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Course outline

@ Logical complexity of graphs:
Basic definitions and examples

@ Isomorphism Testing by Color Refinement and FOi
(first-order logic with 2 variables and counting quantifiers)

(s} FO;E and linear programming methods

(%] FO;E and Distributed Computing

@ Existential-positive FO? and Constraint Satisfaction
@ Alternation hierarchy of FO*

(7] FO’:# and the Weisfeiler-Leman algorithm
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Part 1: Logical complexity of graphs:
Basic definitions and examples
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Outline

@ First-order logic (FO)
© The logical width/depth/length of a graph
© Ehrenfeucht game

@ Finite-variable logics and counting quantifiers

© References

4/56



Outline

@ First-order logic (FO)
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First-order language of graph theory

Vocabulary:

= equality of vertices
~ adjacency of vertices

Syntax:

A, V, - etc. Boolean connectives
3,V quantification over vertices

(no quantification over sets).
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First-order language of graph theory

Vocabulary:

= equality of vertices
~ adjacency of vertices

Syntax:

A, V, - etc. Boolean connectives
3,V quantification over vertices
(no quantification over sets).

Example

We can say that vertices x and y lie at distance no more than n:

Ai(z,y) € z~yVa=y
Ap(z,y) = Fz1...32p1 (Al(:n, 21) A

A Al(zl, 22) FANPAN Al(zn_g, Zn—l) N Al(zn_l, y))
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Outline

© The logical width/depth/length of a graph
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Succinctness measures of a formula ®: Width

Definition

The width 1 (®) is the number of variables used in ®
(different occurrences of the same variable are not counted).

Example

W(A,) =n+ 1 but we can economize by recycling just three
variables:

All(x7y) dz&f Al(l’,y)
An(,y) £ (Al(x,2) AAL(2,9))-
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Succinctness measures of a formula ®: Depth

Definition
The depth D(®) (or quantifier rank) is the maximum number of
nested quantifiers in ®.

o Va(Vy(3z(...))) —depth 3; (V... )A (Vy...)A(Fz...) —depth 1

Example

D(A!)) =n — 1 but we can economize using the halving strategy:

Alll(w)y) d:ef Al(‘r7y)
Anw,y) 32 (Afymy(@:2) A ALy (z,y)).

Now D(A”) = [logn] and W (A7) = 3.
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Succinctness measures of a formula ®: Length

Definition

The length L(®) is the total number of symbols in ® (each variable
symbol contributes 1).

Example: L(A,) = O(n) and L(A!) = O(n) but
we can economize

" def

2n+1(x7y) = dz (Al((L’,Z) A /2/;1(Z7y))
vo(zy) & NVu(u=zVu=y
— A (u, 2)),

getting L(A!”) = O(logn) and still
keeping D(A!”) < 2logn and W(A!") = 4.
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Definition
A statement ® defines a graph G if ® is true on G but false on
every non-isomorphic graph H.

Example
P, the path on n vertices, is defined by

VaVyAn—1(x,y) A ~VaVyA,—a(z,y)
% diameter = n-1
AVZVYy1VyoVys(z ~ g1 AT~ ya AT ~ y3
= Y1 =Yy2Vy2=y3VYys =)
% max degree < 3
/\EIa:EIsz(a:Ny/\(zwa:%z:y))

% min degree = 1
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Logical depth, width, and length of a graph: Definitions

Definition

D(G) is the minimum D(®) over all ® defining G.
W (G) is the minimum W (®) over all ® defining G.
L(Q) is the minimum L(®) over all ® defining G.

Example
o W(P,) <4
e D(P,) <logn+3
e L(P,)=0O(logn)

13/56




Logical depth, width, and length of a graph: Relations

W(G) < D(G) < L(Q)

Exercise

Prove that for any sentence ® there is an equivalent ®’ such that
W(®') < D(®).
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Logical depth, width, and length of a graph: Relations

W(G) < D(G) < L(G) |

Exercise

Prove that for any sentence ® there is an equivalent ®’ such that
W(®') < D(®).

Theorem (Pikhurko, Spencer, V. 2006)

L(G) < Tower(D(G) +log* D(G) + 2). This bound is tight in the
sense that L(G) > Tower(D(G) — 7) for infinitely many G.

4

t Tower(1) =2, Tower(i + 1) = 2Tower(®)
Flog*n = min {7 : Tower(i) > n}, the inverse of Tower(i)
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Logical depth, width, and length of a graph: Upper bounds

@ Every finite graph G is definable.
o If G has n vertices, then

e D(G)<n+1,

° L(G) = 0(712).

Proof by example:

dx1drodxsdrsVy

(v2)
( Ty £ x; A y=x; A\
PRI PR S

@ T1~Ta AT~ T3 AT~ T3 AT3~ Ty N\
A @1 b 4 AN To b T4)
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Outline

© Ehrenfeucht game
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Toolkit

How to determine W (G) or D(G)?
o D(G) = maxyxq D(G, H), where D(G, H) is the minimum

quantifier depth needed to distinguish between G and H.
Similarly for W(G).
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Toolkit

How to determine W (G) or D(G)?

o D(G) = maxyxq D(G, H), where D(G, H) is the minimum
quantifier depth needed to distinguish between G and H.
Similarly for W(G).

e D(G,H) and W(G, H) are characterized in terms of a
combinatorial game:

G and H are distinguishable with k variables
and quantifier depth r iff
Spoiler wins the k-pebble Ehrenfeucht game
on G and H in r rounds.
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The k-pebble Ehrenfeucht game

Example 1: W(P,,, Pyy1) <3, D(Py, Ppt1) <logan + 3

O—CO0O—CO0C—C0C—C0C—C0C—C0C—C0—0C——0 H="ho

Two players: Spoiler and Duplicator

Duplicator’s objective: to keep a partial isomorphism
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The k-pebble Ehrenfeucht game

Example 1: W(P,,, Pyy1) <3, D(Py, Ppt1) <logan + 3

0@ @ O CO—C0CO—C0CO—C0O—0C——0 H="ho

Two players: Spoiler and Duplicator

Duplicator’s objective: to keep a partial isomorphism
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The k-pebble Ehrenfeucht game

Example 2: W(P,) <3

G =P K173 in H
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The k-pebble Ehrenfeucht game

Example 2: W(P,) <3

G =P K173 in H



Exercises

Exercise 1
Prove that W(P,) =3 if n > 2.
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Exercises

Exercise 1
Prove that W(P,) =3 if n > 2.

Exercise 2

Let G denote the complement graph of G.

Prove that W(G) = W(G) and D(G) = D(G).

Exercise 3

Let G + H denote the vertex-disjoint union of G and H.
Suppose that both G and H are connected. Prove that

W(G) < W(G+H) < W(G)+W(H).

46 /56




Outline

@ Finite-variable logics and counting quantifiers
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k-variable logic (FO")

DF(@) denotes the logical depth of G in FO*
(assuming W(G) < k).

For example, D3(P,,) < logn + 3.

48/56



k-variable logic (FO")

D¥(G) denotes the logical depth of G in FO*
(assuming W(G) < k).

For example, D3(P,,) < logn + 3.

Theorem

@ D*(G) < nF~! for any graph G on n vertices.

@ [Kiefer, Schweitzer 16] D3(G) = O(n?/logn).
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A disturbing fact: We may need many variables even for very
simple graphs.

For example,

W(K,) =n+1 because W(K,,, Kp+1) =n + 1.
(hence, W(G) < D(G) < n+ 1 cannot be better)

W (K1) > n because W (K1 p, Kipnt1) > n.
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Logic with counting quantifiers (FO, FO;E)

32 xW(x) means that there are at least m vertices = having
property V.

The counting quantifier 3™ contributes 1 in the quantifier depth
whatever m.

Example

K1 5, can now be defined by

32”+1(1‘ =1x)A —|32”+2(5L‘ =1x)A

JaVyVz(y £z Nz#x —>y~x Ay £ 2)

Therefore, W4 (K1) < 3 and D3,(K1,) < 3.
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Exercise
© Define K, in FO;
@ Define P, in FO%&.
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Counting move in the Ehrenfeucht game

@ Spoiler exhibits a set A of “good” vertices in G or H.

@ Duplicator responds with B in the other graph such that
|B| = |A].

@ Spoiler selects b € B and puts a pebble on it.

@ Duplicator selects a € A and puts the other pebble on it.
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Counting move in the Ehrenfeucht game

@ Spoiler exhibits a set A of “good” vertices in G or H.

@ Duplicator responds with B in the other graph such that
|B| = |A].

@ Spoiler selects b € B and puts a pebble on it.

@ Duplicator selects a € A and puts the other pebble on it.

Exercise

Let A(G) denote the maximum degree of a vertex in G.
Assume that A(G) # A(H). Prove that D% (G, H) < 2.
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