
Model Counting for Logical Theories
Friday

Dmitry Chistikov Rayna Dimitrova

Department of Computer Science
University of Oxford, UK

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

ESSLLI 2016

SAT
satisfiability

SMT
satisfiability

modulo theories

#SAT
model counting

#SMT
model counting
modulo theories

2/42

Measures and measured theories

Measure µ for a σ-algebra (D,F)
maps each A ∈ F to a real number µ(A) ≥ 0:

A ∈ F =⇒ µ(A) ≥ µ(∅) = 0
Ai ∈ F disjoint =⇒ µ(

⋃
iAi) =

∑
i µ(Ai)

Measure space (D,F , µ): σ-algebra (D,F), measure µ : F → R

The model count of a formula ϕ is mc(ϕ) = µ(JϕK).

A logical theory T is measured if every JϕK is measurable.

3/42

Measured theories: Examples

Theory Domain Connectives Quantifiers mc(ϕ)

Boolean
satisfiability

{T,F} ∧,∨,¬ None Number of
satisfying
assignments

Integer
arithmetic

Z ∩ [a, b] ∧,∨,¬ ∃ Number of
models

Linear real
arithmetic

R ∩ [a, b] ∧,∨,¬ ∃ Volume

4/42

Agenda

Tuesday computational complexity, probability theory

Wednesday randomized algorithms, Monte Carlo methods

Thursday hashing-based approach to model counting

Friday from discrete to continuous model counting

5/42

Outline

1. Model counting for Integer Arithmetic

2. Model counting for Real Arithmetic
Hashing-based approach
Computing integrals

3. Other approaches and theories

4. Some applications and challenges

6/42

Integer Arithmetic (IA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈Z,+,−, ·,≤〉

Example formulas

even(x) : ∃y. x = y + y

∀x∀y∀z. x3 + y3 = z3 → (x = 0 ∨ y = 0 ∨ z = 0),

where x3 is a shortcut for x · x · x

7/42

Integer Arithmetic (IA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈Z,+,−, ·,≤〉

With multiplication, checking satisfiability is undecidable.

If the variable domains are bounded, then satisfiability is decidable.

7/42

Recap: Hashing-based approximate #SAT
[Jerrum, Valiant, Vazirani 1986]

ϕ(x) = ϕ(x1, . . . , xn) propositional formula
mc(ϕ) = ?

Idea:

1. Take an appropriate hash function h : {0, 1}n → {0, 1}m.

2. Take ψ(x) = ϕ(x) ∧ (h(x) = 0m).

3. On expectation, mc(ψ) = mc(ϕ)/2m.

4. ψ is satisfiable with high probability if mc(ϕ)� 2m.

8/42

Hashing approach for #P problems

Theorem [Jerrum, Valiant, Vazirani 1986]

approximate #P ⊆ BPPNP

9/42

Approximate #SMT for Integer Arithmetic

Example:

ϕ(u, v) = (0 ≤ u ≤ 4) ∧ (1 ≤ v ≤ 4) ∧ (u− v ≥ 0)

Hash function: h(x) = A · x + b, coefficients from {0, 1} u.a.r.

Queries to SMT solver:

ϕ(u, v) (in integer variables)

∧ (x = bin(u, v)) (binary encoding)

∧ (A · x + b = 0m) (hashing into m bits)

10/42

What changes compared to #SAT?

I Auxiliary variables x from binary encoding

I Since we use an SMT solver for IA, the formula ϕ can be
an arbitrary quantifier-free formula in IA

I In fact, existentially quantified ϕ are also fine
(both here and in the propositional case)

I We can also use hash functions based on integers not bits

11/42

What changes compared to #SAT?

I Auxiliary variables x from binary encoding

I Since we use an SMT solver for IA, the formula ϕ can be
an arbitrary quantifier-free formula in IA

I In fact, existentially quantified ϕ are also fine
(both here and in the propositional case)

I We can also use hash functions based on integers not bits

11/42

Summary: Approximate #SMT [IA]

Theorem
#SMT for bounded integer arithmetic (IA)
can be approximated with a multiplicative error
by a polynomial-time randomized algorithm
that has oracle access to satisfiability of formulas in IA.

12/42

Outline

1. Model counting for Integer Arithmetic

2. Model counting for Real Arithmetic
Hashing-based approach
Computing integrals

3. Other approaches and theories

4. Some applications and challenges

13/42

Real Arithmetic (RA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈R,+,−, ·,≤〉

Example formula

∃x. x > 1 ∧ x · x− x− 1 = 0

14/42

Real Arithmetic (RA)

Syntax

I constant symbols 0 and 1

I function symbols +,−, ·
I predicate symbol ≤
I equality

Semantics is defined in the structure 〈R,+,−, ·,≤〉

Linear fragment

I extend the set of constant symbols with the computable reals

I restrict · so that at least one argument is a constant

14/42

Model counting for Real Arithmetic

Which model counting procedures for Real Arithmetic
have we already seen?

I Monte Carlo sampling

I Markov chain Monte Carlo (if JϕK is convex)

15/42

Model counting for Real Arithmetic

Which model counting procedures for Real Arithmetic
have we already seen?

I Monte Carlo sampling

I Markov chain Monte Carlo (if JϕK is convex)

15/42

Model counting: From integers to reals

Discretization:

I Partition the domain [a, b]n into cubes

I Overapproximate the body with the cubes it intersects

Complexity-theoretic point of view:

I Reduce to a #P problem

16/42

Model counting: From integers to reals

Approximation error: total volume of cut cubes

Formula size: log(number of all cubes)

Example:

Variables
x, y ∈ [0, 4] ⊆ R

x ≤ 4
y ≥ 1
x− y ≥ 0

y

x
0 1 2 3 4

0

1

2

3

4

16 cubes

4 cut cubes

17/42

Model counting: From integers to reals

Approximation error: total volume of cut cubes

Formula size: log(number of all cubes)

Theorem [Dyer, Frieze 1988]
Approximate volume computation (#SMT) for polytopes
reduces to #P.

Limitation: applicable only to quantifier-free formulas

RA : Formulas contain existential quantifiers

17/42

Model counting for linear real arithmetic

Input: ϕ(x) = ∃ z.Φ(x, z)
Output: approximation of mc(ϕ)

Example:

Variables
x, y ∈ [0, 4] ⊆ R,
z ∈ R

x ≤ 4
y ≥ 1
x− y ≥ 0
x+ y − z ≥ 0
z ≥ 4

Projection on (x, y):

y

x
0 1 2 3 4

0

1

2

3

4
16 cubes

8 cut cubes

18/42

Model counting for linear real arithmetic

Input: ϕ(x) = ∃ z.Φ(x, z)
Output: approximation of mc(ϕ)

Lemma
Number of cutting hyperplanes is at most 2l,
where l is the number of atomic predicates in Φ.

Corollary
Number of cubes increases by an exponential factor,
number of bit variables increases by a polynomial.

18/42

Summary: Approximate #SMT [RA]

Theorem
#SMT for linear real arithmetic (RA)
can be approximated with an additive error
by a polynomial-time randomized algorithm
that has oracle access to satisfiability of formulas in IA + RA.

19/42

Model counting and computing integrals

A different world:

I =

b∫
a

f(x) dx

Now I = µ([a, b]) for a measure that has density f .
Cannot we compute such integrals efficiently?

20/42

Numerical integration

Typical theorem:
If |f ′′(x)| ≤ H for all x ∈ [a, b], then the additive error of the
rectangle method is at most O(H/N2) where N is the number of
grid points.

If the dimension n is unbounded, then even small N along each
axis leads to an exponential number of cubes.

21/42

Outline

1. Model counting for Integer Arithmetic

2. Model counting for Real Arithmetic
Hashing-based approach
Computing integrals

3. Other approaches and theories

4. Some applications and challenges

22/42

SMT = Boolean structure + Theory predicates

[Ma, Liu, Zhang, CADE’09]
[Zhou et al. (2014)]

Quantifier-free integer or real arithmetic:
Boolean structure + Theory predicates

I SAT solver or BDD engine for the Boolean structure

I Model counting oracle for conjunctions of constraints

23/42

Integer points in convex polyhedra

[Barvinok, FOCS’93]
Theorem
For every fixed k, there exists a polynomial-time algorithm that
computes mc(ϕ) for ANDs of linear inequalities in the theory of
integer arithmetic.

Underlying technique:
Generating functions for polyhedra and cones.

24/42

Model counting for strings

[Luu et al., PLDI’14]
Predicates of the logic:

I s = s1 · s2
I s matches regular expression R

I s contains a fixed string abc

I length(s1) ≥ length(s2)

I first occurrence of abc in s is at position ≥ 73

Satisfiability undecidable.
Model counting does not provide prior guarantees.

Underlying technique:
Generating functions for sets of strings.

25/42

Parametric counting and privacy properties

[Fredrikson, Jha, CSL-LICS’14]
Differential privacy (Dwork et al. ’06):
“Neighbouring” inputs should have similar probabilities of
producing a particular output.
Counterexamples look like this:

(−S < x1 − x2 < S) ∧ count(r1,Φ(x1, r1, s), s)

count(r2,Φ(x2, r2, s), s)
> exp(ε),

where Φ(x, r, s) ≡ ((s = x+ r) ∧ (−B < r < B)

This corresponds to logics with parametric counting.

Decidability for a fragment of such logic.

26/42

Model counting for complex data structures

[Filieri, Frias, Pasareanu, Visser, SPIN’15]

Model counting for data structures with numeric fields

I heap constraints (ref = null, ref1 6= ref2)

I numerical constraints (in.elem > in.next.elem)

Combine enumeration and model counting (Barvinok’s algorithm):

I enumerate the structures,

I keep the constraints on numeric fields symbolic.

27/42

Summary of today’s lecture so far

I Hashing-based model counting for integer and real arithmetic

I Discretization and numerical integration

I What is model counting beyond numerical domains

28/42

Outline

1. Model counting for Integer Arithmetic

2. Model counting for Real Arithmetic
Hashing-based approach
Computing integrals

3. Other approaches and theories

4. Some applications and challenges

29/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

30/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

31/42

Uniform test generation

Manual test generation

I captures testers’ knowledge,

I not scalable for large projects.

Random constrained test generation

I uses constraints to capture testers’ knowledge,

I uses constraint solvers to find test cases,

I is used in hardware design.

It is desirable to sample uniformly at random from the test cases
that satisfy the constraints in an efficient and scalable way.

32/42

Uniform test generation

Manual test generation

I captures testers’ knowledge,

I not scalable for large projects.

Random constrained test generation

I uses constraints to capture testers’ knowledge,

I uses constraint solvers to find test cases,

I is used in hardware design.

Almost uniform test generation based on universal hashing.
Tens (hundreds) of thousands of variables within seconds (minutes).

[Recent papers by Chakraborty, Fremont, Meel, Seshia and Vardi]

32/42

Reasoning about XOR constraints

Recall that the hash function constraints are encoded as
exclusive-or (XOR) constraints conjuncted with the formula.

XOR constraints are difficult for SAT solvers, and thus remain the
big challenge for the scalability of hashing-based approaches.

I SAT solver CryptoMiniSat is specialized for XOR constraints.

I A recent algorithm uses a number of calls to the ora-
cle that is logarithmic in the number of variables in the formula.

[Chakraborty, Meel, and Vardi, IJCAI’16]

33/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

34/42

Inference for probabilistic programs

Probabilistic programs are a modelling formalism for specifying
probability distributions and probabilistic systems.

Combining sampling, model counting and static analysis one can
perform inference and establish probabilistic properties.

Examples: medical decision systems and cyber-physical systems.
[Sankaranarayanan, Chakarov, Gulwani, PLDI’13]

35/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

36/42

Hashing for logical theories

Modern SMT solvers perform reasoning on the theory level, even
for formulas over bounded integers or bit-vectors. Their efficiency
often depends on making use of the formula’s structure.

Hash-function constraints are usually Boolean or contain mod
operators, and might cause the solver to resort to bit-blasting.

The development of theory-level families of pairwise-independent
hash functions is an important problem that remains a challenge.

[Chakraborty, Meel, Mistry, Vardi, AAAI’16]
[Chistikov, Dimitrova, Majumdar, TACAS’15]

37/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

38/42

Model counting for continuous domains

I Markov chain Monte Carlo bottleneck: the number of
simulation steps before we can start sampling

I Hashing-based method bottleneck: the precision of
discretization for achieving approximation guarantees

39/42

Theory Applications Challenges

Boolean
logic

random test generation efficient reasoning
about XOR constraints

Integer
arithmetic

probabilistic inference efficient reasoning about
combination of theories
and hash functions

Linear real
arithmetic

probabilistic inference improved discretization;
MCMC convergence

40/42

What we have learned in this course

We have recalled the basics of:

I First-order logic

I Computational complexity

I Probability theory

I Algorithm analysis

41/42

What we have learned in this course

Model
counting in

MCMC Universal hashing

Boolean
logic

model counting
via uniform sampling

hash functions
based on XOR

Integer
arithmetic

model counting
via uniform sampling

combined integer and
Boolean reasoning

Linear real
arithmetic

volume estimation
via uniform sampling

volume estimation
via discretization

41/42

Thank you!

chdir@cs.ox.ac.uk

rayna@mpi-sws.org

	Model counting for Integer Arithmetic
	Model counting for Real Arithmetic
	Hashing-based approach
	Computing integrals

	Other approaches and theories
	Some applications and challenges

