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Agenda

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting
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Outline

1. Markov chain Monte Carlo method (continued)

2. Approximate model counting for #SAT

3. Universal hashing
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Markov chain Monte Carlo recap

Goal: Sample from a probability distribution P over a set Ω.

Problem: We cannot sample directly from P ,
but we can evaluate queries P (s) for any state s in the universe.

MCMC:

1. Construct a Markov chain whose stationary distribution is P .

We implicitly define a graph and the transition probabilities
on its edges to make the stationary distribution P .

2. Take a random walk of sufficient length on the Markov chain.

3. Output the reached state s.

5/37



Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a technique for sampling
from a complicated distribution using local information.

The main challenge is to obtain good bounds on the number of
steps a Markov chain takes to converge to the desired distribution.

MCMC may provide efficient (i.e., polynomial time) solution
techniques.
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Computing the volume of a convex body

Given a convex body K ⊆ Rn, compute its volume Vol(K).

The computational effort required increases as n increases.

[Dyer and Frieze’88] Computing the volume exactly is #P-hard.

[Dyer, Frieze and Kannan’91] Polynomial randomized
approximation algorithm via Markov chain Monte Carlo.
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Input to the algorithm

K is given as a membership oracle.

Two n-dimensional balls B0 ⊆ K ⊆ Br of non-zero radius.

By simple transformations of K it can be ensured that B0 is the
unit ball and that Br has radius cn log n for some constant c.

Note: The volume of the smallest ball containing K might be
exponential in Vol(K), hence naive Monte Carlo is hopeless.
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From volume computation to uniform sampling

Construct a sequence of concentric balls
B0 ⊆ B1 ⊆ . . . ⊆ K ⊆ Br.

Vol(K) = Vol(K∩Br)
Vol(K∩Br−1)

· Vol(K∩Br−1)
Vol(K∩Br−2)

· . . . · Vol(K∩B1)
Vol(K∩B0)

·Vol(K ∩B0)

Vol(K ∩B0) = Vol(B0) known.

Estimate each ratio Vol(K∩Bi)
Vol(K∩Bi−1) .

Sample uniformly at random from K ∩Bi using MCMC and count
the proportion of samples falling into Bi−1.

To ensure that the number of samples needed is small, ensure that
the ratio Vol(K∩Bi)

Vol(K∩Bi−1) is small by making the balls grow slowly.

This implies r = cn log n for some constant c.
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Time complexity

The original algorithm has time complexity O(n23).

Later it was improved to O(n4).

Key ingredient: sample uniformly at random from from the points
in a convex body in polynomial time. For this, the Markov chain
has to converge in polynomial time to the uniform distribution.
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Markov chains

Recall the definition of finite (discrete) Markov chains.

Finite Markov chain M = (Ω, T )

I finite set of states Ω,

I transition probability matrix T where

Ts,s′ = P(next state will be s′ | the current state is s)
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Markov chains

Markov chain with continuous state-space M = (Ω, T )

I continuous set of states Ω,

I transition kernel T (s,A) which for s ∈ Ω and measurable set
A ⊆ Ω defines the probability of reaching A from state s

T (s,A) =

∫
x∈A

p(s, x)dx,

where p : Ω× Ω→ R is a non-negative function.
For a given s, p(s, ·) is a probability density function

T (s,Ω) =

∫
x∈Ω

p(s, x)dx = 1

The concepts of irreducibility and aperiodicity can be
redefined for continuous state spaces.
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The random walk on cubes

1. Divide the space into n-dimensional (hyper)cubes of side δ.

Choose δ such to provide a good approximation of K, while
permitting the random walk on the Markov chain to converge
to the stationary distribution in reasonable time.

2. Perform a random walk as follows. If C is the cube at time t,
select uniformly at random an orthogonally adjacent cube C ′.

If C ′ is in K, then move to C ′, otherwise stay at C.

Properties:

I The uniform distribution is the unique stationary distribution.

I Rapid mixing: The Markov chain converges to the stationary
distribution in number of steps polynomial in n.
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A ball walk

Lovász and Simonovits proposed a walk with continuous space.

1. Pick δ ∈ R by the same criteria as before.

2. Perform a random walk as follows.

If at time t the walk is at x ∈ Rn, the probability density
function at time t+1 is uniform over K∩B(x, δ) and 0 outside.

Properties:

I Rapid mixing argument similar to the walk on cubes.

I Saves a factor n in the number of oracle calls.

I Moves more complex, so no saving in time complexity.
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Approximate model counting via MCMC

Theorem
If we can sample almost uniformly at random from Ωknapsack in
polynomial time, then there is a polynomial-time randomized
approximation algorithm for the knapsack counting problem.

Theorem
There exists a polynomial time randomized approximation
algorithm A for computing mc(ϕ) for Real Arithmetic formulas of
the form ϕ =

∧
i

(∑n
j=1 ai,jxi,j ≤ bi

)
. That is,

P[(1 + ε)−1mc(ϕ) ≤ A(ϕ, α, ε) ≤ (1 + ε)mc(ϕ)] ≥ 1− α,

and the running time of A is polynomial in n, 1
1+ε and log( 1

α).
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Outline

1. Markov chain Monte Carlo method (continued)

2. Approximate model counting for #SAT

3. Universal hashing
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Counting with an NP oracle

Recall the problem #SAT.
Given a propositional formula ϕ(x1, . . . , xn)
Compute mc(ϕ), i.e., the number of models of ϕ.

The decision problem is in NP and the counting problem is in #P.

We will devise a randomized approximation algorithm for #SAT

I randomized polynomial time algorithm,

I with bounded two-sided error,

I with access to an NP oracle (SAT oracle).

The number of queries to the NP oracle is at most polynomial.
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Counting with an NP oracle

Recall the problem #SAT.
Given a propositional formula ϕ(x1, . . . , xn)
Compute mc(ϕ), i.e., the number of models of ϕ.

We will devise a randomized approximation algorithm for #SAT.

Given

I ϕ(x1, . . . , xn): propositional formula,

I α ∈ [0, 1]: probability of error,

I ε ∈ R: approximation factor,

the algorithm will compute a value A(ϕ, α, ε) such that

P[(1 + ε)−1mc(ϕ) ≤ A(ϕ, α, ε) ≤ (1 + ε)mc(ϕ)] ≥ 1− α.
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An Estimate oracle E

Suppose we have an Estimate oracle E that takes
a formula ϕ and an integer m ∈ N and returns YES or NO so that

mc(ϕ) ≥ 2m+1 =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

Note that if 2m < mc(ϕ) < 2m+1, the oracle provides no guarantees.
This is the oracle’s blind spot.
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Suppose we have an Estimate oracle E that takes
a formula ϕ and an integer m ∈ N and returns YES or NO so that

mc(ϕ) ≥ 2m+1 =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

We make a sequence of calls to E to compute the value v

E(ϕ, 0), E(ϕ, 1), . . . , E(ϕ,m− 1), E(ϕ,m), . . . , E(ϕ, n+ 1)

until we get the first NO answer and then determine v:

I NO answer for m = 0, let v = 0 if ϕ is unsat., else v = 1,

I NO answer for m > 0, let v = 2m.
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2-Approximation
The above procedure with an oracle E such that

mc(ϕ) ≥ 2m+1 =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

gives a 2-approximation of mc(ϕ) with high probability.

Cases

1. If first NO is for m = 0 then v ∈ {0, 1} and
mc(ϕ) < 2 with high probability.

2. If first NO is for m > 0 then with high probability

2m−1 < mc(ϕ) < 2m+1

which implies

1

2
mc(ϕ) < 2m < 2mc(ϕ).
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From 2-approximation to (1 + ε)-approximation

If we have an algorithm A′ such that

1

2
mc(ϕ) ≤ A′(ϕ) ≤ 2mc(ϕ),

we can construct an algorithm A such that

(1 + ε)−1mc(ϕ) ≤ A(ϕ, ε) ≤ (1 + ε)mc(ϕ).

Let A(ϕ, ε) = q
√
A′(ϕ′),

where ϕ′ =
∧q
i=1 ϕ(xi1, . . . , x

i
n) and q = 1

log (1+ε) .

The formula ϕ′ is a conjunction of q copies of ϕ, with pairwise
disjoint sets of variables. Thus mc(ϕ′) = mc(ϕ)q.
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The blind spot of E

Thus, it suffices to have an Estimate oracle E such that for some
constants 0 < c < C the oracle satisfies the conditions

mc(ϕ) ≥ C · 2m =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ c · 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

The blind spot of E is (c · 2m, C · 2m).
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Probability amplification

Recall that we want an algorithm A(ϕ, α, ε) such that

P[(1 + ε)−1mc(ϕ) ≤ A(ϕ, α, ε) ≤ (1 + ε)mc(ϕ)] ≥ 1− α.

We can amplify the probability of the described method by doing
multiple runs and a majority vote for each call to E .
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Approximate counting with an Estimate oracle

Assume we have an Estimate oracle E such that

mc(ϕ) ≥ C · 2m =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ c · 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

Make a sequence of calls to E

E(ϕ, 0), E(ϕ, 1), . . . , E(ϕ,m− 1), E(ϕ,m), . . . , E(ϕ, n+ 1)

until for some m we get the first NO answer.

I if m = 0, return 0 if ϕ is unsat., else return 1,

I if m > 0, return c · 2m.
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Approximate counting with an Estimate oracle

Assume we have an Estimate oracle E such that

mc(ϕ) ≥ C · 2m =⇒ P[E(ϕ, n) = YES] ≥ 3

4

mc(ϕ) ≤ c · 2m =⇒ P[E(ϕ, n) = NO] ≥ 3

4

The difficult part: provide an Estimate oracle E that makes
at most polynomial number of queries to the SAT oracle.

Use hashing.
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Outline

1. Markov chain Monte Carlo method (continued)
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Simple dictionary problem
[http://cs.au.dk/~bromille/Notes/un.pdf]

Develop a data structure that implements a set and supports
Insert(e), Delete(e), and Lookup(e) operations.

1. Elements come from universe U .

2. Operations should be performed online.

3. The set will never grow beyond size N , where N < |U |.

Solution:
Use an array A[1..N ] and hash function h : U → {1, . . . , N}.
Chained hashing: A[j] keeps a linked list of e for which h(e) = j.
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Chained hashing

Use an array A[1..N ] and hash function h : U → {1, . . . , N}.
Chained hashing: A[j] keeps a linked list of e for which h(e) = j.

How to analyze the efficiency of this solution?

I Input = sequence of Insert(ei), Delete(ei), and Lookup(ei)

I Cannot assume anything about input structure

Note that we don’t have to fix a specific h : U → {1, . . . , N}.
What if h is a random function h : U → {1, . . . , N}?
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Analysis of chained hashing

Let’s do another kind of analysis for randomized algorithms:
Compute the expectation of the random variable

T (Op(e1), . . . ,Op(em)) =
∑
i=1

T (Op(ei)).

Consider ET (Op(ei)).

Let Si be the set after Op(ei) is performed.

Claim
ET (Op(ei)) ≤ 3.

We only used the fact that P[h(y) = h(ei) ] ≤ 1/N for all y ∈ U
such that y 6= ei.
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Universal hashing

Definition
Let H be a family of functions mapping U to {1, . . . , N}.
It is a universal family if for all pairs x 6= y from U
and for h ∈ H chosen uniformly at random

P[h(x) = h(y) ] ≤ 1/N .

So for the simple dictionary problem we can as a first step of the
algorithm pick a function at random from a universal family H.

Example
ha,b(x) = ((ax+ b) mod p) mod N , a, b ∈ {0, 1, . . . , p− 1},
forms a universal family if p is a prime greater than N .
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Domain and range of hash functions

From now on instead of U and {1, . . . , N}
we use {0, 1}n and {0, 1}m.
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Pairwise independent families

Definition
Let H be a family of functions mapping {0, 1}n to {0, 1}m.
It is a family of pairwise independent hash functions if
for all pairs x 6= y from {0, 1}n,
for all elements w1,w2 from {0, 1}m,
and for h ∈ H chosen uniformly at random

P[h(x) = w1, h(y) = w2 ] = (1/2m)2.
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Hashing and model counting

Let ϕ(x1, . . . , xn) be our propositional formula.
Let S = JϕK.

Suppose h : {0, 1}n → {0, 1}m is a nice hash function.
Then we can expect that h classfies elements S into 2m bins
more or less uniformly.

In particular, the expected cardinality of the 0m-bin

{x ∈ S : h(x) = 0m}

is |S|/2m.

But for every h the size of a set is a nonnegative integer.
Is it 0 or non-0?
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The Estimate oracle via hashing: Intuition

Intuition:
Consider γ = |S|/2m, the expected cardinality of the 0m-bin

{x ∈ S : h(x) = 0m}.

If γ � 1, then the bin is likely to be empty.
If γ � 1, then the bin is likely to be non-empty.

So if the bin is empty, then it’s unlikely that γ � 1.
And if the bin is non-empty, then it’s unlikely that γ � 1.

Emptiness of bin: It’s a satisfiability question!
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Leftover hash lemma (simplified)

Lemma
Let H be a family of pairwise independent hash functions
h : {0, 1}n → {0, 1}m.
Let S ⊆ {0, 1}n satisfy |S| ≥ 4/ρ2 · 2m for some ρ > 0.
For h ∈ H, let Z be the cardinality of the set
{w ∈ S : h(w) = 0m}. Then

P

[∣∣∣∣Z − |S|2m

∣∣∣∣ ≥ ρ · |S|2m

]
≤ 1

4
.
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The Estimate oracle via hashing

Given ϕ(x1, . . . , xn) and m:

1. Pick h : {0, 1}n → {0, 1}m from H uniformly at random

2. Check satisfiability of the formula

ϕ(x) ∧ (h(x) = 0m)

3. Return “ mc(ϕ) ≥ C · 2m ” if ϕ is satisfiable.
Return “ mc(ϕ) ≤ c · 2m ” if ϕ is unsatisfiable.

Claim
Suppose H is a family of pairwise independent hash functions.
Then for appropriate constants 0 < c < C, this oracle returns
the correct answer with probability ≥ 3/4.
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Pairwise independency: Random affine operators

Claim
Functions hA,b : {0, 1}n → {0, 1}m defined by

hA,b(x) = A · x + b mod 2

where A ∈ {0, 1}m×n and b ∈ {0, 1}m,
form a pairwise independent family of hash functions.

34/37



Conclusion: counting via hashing

Theorem
There is a polynomial-time randomized algorithm that, when given
access to an NP oracle, approximates mc(ϕ) for a propositional
formula ϕ up to factor (1 + ε) with confidence ≥ 1− α.

[Jerrum, Valiant and Vazirani’86; Valiant and Vazirani’86]

Approximate counting can be done in BPPNP

(i.e., efficiently—but assuming a SAT solver).
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Summary of today’s lecture

I Volume estimation via MCMC

I Approximate counting for #SAT using hashing
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Agenda

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting
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