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Agenda

Tuesday
Wednesday
Thursday

Friday

computational complexity, probability theory
randomized algorithms, Monte Carlo methods
hashing-based approach to model counting

from discrete to continuous model counting
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Outline

1. Complexity theory: P, NP, and #P

2. Probability theory
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Decision problems and algorithms

Decision problem:
L C {0,1}* (encodings of yes-instances)

Algorithm for L:
says “yes’ on every x € L, “no” on every x € {0,1}*\ L
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Time complexity

» of algorithm A on input z
» of algorithm A on inputs of length n (worst-case)

» of decision problem L
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Complexity class P and efficient algorithms

Cobham—-Edmonds thesis:

Efficiently computable in a reasonable computational model

Computable in polynomial time on a Turing machine

P = | J | JDTIME(c - n%)

d>1c¢>1
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Problems with efficiently verifiable solutions: NP

» Definition via certificates

» Definition via nondeterministic machines
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Reductions and NP-complete problems

» Polynomial-time reduction

» NP-hard and NP-complete problems
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From decision to counting problems

Real-valued problem: f: {0,1}* - R
Counting problem: f: {0,1}* — {0,1,2,...}

#P: consists of problems that count the number of certificates to
instances of NP-problems
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Complexity classes: brief summary

P: polynomial time (efficiently solvable)

NP: nondeterministic polynomial time (with efficiently verifiable
solutions)

#P: counting polynomial time
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Outline

1. Complexity theory: P, NP, and #P

2. Probability theory
Probability theory: Events
Probability theory: Random variables
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Recap: Measured theories



Measured theories and model count

A logical theory T is measured if every [¢] is measurable.

The model count of a formula ¢ is mc(¢) = p([¢]).
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o-algebras

o-algebra (D, F): domain D, set of subsets F C 2P such that

@geF (the empty set is an element)
AeF = D\ AeF (closure under complementation)
A;e F = |J,;Ai € F (closure under countable union)

Examples

» finite set D, F = 2P0

» D =R, F obtained from the set of all open intervals by
adding all complements and countable unions iteratively until
the closure properties are met (Borel hierarchy)
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Measure: How big is a set?

Measure p for (D, F): maps each A € F to a real number
u(A) =0

More formally

AeF = u(A) > p(@)=0
A; € Fdisioint = pu(lU; 4i) =X, u(A)

Measure space (D, F, u): o-algebra (D, F), measure u: F — R
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Probability theory:
Events



Probability spaces

Definition

A triple (92, F,P) is a probability space

if F is a o-algebra of subsets of {2

and P is a measure on (2, F) that satisfies P(Q2) = 1.
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Probability spaces

Definition

A triple (92, F,P) is a probability space

if F is a o-algebra of subsets of {2

and P: F — R satisfies the following properties:

» P(A) >0 forall Ae F.
=1 =1
» P(Q)=1.
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Probability spaces

Definition

A triple (92, F,P) is a probability space

if F is a o-algebra of subsets of {2

and P: F — R satisfies the following properties:

» P(A) >0 forall Ae F.
=1 =1
» P(Q)=1.

Discrete probability space: (2 is finite.
For such spaces it's usually convenient to pick F = 2.
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Law of Sum

If events A and B are disjoint (AN B = @),
then P(AU B) = P(A4) + P(B).

If Ay,..., A, are pairwise disjoint events
(AiNA; =@ for all i # j),
then P(A1 U...u An) = E?:l P(AZ)
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Probability of Union

Is it true that P(AU B) = P(A) + P(B)?
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Probability of Union

Is it true that P(AU B) = P(A) + P(B)?

Answer:
This is only true if P(AN B) = 0.

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
Consider A ={1,2,3} and B = {2,4,6}.

P[outcome < 3] = P[4] = 1/2.

P[outcome even] = P[B] = 1/2.

P[outcome < 3 or even] = P[AU B] = P[{1,2,3,4,6}] = 5/6 #
1/2+1/2.
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Probability of Union

Is it true that P(AU B) = P(A) + P(B)?
Answer:
This is only true if P(AN B) = 0.
In general,
P(AUB)=P(A)+P(B)—-P(ANB).
Why?

P(AUB) =P(A)+P(AN B)
P(B)=P(ANB)+P(ANB)
P(4) — P(AN B)
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The Union Bound

We know that
P(AUB) =P(A)+P(B) —P(ANB).
Observe that, as a corollary,
P(AUB) < P(A) + P(B).

Generalize this:

=1

i=1 1<i1<iz<n
+ . (=D)"TP(A] .. AY) (difficult)
n n
P (U AZ) < Z P(4;) (easy; union bound)
i=1 i=1
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Law of Complement
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What about Product?

Does the equality P(AN B) = P(A) - P(B) hold?
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What about Product?

Does the equality P(AN B) = P(A) - P(B) hold?

The answer is NO (in the general case).
(Although it does hold in an important special case, to be
discussed later.)
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)

is defined as
P(ANB)

P(B)
if P(B) > 0 (and undefined otherwise).

P(A]B) =

Example
A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
P[outcome < 5 | outcome even| =7
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)

is defined as
P(ANB)

P(B)
if P(B) > 0 (and undefined otherwise).

P(A]B) =

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
Consider A ={1,2,3,4,5} and B = {2,4,6}.

P[outcome < 5] = P[A] =5/6.

P[outcome even| = P[B] = 1/2.

P[outcome < 5 | outcome even] = P[A | B] =

_ Ploutcome <5 and even]  P[{2,4}]  2/6 _ 5
N P[outcome even ] - P[{2,4,6}] 3/6 /3
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)

is defined as
P(ANB)

P(B)
if P(B) > 0 (and undefined otherwise).

P(A]B) =

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
P[outcome < 5 | outcome even] = 2/3

P[outcome even | outcome < 3] =7
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)

is defined as
P(ANB)

P(B)
if P(B) > 0 (and undefined otherwise).

P(A]B) =

Example
A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
Consider A ={1,2,3,4,5} and B = {2,4,6}.
P[outcome < 5] = P[A] =5/6.
P[outcome even| = P[B] = 1/2.
P[outcome even | outcome < 5] =P[B | 4] =
P[outcome even and < 5] P[{2,4}] 2/6 _ 9

P[outcome < 5] ~ P[{1,2,3,4,5}] 5/6 /5
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)

is defined as
P(ANB)

P(B)
if P(B) > 0 (and undefined otherwise).

P(A]B) =

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
P[outcome < 5 | outcome even] = 2/3

P[outcome even | outcome < 3] =2/5
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Conditional probability is probability!
If P(B) > 0, then the function Q: 2 — [0, 1] defined by
Q(A) =P(A|B)

is a probability measure.
» What does this mean?
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Conditional probability is probability!
If P(B) > 0, then the function Q: 2 — [0, 1] defined by
Q(A) =P(A|B)

is a probability measure.
> What does this mean?
» Why? (homework)
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Conditional probability is probability!
If P(B) > 0, then the function Q: 2 — [0, 1] defined by
Q(A) =P(A|B)

is a probability measure.
> What does this mean?
» Why? (homework)
» So what?
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Conditional probability is probability!
If P(B) > 0, then the function Q: 2 — [0, 1] defined by
Q(A) =P(A|B)

is a probability measure.
> What does this mean?
» Why? (homework)
» So what?

P(AuC |B)=P(A|B)+P(C|B)-PANC | B)

n

P(lJAi|B) <) P(Ai|B)
=1 =1
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Law of Total Probability

Let Bi,..., B,, be a partition:
P(BiNnBj)=0fori#jand P(B1U...UB,,) =1

Suppose P(B;) > 0 for all 1.

Then for any event A

P(4) =) P(A|B;)-P(Bi).

26/49



Independent events: Example

Example
A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
P[outcome < 4 | outcome even| =7
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Independent events: Example

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.

P[outcome < 4 | outcome even| =7

Consider A ={1,2,3,4} and B = {2,4,6}.

P[outcome < 4] = P[A] =2/3.

P[outcome even| = P[B] = 1/2.

P[outcome < 4 | outcome even] = P[A | B] =
Ploutcome < 4 and even]  P[{2,4}] 2/6

P[outcome even | - P[{2,4,6}] 3/6

2/3.
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Independent events: Example

Example

A fair die gives each k € {1,2,3,4,5,6} with probability 1/6.
P[outcome < 4 | outcome even| =7

Consider A ={1,2,3,4} and B = {2,4,6}.

P[outcome < 4] = P[A] =2/3.

P[outcome even| = P[B] = 1/2.

P[outcome < 4 | outcome even] = P[A | B] =
_ Ploutcome <4 andeven]  P[{2,4}] 2/6 2/3
P[outcome even ] - P[{2,4,6}] 3/6 7

In this example P[A | B] = P[A].
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Independent events

When P(A | B) = P(A)? (4B)
P(AB
P(B) =P(A).

Assuming P(B) > 0, rewrite this as P(AB) = P(A) P(B).

This equality asserts that
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Independent events

When P(A | B) = P(A)?
P(AB)
P(B) P(A).

Assuming P(B) > 0, rewrite this as P(AB) = P(A) P(B).

This equality asserts that

Definition
Events A and B are called independent if P(AB) = P(A) P(B).
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Independent events

When P(A | B) = P(A)?
P(AB)
P(B) P(A).

Assuming P(B) > 0, rewrite this as P(AB) = P(A) P(B).

This equality asserts that

Definition
Events A and B are called independent if P(AB) = P(A) P(B).

This definition usually helps to define P.

28/49



Independent events: A standard example

Definition
Events A and B are called independent if P(AB) = P(A) P(B).

Example
A fair coin is tossed twice so that the second toss does not depend

on the outcome of the first.

P[tails, tails] =7
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Independent events: A standard example

Definition

Events A and B are called independent if P(AB) = P(A) P(B).
Example

A fair coin is tossed twice so that the second toss does not depend
on the outcome of the first.

P[tails, tails] =7

Model the outcome of each toss as 0 (heads) or 1 (tails).
Four possible scenarios: 2 = {00,01,10,11}. How to define P?
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Independent events: A standard example

Definition

Events A and B are called independent if P(AB) = P(A) P(B).
Example

A fair coin is tossed twice so that the second toss does not depend
on the outcome of the first.

P[tails, tails] =7

Model the outcome of each toss as 0 (heads) or 1 (tails).

Four possible scenarios: 2 = {00,01,10,11}. How to define P?
Consider events A = {10,11} and B = {01,11}:

“first coin lands tails” and “second coin lands tails” respectively.

We want these events to have probability 1/2 each and to be
independent.
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Independent events: A standard example

Definition

Events A and B are called independent if P(AB) = P(A) P(B).
Example

A fair coin is tossed twice so that the second toss does not depend
on the outcome of the first.

P[tails, tails] =7

Model the outcome of each toss as 0 (heads) or 1 (tails).

Four possible scenarios: 2 = {00,01,10,11}. How to define P?
Consider events A = {10,11} and B = {01,11}:

“first coin lands tails” and “second coin lands tails” respectively.
We want these events to have probability 1/2 each and to be
independent.

Then P[tails, tails] = P[{11}] = P[AN B] = P[A]P[B] = 1/4.
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Three or more independent events

Events Aq,..., A, are called independent
if for any subset {i1,...,ix} C{1,...,n}
P(A; ... A;,) =P(A1)...P(Ag).

Example

From the set of strings {000,001, 002, ...,999}

a string X1 X5 X3 is picked uniformly at random.

Are the events X1 =5, X9 =5, and X3 = 5 independent?
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Three or more independent events

Events Aq,..., A, are called independent
if for any subset {i1,...,ix} C{1,...,n}
P(A; ... A;,) =P(A1)...P(Ag).

Example

From the set of strings {000,001, 002, ...,999}

a string X1 X5 X3 is picked uniformly at random.

Are the events X1 =5, X9 =5, and X3 = 5 independent?

Yes: P[X; = 5] =1/10, P[X; =5,X; = 5] = 1/100 if i # j, and
P[X1 = Xy = X3 =5] = 1/1000.

30/49



Three or more independent events

Events Aq,..., A, are called independent
if for any subset {i1,...,ix} C{1,...,n}
P(A; ... A;,) =P(A1)...P(Ag).

Example

From the set of strings {000,001, 002, ...,999}

a string X1 X5 X3 is picked uniformly at random.

Are the events X1 =5, X9 =5, and X3 = 5 independent?

Yes: P[X; = 5] =1/10, P[X; =5,X; = 5] = 1/100 if i # j, and
P[X1 = Xy = X3 =5] = 1/1000.

What if the string 999 is excluded from the set?  (homework)
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Independence and pairwise independence

Example
Consider a pyramid (a tetrahedron) with facets colored

red, blue, red-blue-

Suppose the pyramid lands on each facet with probability 1/4.
Consider events R, B, GG asserting that the facet the pyramid
lands on has color red, blue, on it, respectively.

Are these events independent?
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Independence and pairwise independence

Example
Consider a pyramid (a tetrahedron) with facets colored

red, blue, red-blue-

Suppose the pyramid lands on each facet with probability 1/4.
Consider events R, B, GG asserting that the facet the pyramid
lands on has color red, blue, on it, respectively.

Are these events independent?

P(R)=P(B) =P(G) =1/2.
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Independence and pairwise independence

Example
Consider a pyramid (a tetrahedron) with facets colored

red, blue, red-blue-

Suppose the pyramid lands on each facet with probability 1/4.
Consider events R, B, GG asserting that the facet the pyramid
lands on has color red, blue, on it, respectively.

Are these events independent?

P(R)=P(B) =P(G) =1/2.

P(RB) = P(RG) = P(BG) = 1/4 = (1/2)2.
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Independence and pairwise independence

Example
Consider a pyramid (a tetrahedron) with facets colored

red, blue, red-blue-

Suppose the pyramid lands on each facet with probability 1/4.
Consider events R, B, GG asserting that the facet the pyramid
lands on has color red, blue, on it, respectively.

Are these events independent?

P(R) = P(B) = P(G) = 1/2.

P(RB) = P(RG) = P(BG) = 1/4 = (1/2).
P(RBG) = 1/4 # (1/2)3.

These events are NOT independent, but only pairwise independent.
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Probability theory:
Random variables, distributions



From events to random variables

Given a probability space (£2,2%,P), we can talk about
events A € 2 and their probability P(A).

However, it is often more convenient to talk about functions
of the form X : Q — R, which are called random variables.

Example:
Bernoulli trial:

2 = {heads, tails}, P({tails}) = p € [0,1], P({heads}) =1 —p

Define
X(w) = 1 ?f w = tails,
0 if w = heads.

We say that the random variable X has Bernoulli distribution with
parameter p.
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From events to random variables

Given a probability space (£2,2%,P), we can talk about
events A € 2 and their probability P(A).

However, it is often more convenient to talk about functions
of the form X : Q — R, which are called random variables.

Example:
Let A € 2 be an event.
The indicator function of A is defined as

14(w) 1 fweA,
w) =
4 0 ifwéd A

14(w) is a random variable that has Bernoulli distribution with pa-
rameter P(A). (Why?)
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From events to random variables

Given a probability space (£2,2%,P), we can talk about
events A € 2 and their probability P(A).

However, it is often more convenient to talk about functions
of the form X : Q — R, which are called random variables.

Example:
Let A € 2 be an event.
The indicator function of A is defined as

14(w) 1 fweA,
w) =
4 0 ifwéd A

Sometimes the indicator function of A is denoted by “[A]",

e.g., "[the coin gives heads|".
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Binomial distribution

Suppose a coin is tossed n times, the outcome of all tosses are
independent, and each gives tails with probability p.

Define

)1 if the ith toss gives tails,
10 otherwise.

(X; has Bernoulli distribution with parameter p.)

Define
X=X1+...+X,.

We say that the random variable X has binomial distribution
with parameters n, p.
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Distributions of random variables

X has Bernoulli distribution with parameter p:

0

1

1—p

p

X has binomial distribution with parameters 3, p:

T 0

1

2

(1-p)*

3p(1—p)°

3p* (1 —p)

X has uniform distribution on the set {0, 1,2, 3}:

0 1

2 3

1/4|1/4]1/4[1/4
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Expectation

Examples

X has uniform distribution on the set {1,2,3,...,n}:

x 1

2

3

n

P(X=ux)|1/n

1/n

1/n

1/n

EX=1/n-141/n-24+1/n-34+...41/n-n=(n+1)/2.
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Expectation

Examples
X has Bernoulli distribution with parameter p:

T 0 1
PX=x)|1-p|p

EX=0-(1-p+1-p=p.
E X = 1/2 if and only if the coin is unbiased.
So E X is the expected number of tails in one flip.
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Expectation

Examples
X has binomial distribution with parameters n, p:

0

2

(1-—p"

n(n—1)
2

p*(1-p

)n—2
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Linearity of expectation

E(Xi+...+X,)=EX1+...+EX,
E(Cle—i-...—i-Can)ZClEXl—l-...—I—CnEXn

(if ¢; are fixed, i.e., non-random)
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Linearity of expectation

E(Xi+...+X,)=EX1+...+EX,
E(Cle—i-...—i-Can)ZClEXl—l-...—‘rCnEXn

(if ¢; are fixed, i.e., non-random)

Example
If X has binomial distribution with parameters n, p:
T 0 1 2 n
PX =2) [ (1—p)" [np(1—p)" L | "0 Y p2 (1 p)"? p"

...then X has the same distribution as Y7 + ...+ Y,
where each Y; has Bernoulli distribution with parameter p.
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Linearity of expectation

E(Xi+...+X,)=EX1+...+EX,
E(Cle—l-...—i-Can) ZClEXl—i-...—‘rCnEXn
(if ¢; are fixed, i.e., non-random)

Example
If X has binomial distribution with parameters n, p:
T 0 1 2 .. ln
PX=2) | (1—p)" [np(L—p)" ' [ " p2 (1 —p)n 2] . | p"

...then X has the same distribution as Y7 + ...+ Y,
where each Y; has Bernoulli distribution with parameter p.

ButE(Y1+...4Y,)=EY1+...+EY,=n-p,soEX =n-p.
37/49



Properties of expectation: Summary

E(14) = P(4)
E(X+Y)=EX+EY
E(cX)=c-EX
Ec=c

EX>EY ifX>Y
=3 i) P(X =)

If EX =0and X >0, then P(X

for any event A

for any constant ¢

for any constant ¢

—0)=1.
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Variance

VarX =E(X —EX)?>0
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Variance

VarX =E(X —EX)?>0

VarX = E(X? - 2X -EX + (EX)?)
—EX?-2EX-EX +(EX)?
=EX? - (EX)?
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Variance

VarX =E(X —EX)?>0

VarX = E(X? - 2X -EX + (EX)?)
—EX?-2EX-EX +(EX)?
=EX? - (EX)?

Var X = 0 iff there exists a constant ¢ such that P(X =¢) = 1.

For all ¢ we have Var(cX) = ¢ - Var X and Var(X +¢) = Var X.
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Variance of the sum: Example

Let X and Y be Bernoulli random variables associated to
independent Bernoulli trials with parameter 1/2.
Define Z =1 — X.

E(X+Y)=EX+EY =1
E(X+Z)=EX+EZ=1

40/49



Variance of the sum: Example

Let X and Y be Bernoulli random variables associated to
independent Bernoulli trials with parameter 1/2.
Define Z =1 — X.

E(X+Y)=EX+EY =1
E(X+Z)=EX+EZ=1

In fact, X + 7 = 1.

40/49



Variance of the sum: Example

Let X and Y be Bernoulli random variables associated to

independent Bernoulli trials with parameter 1/2.

Define 7 =1 — X.

E(X+Y)=EX+EY =1
E(X+Z)=EX+EZ=1

In fact, X + 7 = 1.

k 0] 1] 2
PX+Y =Fk) |1/4]|1/2]1/4
PX+Z=Fk)| 0| 1|0
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Variance of the sum: Example

Let X and Y be Bernoulli random variables associated to
independent Bernoulli trials with parameter 1/2.
Define Z =1 — X.

E(X+Y)=EX+EY =1
E(X+Z)=EX+EZ=1

In fact, X + 7 = 1.

k 0] 1] 2
PX+Y =Fk) |1/4]|1/2]1/4
PX+Z=Fk)| 0| 1|0

Var(X +Y)=E(X +Y - 1) =1/2
Var(X +Z2)=E(X+Z—-1)*=0

40/49



Variance of the sum

Var(X +Y) =E((X +Y) —E(X +Y))?
—E((X —EX)+ (Y —EY))?
=E((X -EX)*+2(X —EX)(Y —EY) + (Y —EY)?)
=E(X -EX)*+E(Y —EY)?+2E(X —EX)(Y —EY)
=VarX +VarY +2E(XY - XEY —-YEX +EX -EY)
=VarX +VarY +2(EXY —EX -EY)
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Variance of the sum

Var(X +Y) =E((X +Y) —E(X +Y))?
—E((X —EX)+ (Y —EY))?
=E((X -EX)*+2(X —EX)(Y —EY) + (Y —EY)?)
=E(X -EX)*+E(Y —EY)?+2E(X —EX)(Y —EY)
=VarX +VarY +2E(XY - XEY —-YEX +EX -EY)
=VarX +VarY +2(EXY —EX -EY)

The difference EXY — EX - EY is called the covariance
of X and Y, denoted Cov(X,Y).
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Independence of random variables

Recall that two events A and B are called independent
if P(AB) = P(A)P(B).

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.
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Independence of random variables, continued

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

EXY—Zk:-PXY—k)

—Zk > PX =)

ry=k



Independence of random variables, continued

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

EXY=EX-EY
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Independence of random variables, continued

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

EXY=EX . EY
Var(X +Y)=VarX +VarY + 2(EXY —EX -EY)
=VarX + VarY
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Independence of random variables, continued

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

Var(X +Y) = Var X + VarY.
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Independence of random variables, continued

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

Var(X +Y) = Var X + VarY.
In general,

Var(X +Y) =VarX + VarY +2Cov(X,Y).
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Variance: Summary

VarX =E(X —EX)?>0
VarX = EX? — (EX)?

Var X = 0 iff there exists a constant ¢ such that P(X = ¢) = 1.

For all ¢ we have Var(cX) = ¢? - Var X and Var(X +¢) = Var X.

Var(X +Y) =VarX +VarY +2Cov(X,Y)
(Cov(X,Y)=0if X and Y are independent)
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Why variance?

Chebyshev inequality:

Var X

P(IX-EX|>t) < 3
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Geometric distribution

Let X1, Xo,...,X,,... be independent Bernoulli random variables
with parameter p.

Call trial 7 a success if X; = 1 and a failure otherwise.

Denote ¢ =1 —p=P(X; =0).
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Geometric distribution

Let X1, Xo,...,X,,... be independent Bernoulli random variables
with parameter p.

Call trial 7 a success if X; = 1 and a failure otherwise.

Denote ¢ =1 —p=P(X; =0).

Let Y denote the number of failures before the first success.
Random variable Y is said to have geometric distribution with
parameter p.
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Geometric distribution: Properties

Y 0|11} 2 |...] n
PY =vy)|p|pg|pd®|...[pg"
Ex=12
p
Vaerg2
p
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Summary of today's lecture

» Computational complexity:
Decision and counting problems, complexity classes P, NP,
and #P

» Probability theory: Measures, events, random variables,
probability distributions
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Agenda

Tuesday
Wednesday
Thursday

Friday

computational complexity, probability theory
randomized algorithms, Monte Carlo methods
hashing-based approach to model counting

from discrete to continuous model counting
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