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Part 1: Logical complexity of graphs:
Basic definitions and examples
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First-order language of graph theory

Vocabulary:
= equality of vertices
∼ adjacency of vertices

Syntax:
∧,∨,¬ etc. Boolean connectives

∃, ∀ quantification over vertices
(no quantification over sets).

Example
We can say that vertices x and y lie at distance no more than n:

∆1(x, y)
def
= x ∼ y ∨ x = y

∆n(x, y)
def
= ∃z1 . . . ∃zn−1

(
∆1(x, z1) ∧

∧∆1(z1, z2) ∧ . . . ∧∆1(zn−2, zn−1) ∧∆1(zn−1, y)
)
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Succinctness measures of a formula Φ: Width

Definition
The width W (Φ) is the number of variables used in Φ
(different occurrences of the same variable are not counted).

Example

W (∆n) = n + 1 but we can economize by recycling just three
variables:

∆′1(x, y)
def
= ∆1(x, y)

∆′n(x, y)
def
= ∃z(∆′1(x, z) ∧∆′n−1(z, y)).
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Succinctness measures of a formula Φ: Depth

Definition
The depth D(Φ) (or quantifier rank) is the maximum number of
nested quantifiers in Φ.

∀x(∀y(∃z(. . .))) – depth 3; (∀x . . .) ∧ (∀y . . .) ∧ (∃z . . .) – depth 1

Example

D(∆′n) = n− 1 but we can economize using the halving strategy:

∆′′1(x, y)
def
= ∆1(x, y)

∆′′n(x, y)
def
= ∃z

(
∆′′bn/2c(x, z) ∧∆′′dn/2e(z, y)

)
.

Now D(∆′′n) = dlog ne and W (∆′′n) = 3.
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Succinctness measures of a formula Φ: Length

Definition
The length L(Φ) is the total number of symbols in Φ (each variable
symbol contributes 1).

Example: L(∆n) = O(n) and L(∆′′n) = O(n) but
we can economize

∆′′′2n+1(x, y)
def
= ∃z

(
∆1(x, z) ∧∆′′′2n(z, y)

)
∆′′′2n(x, y)

def
= ∃z∀u

(
u = x ∨ u = y

→ ∆′′′n (u, z)
)
,

getting L(∆′′′n ) = O(log n) and still
keeping D(∆′′′n ) ≤ 2 log n and W (∆′′′n ) = 4.
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Definition
A statement Φ defines a graph G if Φ is true on G but false on
every non-isomorphic graph H.

Example
Pn, the path on n vertices, is defined by

∀x∀y∆n−1(x, y) ∧ ¬∀x∀y∆n−2(x, y)

% diameter = n-1

∧ ∀x∀y1∀y2∀y3(x ∼ y1 ∧ x ∼ y2 ∧ x ∼ y3

→ y1 = y2 ∨ y2 = y3 ∨ y3 = y1)

% max degree < 3

∧ ∃x∃y∀z
(
x ∼ y ∧ (z ∼ x→ z = y)

)
% min degree = 1
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Logical depth, width, and length of a graph: Definitions

Definition
D(G) is the minimum D(Φ) over all Φ defining G.
W (G) is the minimum W (Φ) over all Φ defining G.
L(G) is the minimum L(Φ) over all Φ defining G.

Example

W (Pn) ≤ 4

D(Pn) < log n + 3

L(Pn) = O(log n)
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Logical depth, width, and length of a graph: Relations

W (G) ≤ D(G) < L(G)

Exercise
Prove that for any sentence Φ there is an equivalent Φ′ such that
W (Φ′) ≤ D(Φ).

Theorem (Pikhurko, Spencer, V. 2006)

L(G) < Tower(D(G) + log∗D(G) + 2). This bound is tight in the
sense that L(G) ≥ Tower(D(G)− 7) for infinitely many G.

† Tower(1) = 2, Tower(i + 1) = 2Tower(i)
‡ log∗ n = min { i : Tower(i) ≥ n}, the inverse of Tower(i)
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Logical depth, width, and length of a graph: Upper bounds

Every finite graph G is definable.
If G has n vertices, then

D(G) ≤ n + 1,
L(G) = O(n2).

Proof by example:

v1

v2

v3 v4

∃x1∃x2∃x3∃x4∀y( ∧
1≤i<j≤4

xi 6= xj ∧
∨

1≤i≤4
y = xi ∧

x1 ∼ x2 ∧ x1 ∼ x3 ∧ x2 ∼ x3 ∧ x3 ∼ x4 ∧
∧ x1 6∼ x4 ∧ x2 6∼ x4

)
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Toolkit

How to determine W (G) or D(G)?

D(G) = maxH 6∼=GD(G,H), where D(G,H) is the minimum
quantifier depth needed to distinguish between G and H.
Similarly for W (G).

D(G,H) and W (G,H) are characterized in terms of a
combinatorial game:

G and H are distinguishable with k variables
and quantifier depth r iff
Spoiler wins the k-pebble Ehrenfeucht game
on G and H in r rounds.
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The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator
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The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H
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Exercises

Exercise 1
Prove that W (Pn) = 3 if n ≥ 2.

Exercise 2

Let G denote the complement graph of G.
Prove that W (G) = W (G) and D(G) = D(G).

Exercise 3
Let G + H denote the vertex-disjoint union of G and H.
Suppose that both G and H are connected. Prove that

W (G) ≤W (G + H) ≤W (G) + W (H).
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k-variable logic (FOk)

Dk(G) denotes the logical depth of G in FOk

(assuming W (G) ≤ k).

For example, D3(Pn) ≤ log n + 3.

Theorem
1 Dk(G) ≤ nk−1 for any graph G on n vertices.
2 [Kiefer, Schweitzer 16] D3(G) = O(n2/ log n).
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A disturbing fact: We may need many variables even for very
simple graphs.

For example,

W (Kn) = n + 1 because W (Kn,Kn+1) = n + 1.
(hence, W (G) ≤ D(G) ≤ n + 1 cannot be better)

W (K1,n) ≥ n because W (K1,n,K1,n+1) ≥ n.

50/56



Logic with counting quantifiers (FO#, FOk
#)

∃≥m xΨ(x) means that there are at least m vertices x having
property Ψ.
The counting quantifier ∃≥m contributes 1 in the quantifier depth
whatever m.

Example
K1,n can now be defined by

∃≥n+1(x = x) ∧ ¬∃≥n+2(x = x) ∧
∃x∀y∀z(y 6= x ∧ z 6= x→ y ∼ x ∧ y 6∼ z)

Therefore, W#(K1,n) ≤ 3 and D3
#(K1,n) ≤ 3.
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Exercise
1 Define K1,n in FO2

#.
2 Define Pn in FO2

#.
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Counting move in the Ehrenfeucht game

Spoiler exhibits a set A of “good” vertices in G or H.
Duplicator responds with B in the other graph such that
|B| = |A|.
Spoiler selects b ∈ B and puts a pebble on it.
Duplicator selects a ∈ A and puts the other pebble on it.

Exercise
Let ∆(G) denote the maximum degree of a vertex in G.
Assume that ∆(G) 6= ∆(H). Prove that D2

#(G,H) ≤ 2.
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