecture hall has the following shape.

y

x

We write down the definition of the shape as a set of constraints
and count the “integral points” that satisfy these constraints.

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5)∨
(x− 7.5)2 + (y − 5.5)2 ≤ 5.52∨
(x+ 7.5)2 + (y − 5.5)2 ≤ 5.52

)
4/33

Computing the area of a shape

A summer school lecture hall has the following shape.

y

x

For estimating the costs of maintenance, we might be interested in
computing the area of the frequently used parts of the lecture hall.

Add constraints y ≥ ax− b and y ≥ −ax− b. Area?

4/33

Model counting

counting discrete objects

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) ∧ . . .

x1, . . . , x6 are Boolean

counting integral points

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are integer

computing the volume of a body

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are real

5/33

How do we count?

How do we count the elements of a set given as a linked list?

What if the set is not given explicitly, but you can only check if an
element from a given universe is in this set or not?

What can we say about the size of a set if we are able to check
this and other implicitly given sets for emptiness?

6/33

Model counting

counting discrete objects

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) ∧ . . .

x1, . . . , x6 are Boolean

counting integral points

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are integer

computing the volume of a body

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are real

7/33

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

8/33

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

8/33

SAT: Propositional logic

Propositional logic: a language of propositional formulas

Syntax

I x1, x2, x3 . . . Boolean variables

I ¬,∧,∨,→,↔ logical connectives

I a set of rules for constructing formulas

Semantics: gives meaning to formulas

negation
x ¬x
T F

F T

conjunction
x y x ∧ y
T T T

T F F

F T F

F F F

disjunction
x y x ∨ y
T T T

T F T

F T T

F F F

9/33

SAT: Boolean satisfiability

Model: a variable assignment for which the formula evaluates to T

Formula ϕ ≡ (x ∨ y) ∧ (¬x ∨ ¬y)
Models of ϕ: JϕK = {(T,F), (F,T)}

Satisfiability (SAT): Given a formula ϕ, does ϕ have a model?

Determining satisfiability via truth tables requires examining 2n

assignments, where n is the number of propositional variables.

SAT is an NP-complete problem: all problems in the class NP
can be solved by translating them to SAT (in polynomial time).

10/33

SAT solving in practice

Modern SAT solvers are very fast most of the time

I for details, check the annual SAT competitions

and have an enormous number of applications:

I scheduling, creation of time-tables

I chip design, hardware verification

I program synthesis, network design

I ...

11/33

SMT

Problems are often modelled at a higher level than Boolean logic.
Translation to SAT is expensive and loses modelling insights.

Satisfiability Modulo Theories (SMT): reason about satisfiability
at the higher level of abstraction provided by first-order logic.

12/33

SMT: First-order logic

Logical symbols

I x1, x2, x3 . . . variables

I ¬,∧,∨,→,↔ logical connectives

I ∃, ∀ quantifiers

Non-logical symbols

I constant symbols: 42, Ada, 1
4

I predicate symbols: x > y, attends(x , y)

I function symbols: attendees(x)

Example formula

∀x
(
student(x)→ ∃y. course(y)∧attends(x, y)∧attendees(y) > 2

)
13/33

SMT: First-order logic

To define the semantics of a first-order formula, we need to give
meaning to the constant, predicate and function symbols.

Theory: a (possibly infinite) set of logical formulas

Commonly used theories come with a fixed set of symbols and
their standard interpretation: integer arithmetic, real arithmetic.

13/33

SMT: Integer Arithmetic (IA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈Z,+,−, ·,≤〉

Example formulas

even(x) : ∃y. x = y + y

∀x∀y∀z. x3 + y3 = z3 → (x = 0 ∨ y = 0 ∨ z = 0),

where x3 is a shortcut for x · x · x

14/33

SMT: Integer Arithmetic (IA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈Z,+,−, ·,≤〉

With multiplication, checking satisfiability is undecidable.

If the variable domains are bounded, then satisfiability is decidable.

14/33

SMT: Real Arithmetic (RA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈R,+,−, ·,≤〉

Example formula

∃x. x > 1 ∧ x · x− x− 1 = 0

15/33

SMT: Real Arithmetic (RA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈R,+,−, ·,≤〉

Linear fragment

I extend the set of constant symbols with the computable reals

I restrict · so that at least one argument is a constant

15/33

SMT solving in practice

State-of-the-art SMT solvers (Z3, CVC4, . . .) are widely used in
software verification and synthesis and in test case generation.

Annual competition (SMT-COMP), workshop, summer school.

16/33

Model counting for logical theories

counting discrete objects: propositional logic, integer arithmetic

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) ∧ . . .

x1, . . . , x6 Boolean

counting integral points: real and integer arithmetic

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are integer

volume computation: real arithmetic

y ≥ −0.5 ∧ y ≤ 5.5 ∧
(
(x ≥ −7.5 ∧ x ≤ 7.5) ∨ . . .

)
x, y are real

17/33

From logical theories to measured logical theories

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

We need a common framework for counting modulo theories.

Such a framework is provided by measured logical theories.

18/33

σ-algebras

σ-algebra (D,F): domain D, set of subsets F ⊆ 2D such that

∅ ∈ F (the empty set is an element)
A ∈ F =⇒ D \A ∈ F (closure under complementation)
Ai ∈ F =⇒

⋃
iAi ∈ F (closure under countable union)

Examples

I finite set D, F = 2D

I D = R, F defined starting from the set of all open intervals
by adding all complements and countable unions iteratively so
that the closure properties are met

19/33

Measure: How big is a set?

Measure µ for (D,F) maps each A ∈ F to a real number µ(A) ≥ 0

Examples

I D = {1, 2, 3, 4, 5, 6}, with µ({d}) = 1 for each d ∈ D
I µ(∅) = 0,
I µ({2, 4, 6}) = |{2, 4, 6}| = 3

I D = R
I µ((10, 15)) = 5,
I µ([10, 10]) = 0,
I µ((10, 15) ∪ [20, 30]) = 15

20/33

Measure: How big is a set?

Measure µ for (D,F) maps each A ∈ F to a real number µ(A) ≥ 0

Examples

I D = {1, 2, 3, 4, 5, 6}, with

µ({1}) = µ({3}) = µ({5}) = 1
2

µ({2}) = µ({4}) = µ({6}) = 2

µ({2, 3, 4, 6}) = 6.5

I D = R, with
a continuous function f : R→ R such that f(d) ≥ 0 for all d

µ([10, 15]) =
∫ 15
10 f(x) dx

20/33

Measure: How big is a set?

Measure µ for (D,F) maps each A ∈ F to a real number µ(A) ≥ 0

More formally

A ∈ F =⇒ µ(A) ≥ µ(∅) = 0
Ai ∈ F disjoint =⇒ µ(

⋃
iAi) =

∑
i µ(Ai)

Measure space (D,F , µ): σ-algebra (D,F), measure µ : F → R

20/33

Measure: How big is a set?

Measure µ for (D,F) maps each A ∈ F to a real number µ(A) ≥ 0

More formally

A ∈ F =⇒ µ(A) ≥ µ(∅) = 0
Ai ∈ F disjoint =⇒ µ(

⋃
iAi) =

∑
i µ(Ai)

Measure space (D,F , µ): σ-algebra (D,F), measure µ : F → R

20/33

Product Measure

With each variable xi, associate a measure space (Di,Fi, µi).
Models of ϕ(x1, . . . , xk) are elements of D1 × . . .×Dk.

If each Di is a countable union of elements of Fi we can define

µ(A1 × . . .×Ak) = µ1(A1) . . . µk(Ak).

µ([0, 100]× [0, 100]× [0, 100]) = 1003

21/33

Measured theories and model count

A logical theory T is measured if every JϕK is measurable.

The model count of a formula ϕ is mc(ϕ) = µ(JϕK).

Model counting problem: Given a formula ϕ, compute mc(ϕ).

22/33

Measured theories: Examples

Theory Domain Connectives Quantifiers mc(ϕ)

Boolean
satisfiability

{T,F} ∧,∨,¬ None Number of
satisfying
assignments

Integer
arithmetic

Z ∩ [a, b] ∧,∨,¬ ∃ Number of
models

Linear real
arithmetic

R ∩ [a, b] ∧,∨,¬ ∃ Volume

23/33

Efficient engines for SAT and SMT are widely used.

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

What about efficient engines for model counting?

24/33

Efficient engines for SAT and SMT are widely used.

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

What about efficient engines for model counting?

24/33

Counting by enumeration

I Takes exponential time in the worst case for SAT.
(2n possible assignments for n variables)

I Cannot be directly applied to continuous problems, e.g.,
volume computation. Discretization works in the limit.

Example: approximate the value of an integral

How much better can we do?

25/33

Computational complexity of counting

Some problems are easy and can be solved in polynomial time.

Many counting problems of practical interest are #P-complete,
and cannot be solved in polynomial time unless P = NP.

The complexity class #P consists of the counting problems
associated with the decision problems in NP.

More on computational complexity in the lecture on Tuesday.

26/33

How about approximation?

What if we ask for a procedure A that approximates the answer?

We want a procedure A for a given counting problem such that
given an ε and an instance I of the problem, A(I, ε) is such that

|A(I, ε)− count(I)| ≤ ε (additive error)
or

1
(1+ε)count(I) ≤ A(I, ε) ≤ (1 + ε)count(I) (multiplicative error)

No known efficient deterministic approximation algorithm for any
#P-complete problem.

27/33

Randomized approximation algorithms for counting

Use randomization to compute an approximation that is sufficiently
close to the actual value with high probability.

There are efficient randomized approximation algorithms for many
#P-complete problems.

More on randomized algorithms on Wednesday and Thursday.

28/33

Approaches based on random sampling

Monte Carlo methods use random sampling to estimate a value.

Example
Estimating the value of π.

1. Sample independently at random m points from

S = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}.

2. Let V be the number of samples in

C = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

3. Return 4V
m .

If m is large enough, close approximation with high probability.

29/33

Approaches based on random sampling

Markov Chain Monte Carlo methods are random sampling
methods that are often used for high dimensional problems
(for example, for estimating the volume of a convex body in Rn).

More on Monte Carlo and Markov Chain Monte Carlo on Wednesday.

29/33

A naive approach based on choosing a random subset

We want to count the number of elements of a set C ⊆ S.

1. Partition S into small disjoint sets S1, . . . , Sm.

2. Pick a random Si and count the elements of C in Si.

3. Return mVi, where Vi = |C ∩ Si|.

Challenge: how to pick a representative subset?

30/33

Hashing-based approach

Using hashing we can partition the set S by iterative splitting.

Key property: with high probability each split cuts the elements of
C in a partition roughly in half. This gives us representative sets!

We will learn about the hashing approach to #SAT on Thursday.

This approach can be applied to model counting for real arithmetic
by combining hashing and discretization. More on this on Friday.

31/33

Summary of today’s lecture

I Model counting: What it is and in what contexts it is useful

I Measured logical theories: A common framework for counting
problems in different domains

I Randomized approximation algorithms: How they can be
useful in the context of model counting

32/33

Agenda for the rest of the week

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting

33/33

