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Agenda

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting
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Outline

1. Complexity theory: P, NP, and #P

2. Probability theory
Probability theory: Events
Probability theory: Random variables
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Decision problems and algorithms

Decision problem:
L ⊆ {0, 1}∗ (encodings of yes-instances)

Algorithm for L:
says “yes” on every x ∈ L, “no” on every x ∈ {0, 1}∗ \ L
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Time complexity

I of algorithm A on input x

I of algorithm A on inputs of length n (worst-case)

I of decision problem L
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Complexity class P and efficient algorithms

Cobham–Edmonds thesis:

Efficiently computable in a reasonable computational model
=

Computable in polynomial time on a Turing machine

P =
⋃
d≥1

⋃
c≥1

DTIME(c · nd)
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Problems with efficiently verifiable solutions: NP

I Definition via certificates

I Definition via nondeterministic machines
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Reductions and NP-complete problems

I Polynomial-time reduction

I NP-hard and NP-complete problems
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From decision to counting problems

Real-valued problem: f : {0, 1}∗ → R
Counting problem: f : {0, 1}∗ → {0, 1, 2, . . .}

#P: consists of problems that count the number of certificates to
instances of NP-problems
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Complexity classes: brief summary

P: polynomial time (efficiently solvable)

NP: nondeterministic polynomial time (with efficiently verifiable
solutions)

#P: counting polynomial time
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Outline

1. Complexity theory: P, NP, and #P

2. Probability theory
Probability theory: Events
Probability theory: Random variables
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Recap: Measured theories



Measured theories and model count

A logical theory T is measured if every JϕK is measurable.

The model count of a formula ϕ is mc(ϕ) = µ(JϕK).
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σ-algebras

σ-algebra (D,F): domain D, set of subsets F ⊆ 2D such that

∅ ∈ F (the empty set is an element)
A ∈ F =⇒ D \A ∈ F (closure under complementation)
Ai ∈ F =⇒

⋃
iAi ∈ F (closure under countable union)

Examples

I finite set D, F = 2D

I D = R, F obtained from the set of all open intervals by
adding all complements and countable unions iteratively until
the closure properties are met (Borel hierarchy)
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Measure: How big is a set?

Measure µ for (D,F): maps each A ∈ F to a real number
µ(A) ≥ 0

More formally

A ∈ F =⇒ µ(A) ≥ µ(∅) = 0
Ai ∈ F disjoint =⇒ µ(

⋃
iAi) =

∑
i µ(Ai)

Measure space (D,F , µ): σ-algebra (D,F), measure µ : F → R
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Probability theory:
Events



Probability spaces

Definition
A triple (Ω,F ,P) is a probability space
if F is a σ-algebra of subsets of Ω
and P is a measure on (Ω,F) that satisfies P(Ω) = 1.

Discrete probability space: Ω is finite.
For such spaces it’s usually convenient to pick F = 2Ω.
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Probability spaces

Definition
A triple (Ω,F ,P) is a probability space
if F is a σ-algebra of subsets of Ω
and P : F → R satisfies the following properties:

I P(A) ≥ 0 for all A ∈ F .

I P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai) if Ai ∩Aj = ∅ for i 6= j.

I P(Ω) = 1.
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Law of Sum

If events A and B are disjoint (A ∩B = ∅),
then P(A ∪B) = P(A) + P(B).

If A1, . . . , An are pairwise disjoint events
(Ai ∩Aj = ∅ for all i 6= j),

then P(A1 ∪ . . . ∪An) =
∑n

i=1 P(Ai).
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Probability of Union

Is it true that P(A ∪B) = P(A) + P(B)?

Answer:
This is only true if P(A ∩B) = 0.
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Probability of Union

Is it true that P(A ∪B) = P(A) + P(B)?

Answer:
This is only true if P(A ∩B) = 0.

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
Consider A = {1, 2, 3} and B = {2, 4, 6}.
P[ outcome ≤ 3 ] = P[A] = 1/2.
P[ outcome even ] = P[B] = 1/2.
P[ outcome ≤ 3 or even ] = P[A ∪ B] = P[{1, 2, 3, 4, 6}] = 5/6 6=
1/2 + 1/2.
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Probability of Union

Is it true that P(A ∪B) = P(A) + P(B)?

Answer:
This is only true if P(A ∩B) = 0.

In general,

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Why?

P(A ∪B) = P(A) + P(A ∩B)

P(B) = P(A ∩B) + P(A ∩B)

P(A ∪B)− P(B) = P(A)− P(A ∩B)

20/49



The Union Bound

We know that

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Observe that, as a corollary,

P(A ∪B) ≤ P(A) + P(B).

Generalize this:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑

1≤i1<i2≤n
P(Ai1Ai2)+

+ . . .+ (−1)n+1P(A1 . . . An) (difficult)

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai) (easy; union bound)
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Law of Complement

P(A) = 1− P(A).
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What about Product?

Does the equality P(A ∩B) = P(A) · P(B) hold?

The answer is NO (in the general case).
(Although it does hold in an important special case, to be
discussed later.)
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)
is defined as

P(A | B) =
P(A ∩B)

P(B)

if P(B) > 0 (and undefined otherwise).

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
P[ outcome ≤ 5 | outcome even ] = ?
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)
is defined as

P(A | B) =
P(A ∩B)

P(B)

if P(B) > 0 (and undefined otherwise).

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
Consider A = {1, 2, 3, 4, 5} and B = {2, 4, 6}.
P[ outcome ≤ 5 ] = P[A] = 5/6.
P[ outcome even ] = P[B] = 1/2.
P[ outcome ≤ 5 | outcome even ] = P[A | B] =

=
P[ outcome ≤ 5 and even ]

P[ outcome even ]
=

P[ {2, 4} ]

P[ {2, 4, 6} ]
=

2/6

3/6
= 2/3.
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)
is defined as

P(A | B) =
P(A ∩B)

P(B)

if P(B) > 0 (and undefined otherwise).

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
P[ outcome ≤ 5 | outcome even ] = 2/3
P[ outcome even | outcome ≤ 3 ] = ?

24/49



Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)
is defined as

P(A | B) =
P(A ∩B)

P(B)

if P(B) > 0 (and undefined otherwise).

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
Consider A = {1, 2, 3, 4, 5} and B = {2, 4, 6}.
P[ outcome ≤ 5 ] = P[A] = 5/6.
P[ outcome even ] = P[B] = 1/2.
P[ outcome even | outcome ≤ 5 ] = P[B | A] =

=
P[ outcome even and ≤ 5 ]

P[ outcome ≤ 5 ]
=

P[ {2, 4} ]

P[ {1, 2, 3, 4, 5} ]
=

2/6

5/6
= 2/5.
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Conditional probability

Conditional probability of A given B
(probability that event A occurs given that event B occurs)
is defined as

P(A | B) =
P(A ∩B)

P(B)

if P(B) > 0 (and undefined otherwise).

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
P[ outcome ≤ 5 | outcome even ] = 2/3
P[ outcome even | outcome ≤ 3 ] = 2/5
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Conditional probability is probability!

If P(B) > 0, then the function Q : 2Ω → [0, 1] defined by

Q(A) = P(A | B)

is a probability measure.

I What does this mean?

I Why? (homework)

I So what?

P(A ∪ C | B) = P(A | B) + P(C | B)− P(A ∩ C | B)

P
( n⋃
i=1

Ai

∣∣ B) ≤ n∑
i=1

P(Ai | B)

. . .
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Law of Total Probability

Let B1, . . . , Bm be a partition:
P(Bi ∩Bj) = 0 for i 6= j and P(B1 ∪ . . . ∪Bm) = 1.

Suppose P(Bi) > 0 for all i.

Then for any event A

P(A) =

m∑
i=1

P(A | Bi) · P(Bi).
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Independent events: Example

Example
A fair die gives each k ∈ {1, 2, 3, 4, 5, 6} with probability 1/6.
P[ outcome ≤ 4 | outcome even ] = ?

Consider A = {1, 2, 3, 4} and B = {2, 4, 6}.
P[ outcome ≤ 4 ] = P[A] = 2/3.
P[ outcome even ] = P[B] = 1/2.
P[ outcome ≤ 4 | outcome even ] = P[A | B] =

=
P[ outcome ≤ 4 and even ]

P[ outcome even ]
=

P[ {2, 4} ]

P[ {2, 4, 6} ]
=

2/6

3/6
= 2/3.

In this example P[A | B] = P[A].
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Independent events

When P(A | B) = P(A)?

This equality asserts that
P(AB)

P(B)
= P(A).

Assuming P(B) > 0, rewrite this as P(AB) = P(A) P(B).

Definition
Events A and B are called independent if P(AB) = P(A) P(B).

This definition usually helps to define P.
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Independent events: A standard example

Definition
Events A and B are called independent if P(AB) = P(A) P(B).
Example
A fair coin is tossed twice so that the second toss does not depend
on the outcome of the first.

P[ tails, tails ] = ?

Model the outcome of each toss as 0 (heads) or 1 (tails).
Four possible scenarios: Ω = {00, 01, 10, 11}. How to define P?

Consider events A = {10, 11} and B = {01, 11}:
“first coin lands tails” and “second coin lands tails” respectively.

We want these events to have probability 1/2 each and to be
independent.

Then P[ tails, tails ] = P[{11}] = P[A ∩B] = P[A] P[B] = 1/4.
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Three or more independent events

Events A1, . . . , An are called independent
if for any subset {i1, . . . , ik} ⊆ {1, . . . , n}

P(Ai1 . . . Aik) = P(A1) . . .P(Ak).

Example
From the set of strings {000, 001, 002, . . . , 999}
a string X1X2X3 is picked uniformly at random.
Are the events X1 = 5, X2 = 5, and X3 = 5 independent?

Yes: P[Xi = 5] = 1/10, P[Xi = 5, Xj = 5] = 1/100 if i 6= j, and
P[X1 = X2 = X3 = 5] = 1/1000.
What if the string 999 is excluded from the set? (homework)
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Independence and pairwise independence

Example
Consider a pyramid (a tetrahedron) with facets colored

red, blue, green, red-blue-green.

Suppose the pyramid lands on each facet with probability 1/4.
Consider events R, B, G asserting that the facet the pyramid
lands on has color red, blue, green on it, respectively.

Are these events independent?

P(R) = P(B) = P(G) = 1/2.

P(RB) = P(RG) = P(BG) = 1/4 = (1/2)2.

P(RBG) = 1/4 6= (1/2)3.

These events are NOT independent, but only pairwise independent.
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Probability theory:
Random variables, distributions



From events to random variables

Given a probability space (Ω, 2Ω,P), we can talk about
events A ∈ 2Ω and their probability P(A).
However, it is often more convenient to talk about functions
of the form X : Ω→ R, which are called random variables.

Example:
Bernoulli trial:
Ω = {heads, tails}, P({tails}) = p ∈ [0, 1], P({heads}) = 1− p
Define

X(ω) =

{
1 if ω = tails,

0 if ω = heads.

We say that the random variable X has Bernoulli distribution with
parameter p.
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From events to random variables

Given a probability space (Ω, 2Ω,P), we can talk about
events A ∈ 2Ω and their probability P(A).
However, it is often more convenient to talk about functions
of the form X : Ω→ R, which are called random variables.

Example:
Let A ∈ 2Ω be an event.
The indicator function of A is defined as

1A(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

1A(ω) is a random variable that has Bernoulli distribution with pa-
rameter P(A). (Why?)
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From events to random variables

Given a probability space (Ω, 2Ω,P), we can talk about
events A ∈ 2Ω and their probability P(A).
However, it is often more convenient to talk about functions
of the form X : Ω→ R, which are called random variables.

Example:
Let A ∈ 2Ω be an event.
The indicator function of A is defined as

1A(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

Sometimes the indicator function of A is denoted by “[A]”,
e.g., “[the coin gives heads]”.
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Binomial distribution

Suppose a coin is tossed n times, the outcome of all tosses are
independent, and each gives tails with probability p.

Define

Xi =

{
1 if the ith toss gives tails,

0 otherwise.

(Xi has Bernoulli distribution with parameter p.)

Define
X = X1 + . . .+Xn.

We say that the random variable X has binomial distribution
with parameters n, p.
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Distributions of random variables

X has Bernoulli distribution with parameter p:

x 0 1

P(X = x) 1− p p

X has binomial distribution with parameters 3, p:

x 0 1 2 3

P(X = x) (1− p)3 3p (1− p)2 3p2 (1− p) p3

X has uniform distribution on the set {0, 1, 2, 3}:

x 0 1 2 3

P(X = x) 1/4 1/4 1/4 1/4
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Expectation

EX =
∑
k

k · P(X = k)

Examples
X has uniform distribution on the set {1, 2, 3, . . . , n}:

x 1 2 3 . . . n

P(X = x) 1/n 1/n 1/n . . . 1/n

EX = 1/n · 1 + 1/n · 2 + 1/n · 3 + . . .+ 1/n · n = (n+ 1)/2.
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Expectation

EX =
∑
k

k · P(X = k)

Examples
X has Bernoulli distribution with parameter p:

x 0 1

P(X = x) 1− p p

EX = 0 · (1− p) + 1 · p = p.
EX = 1/2 if and only if the coin is unbiased.
So EX is the expected number of tails in one flip.
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Expectation

EX =
∑
k

k · P(X = k)

Examples
X has binomial distribution with parameters n, p:

x 0 1 2 . . . n

P(X = x) (1− p)n np (1− p)n−1 n(n−1)
2 p2 (1− p)n−2 . . . pn

EX = ?
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Linearity of expectation

EX =
∑
k

k · P(X = k)

E(X1 + . . .+Xn) = EX1 + . . .+ EXn

E(c1X1 + . . .+ cnXn) = c1 EX1 + . . .+ cn EXn

(if ci are fixed, i.e., non-random)

Example
If X has binomial distribution with parameters n, p:

x 0 1 2 . . . n

P(X = x) (1− p)n np (1− p)n−1 n(n−1)
2 p2 (1− p)n−2 . . . pn

. . . then X has the same distribution as Y1 + . . .+ Yn
where each Yi has Bernoulli distribution with parameter p.

But E(Y1 + . . .+ Yn) = EY1 + . . .+ EYn = n · p, so EX = n · p.
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Properties of expectation: Summary

E(1A) = P(A) for any event A

E(X + Y ) = EX + EY

E(cX) = c · EX for any constant c

E c = c for any constant c

EX ≥ EY if X ≥ Y

E f(X) =
∑
x

f(x) · P(X = x)

If EX = 0 and X ≥ 0, then P(X = 0) = 1.
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Variance

VarX = E(X − EX)2 ≥ 0

VarX = E(X2 − 2X · EX + (EX)2)

= EX2 − 2 EX · EX + (EX)2

= EX2 − (EX)2

VarX = 0 iff there exists a constant c such that P(X = c) = 1.

For all c we have Var(cX) = c2 · VarX and Var(X + c) = VarX.
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Variance of the sum: Example
Let X and Y be Bernoulli random variables associated to
independent Bernoulli trials with parameter 1/2.
Define Z = 1−X.

E(X + Y ) = EX + EY = 1

E(X + Z) = EX + EZ = 1

In fact, X + Z ≡ 1.

k 0 1 2

P(X + Y = k) 1/4 1/2 1/4
P(X + Z = k) 0 1 0

Var(X + Y ) = E(X + Y − 1)2 = 1/2

Var(X + Z) = E(X + Z − 1)2 = 0
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Variance of the sum

Var(X + Y ) = E ((X + Y )− E(X + Y ))2

= E ((X − EX) + (Y − EY ))2

= E
(
(X − EX)2 + 2 (X − EX)(Y − EY ) + (Y − EY )2

)
= E(X − EX)2 + E(Y − EY )2 + 2 E(X − EX)(Y − EY )

= VarX + Var Y + 2 E(XY −X EY − Y EX + EX · EY )

= VarX + Var Y + 2(EXY − EX · EY )

The difference EXY − EX · EY is called the covariance
of X and Y , denoted Cov(X,Y ).
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Independence of random variables

Recall that two events A and B are called independent
if P(AB) = P(A) P(B).

Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.
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Independence of random variables, continued
Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

EXY =
∑
k

k · P(XY = k)

=
∑
k

k ·
∑
xy=k

P(X = x, Y = y)

=
∑
k

k ·
∑
xy=k

P(X = x) P(Y = y)

=
∑
x

xP(X = x)
∑
y

y P(Y = y)

=

(∑
x

xP(X = x)

)
·

(∑
y

y P(Y = y)

)
= EX · EY
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Independence of random variables, continued
Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

EXY = EX · EY

43/49



Independence of random variables, continued
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Independence of random variables, continued
Two (discrete) random variables X and Y are independent if for
any values x and y the events X = x and Y = y are independent.

In particular, if X and Y are independent, then

Var(X + Y ) = VarX + Var Y.

In general,

Var(X + Y ) = VarX + Var Y + 2 Cov(X,Y ).
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Variance: Summary

VarX = E(X − EX)2 ≥ 0

VarX = EX2 − (EX)2

VarX = 0 iff there exists a constant c such that P(X = c) = 1.

For all c we have Var(cX) = c2 · VarX and Var(X + c) = VarX.

Var(X + Y ) = VarX + Var Y + 2 Cov(X,Y )

(Cov(X,Y ) = 0 if X and Y are independent)
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Why variance?

Chebyshev inequality:

P
(
|X − EX| ≥ t

)
≤ VarX

t2

45/49



Geometric distribution

Let X1, X2, . . . , Xn, . . . be independent Bernoulli random variables
with parameter p.
Call trial i a success if Xi = 1 and a failure otherwise.
Denote q = 1− p = P(Xi = 0).

Let Y denote the number of failures before the first success.
Random variable Y is said to have geometric distribution with
parameter p.

y 0 1 2 . . . n . . .

P(Y = y) p pq pq2 . . . pqn . . .
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Geometric distribution: Properties

y 0 1 2 . . . n . . .

P(Y = y) p pq pq2 . . . pqn . . .

EX =
q

p

VarX =
q

p2
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Summary of today’s lecture

I Computational complexity:
Decision and counting problems, complexity classes P, NP,
and #P

I Probability theory: Measures, events, random variables,
probability distributions
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Agenda

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting
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