
A logical approach to Isomorphism Testing
and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15–19 August

1/56

Course outline

1 Logical complexity of graphs:
Basic definitions and examples

2 Isomorphism Testing by Color Refinement and FO2
#

(first-order logic with 2 variables and counting quantifiers)
3 FO2

and linear programming methods
4 FO2

and Distributed Computing
5 Existential-positive FO2 and Constraint Satisfaction
6 Alternation hierarchy of FOk

7 FOk
and the Weisfeiler-Leman algorithm

2/56

Part 1: Logical complexity of graphs:
Basic definitions and examples

3/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

4/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

5/56

First-order language of graph theory

Vocabulary:
= equality of vertices
∼ adjacency of vertices

Syntax:
∧,∨,¬ etc. Boolean connectives

∃, ∀ quantification over vertices
(no quantification over sets).

Example
We can say that vertices x and y lie at distance no more than n:

∆1(x, y)
def
= x ∼ y ∨ x = y

∆n(x, y)
def
= ∃z1 . . . ∃zn−1

(
∆1(x, z1) ∧

∧∆1(z1, z2) ∧ . . . ∧∆1(zn−2, zn−1) ∧∆1(zn−1, y)
)

6/56

First-order language of graph theory

Vocabulary:
= equality of vertices
∼ adjacency of vertices

Syntax:
∧,∨,¬ etc. Boolean connectives

∃, ∀ quantification over vertices
(no quantification over sets).

Example
We can say that vertices x and y lie at distance no more than n:

∆1(x, y)
def
= x ∼ y ∨ x = y

∆n(x, y)
def
= ∃z1 . . . ∃zn−1

(
∆1(x, z1) ∧

∧∆1(z1, z2) ∧ . . . ∧∆1(zn−2, zn−1) ∧∆1(zn−1, y)
)

7/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

8/56

Succinctness measures of a formula Φ: Width

Definition
The width W (Φ) is the number of variables used in Φ
(different occurrences of the same variable are not counted).

Example

W (∆n) = n + 1 but we can economize by recycling just three
variables:

∆′1(x, y)
def
= ∆1(x, y)

∆′n(x, y)
def
= ∃z(∆′1(x, z) ∧∆′n−1(z, y)).

9/56

Succinctness measures of a formula Φ: Depth

Definition
The depth D(Φ) (or quantifier rank) is the maximum number of
nested quantifiers in Φ.

∀x(∀y(∃z(. . .))) – depth 3; (∀x . . .) ∧ (∀y . . .) ∧ (∃z . . .) – depth 1

Example

D(∆′n) = n− 1 but we can economize using the halving strategy:

∆′′1(x, y)
def
= ∆1(x, y)

∆′′n(x, y)
def
= ∃z

(
∆′′bn/2c(x, z) ∧∆′′dn/2e(z, y)

)
.

Now D(∆′′n) = dlog ne and W (∆′′n) = 3.

10/56

Succinctness measures of a formula Φ: Length

Definition
The length L(Φ) is the total number of symbols in Φ (each variable
symbol contributes 1).

Example: L(∆n) = O(n) and L(∆′′n) = O(n) but
we can economize

∆′′′2n+1(x, y)
def
= ∃z

(
∆1(x, z) ∧∆′′′2n(z, y)

)
∆′′′2n(x, y)

def
= ∃z∀u

(
u = x ∨ u = y

→ ∆′′′n (u, z)
)
,

getting L(∆′′′n) = O(log n) and still
keeping D(∆′′′n) ≤ 2 log n and W (∆′′′n) = 4.

11/56

Definition
A statement Φ defines a graph G if Φ is true on G but false on
every non-isomorphic graph H.

Example
Pn, the path on n vertices, is defined by

∀x∀y∆n−1(x, y) ∧ ¬∀x∀y∆n−2(x, y)

% diameter = n-1

∧ ∀x∀y1∀y2∀y3(x ∼ y1 ∧ x ∼ y2 ∧ x ∼ y3

→ y1 = y2 ∨ y2 = y3 ∨ y3 = y1)

% max degree < 3

∧ ∃x∃y∀z
(
x ∼ y ∧ (z ∼ x→ z = y)

)
% min degree = 1

12/56

Logical depth, width, and length of a graph: Definitions

Definition
D(G) is the minimum D(Φ) over all Φ defining G.
W (G) is the minimum W (Φ) over all Φ defining G.
L(G) is the minimum L(Φ) over all Φ defining G.

Example

W (Pn) ≤ 4

D(Pn) < log n + 3

L(Pn) = O(log n)

13/56

Logical depth, width, and length of a graph: Relations

W (G) ≤ D(G) < L(G)

Exercise
Prove that for any sentence Φ there is an equivalent Φ′ such that
W (Φ′) ≤ D(Φ).

Theorem (Pikhurko, Spencer, V. 2006)

L(G) < Tower(D(G) + log∗D(G) + 2). This bound is tight in the
sense that L(G) ≥ Tower(D(G)− 7) for infinitely many G.

† Tower(1) = 2, Tower(i + 1) = 2Tower(i)
‡ log∗ n = min { i : Tower(i) ≥ n}, the inverse of Tower(i)

14/56

Logical depth, width, and length of a graph: Relations

W (G) ≤ D(G) < L(G)

Exercise
Prove that for any sentence Φ there is an equivalent Φ′ such that
W (Φ′) ≤ D(Φ).

Theorem (Pikhurko, Spencer, V. 2006)

L(G) < Tower(D(G) + log∗D(G) + 2). This bound is tight in the
sense that L(G) ≥ Tower(D(G)− 7) for infinitely many G.

† Tower(1) = 2, Tower(i + 1) = 2Tower(i)
‡ log∗ n = min { i : Tower(i) ≥ n}, the inverse of Tower(i)

15/56

Logical depth, width, and length of a graph: Upper bounds

Every finite graph G is definable.
If G has n vertices, then

D(G) ≤ n + 1,
L(G) = O(n2).

Proof by example:

v1

v2

v3 v4

∃x1∃x2∃x3∃x4∀y(∧
1≤i<j≤4

xi 6= xj ∧
∨

1≤i≤4
y = xi ∧

x1 ∼ x2 ∧ x1 ∼ x3 ∧ x2 ∼ x3 ∧ x3 ∼ x4 ∧
∧ x1 6∼ x4 ∧ x2 6∼ x4

)

16/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

17/56

Toolkit

How to determine W (G) or D(G)?

D(G) = maxH 6∼=GD(G,H), where D(G,H) is the minimum
quantifier depth needed to distinguish between G and H.
Similarly for W (G).

D(G,H) and W (G,H) are characterized in terms of a
combinatorial game:

G and H are distinguishable with k variables
and quantifier depth r iff
Spoiler wins the k-pebble Ehrenfeucht game
on G and H in r rounds.

18/56

Toolkit

How to determine W (G) or D(G)?

D(G) = maxH 6∼=GD(G,H), where D(G,H) is the minimum
quantifier depth needed to distinguish between G and H.
Similarly for W (G).
D(G,H) and W (G,H) are characterized in terms of a
combinatorial game:

G and H are distinguishable with k variables
and quantifier depth r iff
Spoiler wins the k-pebble Ehrenfeucht game
on G and H in r rounds.

19/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

20/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

21/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

22/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

23/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

24/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

25/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

26/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

27/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

28/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

29/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

30/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

31/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

32/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

33/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

34/56

The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n + 3

G = P9

H = P10

Duplicator’s objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator

35/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

36/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

37/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

38/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

39/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

40/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

41/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

42/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

43/56

The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H

44/56

Exercises

Exercise 1
Prove that W (Pn) = 3 if n ≥ 2.

Exercise 2

Let G denote the complement graph of G.
Prove that W (G) = W (G) and D(G) = D(G).

Exercise 3
Let G + H denote the vertex-disjoint union of G and H.
Suppose that both G and H are connected. Prove that

W (G) ≤W (G + H) ≤W (G) + W (H).

45/56

Exercises

Exercise 1
Prove that W (Pn) = 3 if n ≥ 2.

Exercise 2

Let G denote the complement graph of G.
Prove that W (G) = W (G) and D(G) = D(G).

Exercise 3
Let G + H denote the vertex-disjoint union of G and H.
Suppose that both G and H are connected. Prove that

W (G) ≤W (G + H) ≤W (G) + W (H).

46/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

47/56

k-variable logic (FOk)

Dk(G) denotes the logical depth of G in FOk

(assuming W (G) ≤ k).

For example, D3(Pn) ≤ log n + 3.

Theorem
1 Dk(G) ≤ nk−1 for any graph G on n vertices.
2 [Kiefer, Schweitzer 16] D3(G) = O(n2/ log n).

48/56

k-variable logic (FOk)

Dk(G) denotes the logical depth of G in FOk

(assuming W (G) ≤ k).

For example, D3(Pn) ≤ log n + 3.

Theorem
1 Dk(G) ≤ nk−1 for any graph G on n vertices.
2 [Kiefer, Schweitzer 16] D3(G) = O(n2/ log n).

49/56

A disturbing fact: We may need many variables even for very
simple graphs.

For example,

W (Kn) = n + 1 because W (Kn,Kn+1) = n + 1.
(hence, W (G) ≤ D(G) ≤ n + 1 cannot be better)

W (K1,n) ≥ n because W (K1,n,K1,n+1) ≥ n.

50/56

Logic with counting quantifiers (FO#, FOk
#)

∃≥m xΨ(x) means that there are at least m vertices x having
property Ψ.
The counting quantifier ∃≥m contributes 1 in the quantifier depth
whatever m.

Example
K1,n can now be defined by

∃≥n+1(x = x) ∧ ¬∃≥n+2(x = x) ∧
∃x∀y∀z(y 6= x ∧ z 6= x→ y ∼ x ∧ y 6∼ z)

Therefore, W#(K1,n) ≤ 3 and D3
#(K1,n) ≤ 3.

51/56

Exercise
1 Define K1,n in FO2

#.
2 Define Pn in FO2

#.

52/56

Counting move in the Ehrenfeucht game

Spoiler exhibits a set A of “good” vertices in G or H.
Duplicator responds with B in the other graph such that
|B| = |A|.
Spoiler selects b ∈ B and puts a pebble on it.
Duplicator selects a ∈ A and puts the other pebble on it.

Exercise
Let ∆(G) denote the maximum degree of a vertex in G.
Assume that ∆(G) 6= ∆(H). Prove that D2

#(G,H) ≤ 2.

53/56

Counting move in the Ehrenfeucht game

Spoiler exhibits a set A of “good” vertices in G or H.
Duplicator responds with B in the other graph such that
|B| = |A|.
Spoiler selects b ∈ B and puts a pebble on it.
Duplicator selects a ∈ A and puts the other pebble on it.

Exercise
Let ∆(G) denote the maximum degree of a vertex in G.
Assume that ∆(G) 6= ∆(H). Prove that D2

#(G,H) ≤ 2.

54/56

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

55/56

References

Neil Immerman. Descriptive Complexity. Springer, 1999.
Oleg Pikhurko and Oleg Verbitsky. Logical complexity of
graphs: a survey. In: Model Theoretic Methods in Finite
Combinatorics, J. Makowsky and M. Grohe Eds.
Contemporary Mathematics, vol. 558, Amer. Math. Soc.,
Providence, RI, pp. 129–179, 2011.
Sandra Kiefer and Pascal Schweitzer. Upper bounds on the
quantifier depth for graph differentiation in first order logic.
LICS’16.

56/56

	First-order logic (FO)
	The logical width/depth/length of a graph
	Ehrenfeucht game
	Finite-variable logics and counting quantifiers
	References

