A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15-19 August

Course outline

- Logical complexity of graphs: Basic definitions and examples
- Isomorphism Testing by Color Refinement and FO²_#
 (first-order logic with 2 variables and counting quantifiers)
- ${
 m O}$ FO²_# and linear programming methods
- ${ \ \, { \ \ O } } \ { \rm FO}^2_{\#} \ { \rm and } \ { \rm Distributed \ Computing } \\$
- Alternation hierarchy of FO^k
- ${\bf \bigcirc}~{\rm FO}^k_{\#}$ and the Weisfeiler-Leman algorithm

Part 1: Logical complexity of graphs: Basic definitions and examples

Outline

1 First-order logic (FO)

- 2 The logical width/depth/length of a graph
- 3 Ehrenfeucht game
- Inite-variable logics and counting quantifiers

6 References

Outline

First-order logic (FO)

- 2 The logical width/depth/length of a graph
- 3 Ehrenfeucht game
- 4 Finite-variable logics and counting quantifiers

5 References

First-order language of graph theory

Vocabulary:

- = equality of vertices
- $\sim\,$ adjacency of vertices

Syntax:

- \wedge,\vee,\neg etc. Boolean connectives
 - $\exists,\forall \text{ quantification over vertices} \\ (\text{no quantification over sets}).$

First-order language of graph theory

Vocabulary:

- = equality of vertices
- $\sim\,$ adjacency of vertices

Syntax:

 $\begin{array}{ll} \wedge, \vee, \neg \mbox{ etc. Boolean connectives} \\ \exists, \forall \mbox{ quantification over vertices} \\ (no \mbox{ quantification over sets}). \end{array}$

Example

We can say that vertices x and y lie at distance no more than n:

7/56

First-order logic (FO)

2 The logical width/depth/length of a graph

- 3 Ehrenfeucht game
- Inite-variable logics and counting quantifiers

5 References

The width $W(\Phi)$ is the number of variables used in Φ (different occurrences of the same variable are not counted).

Example

 $W(\Delta_n)=n+1$ but we can economize by recycling just three variables:

$$\begin{array}{rcl} \Delta_1'(x,y) & \stackrel{\mathrm{def}}{=} & \Delta_1(x,y) \\ \Delta_n'(x,y) & \stackrel{\mathrm{def}}{=} & \exists z (\Delta_1'(x,z) \wedge \Delta_{n-1}'(z,y)). \end{array}$$

Succinctness measures of a formula $\Phi\colon$ Depth

Definition

The depth $D(\Phi)$ (or quantifier rank) is the maximum number of nested quantifiers in Φ .

•
$$\forall x(\forall y(\exists z(\ldots))) - \text{depth } 3; (\forall x \ldots) \land (\forall y \ldots) \land (\exists z \ldots) - \text{depth } 1$$

Example

 $D(\Delta_n^\prime)=n-1$ but we can economize using the halving strategy:

$$\begin{array}{lcl} \Delta_1''(x,y) & \stackrel{\mathrm{def}}{=} & \Delta_1(x,y) \\ \Delta_n''(x,y) & \stackrel{\mathrm{def}}{=} & \exists z \left(\Delta_{\lfloor n/2 \rfloor}''(x,z) \wedge \Delta_{\lceil n/2 \rceil}''(z,y) \right) \end{array}$$

Now $D(\Delta_n'') = \lceil \log n \rceil$ and $W(\Delta_n'') = 3$.

The length $L(\Phi)$ is the total number of symbols in Φ (each variable symbol contributes 1).

Example: $L(\Delta_n) = O(n)$ and $L(\Delta''_n) = O(n)$ but we can economize

$$\begin{split} \Delta_{2n+1}^{\prime\prime\prime}(x,y) & \stackrel{\text{def}}{=} & \exists z \left(\Delta_1(x,z) \land \Delta_{2n}^{\prime\prime\prime}(z,y) \right) \\ \Delta_{2n}^{\prime\prime\prime}(x,y) & \stackrel{\text{def}}{=} & \exists z \forall u \big(u = x \lor u = y \\ & \to \Delta_n^{\prime\prime\prime}(u,z) \big), \end{split}$$

getting $L(\Delta_n''') = O(\log n)$ and still keeping $D(\Delta_n''') \le 2\log n$ and $W(\Delta_n''') = 4$.

A statement Φ defines a graph G if Φ is true on G but false on every non-isomorphic graph H.

Example

 P_n , the path on n vertices, is defined by

$$\begin{array}{l} \forall x \forall y \Delta_{n-1}(x,y) \wedge \neg \forall x \forall y \Delta_{n-2}(x,y) \\ & \text{ $\%$ diameter = n-1$} \\ \wedge \forall x \forall y_1 \forall y_2 \forall y_3(x \sim y_1 \wedge x \sim y_2 \wedge x \sim y_3 \\ & \rightarrow y_1 = y_2 \vee y_2 = y_3 \vee y_3 = y_1) \\ & \text{ $\%$ max degree < 3$} \\ \wedge \exists x \exists y \forall z \big(x \sim y \wedge (z \sim x \rightarrow z = y) \big) \\ & \text{ $\%$ min degree = 1$} \end{array}$$

D(G) is the minimum $D(\Phi)$ over all Φ defining G. W(G) is the minimum $W(\Phi)$ over all Φ defining G. L(G) is the minimum $L(\Phi)$ over all Φ defining G.

Example

•
$$W(P_n) \le 4$$

•
$$D(P_n) < \log n + 3$$

•
$$L(P_n) = O(\log n)$$

Logical depth, width, and length of a graph: Relations

$$W(G) \le D(G) < L(G)$$

Exercise

Prove that for any sentence Φ there is an equivalent Φ' such that $W(\Phi') \leq D(\Phi).$

Logical depth, width, and length of a graph: Relations

$$W(G) \le D(G) < L(G)$$

Exercise

Prove that for any sentence Φ there is an equivalent Φ' such that $W(\Phi') \leq D(\Phi).$

Theorem (Pikhurko, Spencer, V. 2006)

 $L(G) < Tower(D(G) + \log^* D(G) + 2)$. This bound is tight in the sense that $L(G) \ge Tower(D(G) - 7)$ for infinitely many G.

[†]
$$Tower(1) = 2$$
, $Tower(i+1) = 2^{Tower(i)}$
[‡] $\log^* n = \min \{i : Tower(i) \ge n\}$, the inverse of $Tower(i)$

Logical depth, width, and length of a graph: Upper bounds

- Every finite graph G is definable.
- $\bullet~$ If G has n vertices, then

•
$$D(G) \le n+1$$
,

•
$$L(G) = O(n^2).$$

Proof by example:

$$\exists x_1 \exists x_2 \exists x_3 \exists x_4 \forall y$$

$$(\bigwedge_{1 \le i < j \le 4} x_i \ne x_j \land \bigvee_{1 \le i \le 4} y = x_i \land$$

$$x_1 \sim x_2 \land x_1 \sim x_3 \land x_2 \sim x_3 \land x_3 \sim x_4 \land$$

$$\land x_1 \not \sim x_4 \land x_2 \not \sim x_4$$

Outline

1 First-order logic (FO)

2 The logical width/depth/length of a graph

3 Ehrenfeucht game

4 Finite-variable logics and counting quantifiers

5 References

Toolkit

How to determine W(G) or D(G)?

• $D(G) = \max_{H \not\cong G} D(G, H)$, where D(G, H) is the minimum quantifier depth needed to distinguish between G and H. Similarly for W(G).

Toolkit

How to determine W(G) or D(G)?

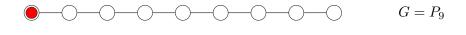
- $D(G) = \max_{H \not\cong G} D(G, H)$, where D(G, H) is the minimum quantifier depth needed to distinguish between G and H. Similarly for W(G).
- D(G, H) and W(G, H) are characterized in terms of a combinatorial game:

G and H are distinguishable with k variables and quantifier depth r iff Spoiler wins the k-pebble Ehrenfeucht game on G and H in r rounds.

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$

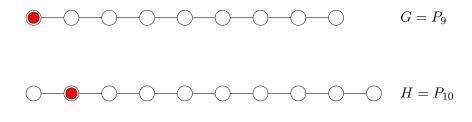
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



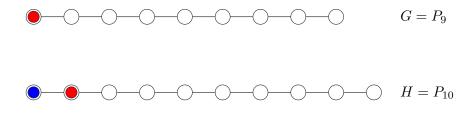
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



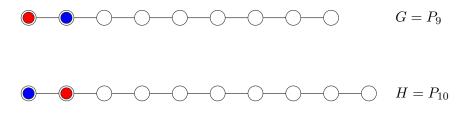
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



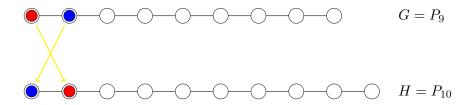
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



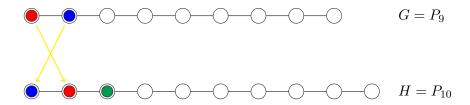
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



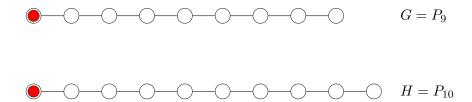
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



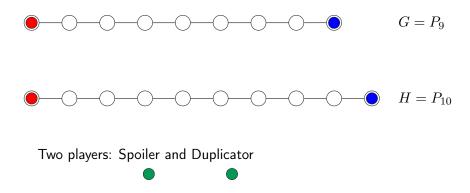
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$

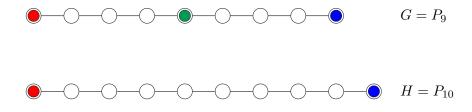


Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$

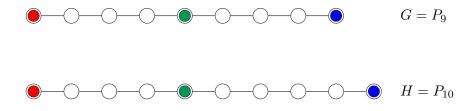


Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



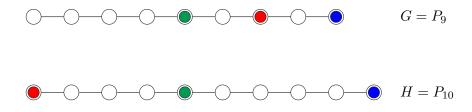
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



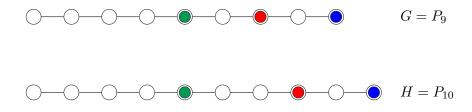
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



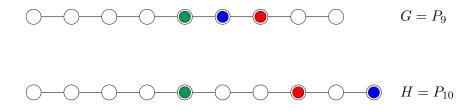
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



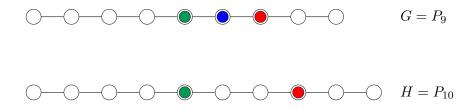
Two players: Spoiler and Duplicator

Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$



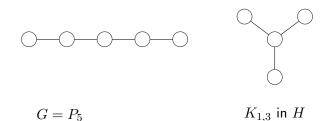
Two players: Spoiler and Duplicator

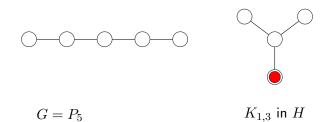
Example 1: $W(P_n, P_{n+1}) \le 3$, $D(P_n, P_{n+1}) \le \log_2 n + 3$

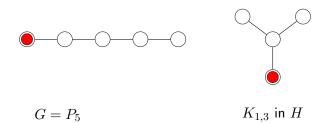


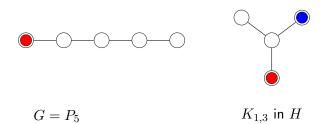
Two players: Spoiler and Duplicator

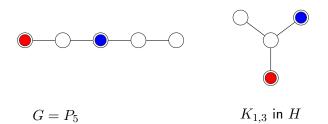
Example 2: $W(P_n) \leq 3$

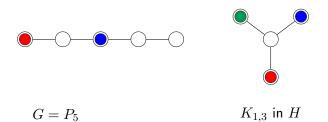


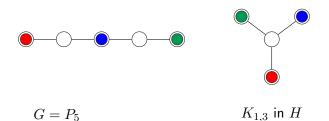


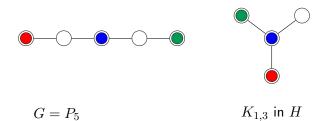


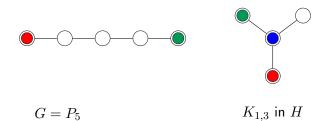












Exercise 1

Prove that $W(P_n) = 3$ if $n \ge 2$.

Exercises

Exercise 1

Prove that $W(P_n) = 3$ if $n \ge 2$.

Exercise 2

Let \overline{G} denote the complement graph of G. Prove that $W(\overline{G}) = W(G)$ and $D(\overline{G}) = D(G)$.

Exercise 3

Let G + H denote the vertex-disjoint union of G and H. Suppose that both G and H are connected. Prove that

 $W(G) \le W(G+H) \le W(G) + W(H).$

Outline

- The logical width/depth/length of a graph

- Inite-variable logics and counting quantifiers

 $D^{k}(G)$ denotes the logical depth of G in FO^{k} (assuming $W(G) \leq k$).

For example, $D^3(P_n) \leq \log n + 3$.

 $D^{k}(G)$ denotes the logical depth of G in FO^k (assuming $W(G) \leq k$).

For example, $D^3(P_n) \leq \log n + 3$.

Theorem

•
$$D^k(G) \le n^{k-1}$$
 for any graph G on n vertices.

2 [Kiefer, Schweitzer 16] $D^{3}(G) = O(n^{2}/\log n)$.

A disturbing fact: We may need many variables even for very simple graphs.

For example,

 $W(K_n) = n + 1$ because $W(K_n, K_{n+1}) = n + 1$. (hence, $W(G) \le D(G) \le n + 1$ cannot be better) $W(K_{1,n}) \ge n$ because $W(K_{1,n}, K_{1,n+1}) \ge n$.

Logic with counting quantifiers (FO_#, FO^k_#)

 $\exists^{\geq m} x \Psi(x)$ means that there are at least m vertices x having property Ψ .

The counting quantifier $\exists^{\geq m}$ contributes 1 in the quantifier depth whatever m.

Example

 $K_{1,n}$ can now be defined by

$$\exists^{\geq n+1}(x=x) \land \neg \exists^{\geq n+2}(x=x) \land \\ \exists x \forall y \forall z (y \neq x \land z \neq x \to y \sim x \land y \not\sim z)$$

Therefore, $W_{\#}(K_{1,n}) \leq 3$ and $D^{3}_{\#}(K_{1,n}) \leq 3$.

Exercise

- **1** Define $K_{1,n}$ in $FO_{\#}^2$.
- 2 Define P_n in $FO_{\#}^2$.

Counting move in the Ehrenfeucht game

- Spoiler exhibits a set A of "good" vertices in G or H.
- Duplicator responds with B in the other graph such that |B| = |A|.
- Spoiler selects $b \in B$ and puts a pebble on it.
- Duplicator selects $a \in A$ and puts the other pebble on it.

Counting move in the Ehrenfeucht game

- Spoiler exhibits a set A of "good" vertices in G or H.
- Duplicator responds with B in the other graph such that |B| = |A|.
- Spoiler selects $b \in B$ and puts a pebble on it.
- Duplicator selects $a \in A$ and puts the other pebble on it.

Exercise

Let $\Delta(G)$ denote the maximum degree of a vertex in G. Assume that $\Delta(G) \neq \Delta(H)$. Prove that $D^2_{\#}(G,H) \leq 2$.

Outline

1 First-order logic (FO)

- 2 The logical width/depth/length of a graph
- 3 Ehrenfeucht game
- 4 Finite-variable logics and counting quantifiers

5 References

- Neil Immerman. Descriptive Complexity. Springer, 1999.
- Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: a survey. In: *Model Theoretic Methods in Finite Combinatorics*, J. Makowsky and M. Grohe Eds. Contemporary Mathematics, vol. 558, Amer. Math. Soc., Providence, RI, pp. 129–179, 2011.
- Sandra Kiefer and Pascal Schweitzer. Upper bounds on the quantifier depth for graph differentiation in first order logic. LICS'16.