A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15-19 August

$${\rm Part}\ 2$:$ Isomorphism Testing by Color Refinement and ${\rm FO}_{\#}^2$

Outline

Graph Isomorphism Problem

2 Color Refinement Algorithm

Outline

Graph Isomorphism Problem

Graph Isomorphism Problem

Are two given graphs G and H isomorphic?

- the best algorithm takes time $n^{\log^c n}$ [Babai 2015]
- in NP, but not NP-complete unless the polynomial-time hierarchy collapses [Schöning 1988, Boppana, Håstad, Zachos 1987]
- polynomial time algorithms are known only in particular cases, e.g., for
 - bounded genus [Filotti, Mayer 1980; Miller 1980]
 - bounded degree [Luks 1982]
 - more generally,
 - classes excluding a topological minor [Grohe, Marx 2012]
 - interval graphs [Lueker, Booth 1979]
- in some cases, even logspace algorithms:
 - bounded genus [Elberfeld, Kawarabayashi 2014]
 - bounded treewidth [Elberfeld, Schweitzer 2016]
 - interval graphs [Köbler, Kuhnert, Laubner, V. 2011]

Color refinement algorithm: An example

Start with the monochromatic coloring.

Color refinement algorithm: An example

New color of a vertex = old colors of all neighbours.

Color refinement algorithm: An example

Next refinement.

 $= \{ \bigcirc, \bigcirc \}$ (absent in the second graph) $= \{ \bigcirc, \bigcirc \}$ (absent in the second graph) $= \{ \bigcirc, \bigcirc \}$

Color refinement algorithm: Formal definition

$$C^{1}(v) = \deg v$$

$$C^{i+1}(v) = \{\{C^{i}(u)\}\}_{u \in N(v)}$$

Exercise

If ϕ is an isomorphism from G to H, then $C^{i}(v) = C^{i}(\phi(v))$.

Therefore,

$$G \cong H \quad \Longrightarrow \quad \big\{\!\!\big\{\, C^i(v)\,\big\}\!\!\big\}_{v \in V(G)} = \big\{\!\!\big\{\, C^i(v)\,\big\}\!\!\big\}_{v \in V(H)}$$

- The output "non-isomorphic" is always true.
- The output "isomorphic" can be wrong.

How many refinement steps are needed on *n*-vertex graphs?

Exercise

$$C^{i+1}(v) = C^{i+1}(v') \quad \Longrightarrow \quad C^i(v) = C^i(v').$$

Regard C^i as a coloring of the graph F = G + H. Let \mathcal{P}^i be the partition of $V(F) = V(G) \cup V(H)$ according to C^i . \mathcal{P}^{i+1} is a refinement of \mathcal{P}^i (by Exercise) \Longrightarrow $\mathcal{P}^s = \mathcal{P}^{s+1}$ for some $s < 2n \implies$ For any $X, Y \in \mathcal{P}^s$, the induced subgraph F[X] is regular and the induced bipartite subgraph F[X, Y] is bi-regular. \implies $\mathcal{P}^{s+1} = \mathcal{P}^{s+2} = \dots$ (partition stabilization) \Longrightarrow For any $v, v' \in V(G) \cup V(H)$, if $C^{s}(v) = C^{s}(v')$ then $C^{i}(v) = C^{i}(v')$ for all $i > s \implies$

CR distinguishes G and H either in s < 2n steps or never.

In fact, n refinement steps are enough.

Indeed, if \mathcal{P}^{i+1} is a proper refinement of \mathcal{P}^i and

$$\left\{\!\!\left\{ C^{i+1}(v) \right\}\!\!\right\}_{v \in V(G)} = \left\{\!\!\left\{ C^{i+1}(v) \right\}\!\!\right\}_{v \in V(H)},$$

then \mathcal{P}^{i+1} is a proper refinement of \mathcal{P}^i on both V(G) and V(H).

The length of $C^{i}(v)$ grows exponentially as *i* increases.

Solution: Enumerate (rename) the colors lexicographically after each refinement round!

Graph Canonization Problem

Given: a graph G on the vertex set $\{1, \ldots, n\}$ Find: a permutation α_G of $\{1, \ldots, n\}$ such that

 $\alpha_G(G) = \alpha_H(H)$ whenever $G \cong H$.

An input graph

Initial coloring: $C^1(v) = \deg v$

Initial coloring: $C^1(v) = \deg v$

A color refinement step: $C^{i+1}(v) = \{\!\!\{ C^i(u) \}\!\!\}_{u \in N(v)}$

1st refinement step: $C^{2}(v) = \{\!\!\{C^{1}(u)\}\!\!\}_{u \in N(v)}$ $\bullet = \{\{\bullet, \bullet\}\}$ $\bullet = \{\{\bullet, \bullet, \bullet\}\}$ $\bullet = \{\{\bullet, \bullet, \bullet\}\}$

2nd refinement step: $C^{3}(v) = \{\!\!\{ C^{2}(u) \}\!\!\}_{u \in N(v)}$

Definition

We call G discrete if its stable partition consists of singletons.

Theorem (Babai, Erdős, Selkow 1980)

 $G_{n,1/2}$ is discrete with high probability.

Proof-scheme

Let $m = o(\sqrt[4]{n/\log n})$ and U be the set of vertices with the m largest degrees. Then, with high probability,

- vertices in U have pairwise distinct degrees, cf. [Bollobás 1981]
- vertices not in U have pairwise distinct sets of neighbors in U, assuming also that $m > 3 \log_2 n$.

1 Graph Isomorphism Problem

2 Color Refinement Algorithm

Lemma (Immerman and Lander 1990)

For any possible C^i -color c there is $\Phi(x) \in \mathrm{FO}^2_{\#}$ such that

$$G, v \models \Phi(x) \quad iff \quad C^i(v) = c$$

for every G and $v \in V(G)$.

Corollary

Discrete graphs are definable in $FO_{\#}^2$.

Proof of the Immerman-Lander lemma

Base case
$$i = 1$$
.
deg $v = d$ can be expressed by
 $\Phi(x) \stackrel{\text{def}}{=} \exists^{\geq d} y(y \sim x) \land \neg \exists^{\geq d+1} y(y \sim x)$
(shorter: $\exists^{=d} y(y \sim x)$).
Induction step $i \mapsto i + 1$
Assumption: Each C^i -color c is definable by $\Phi_c(x)$.
Suppose $C^{i+1}(v) = c'$ iff v has s_1 neighbors u with $C^i(u) = c_1$,
 s_2 neighbors u with $C^i(u) = c_2$ and so on.
Then c' is definable by
 $\Phi_{c'}(x) \stackrel{\text{def}}{=} \bigwedge_j \exists^{=s_j} y (y \sim x \land \Phi_{c_j}(y)) \land \exists^{=\deg v} y (y \sim x).$

Theorem (Immerman and Lander 1990)

The following two conditions are equivalent:

- $\ \, {\rm O} \ \, {\rm G} \ \, {\rm and} \ \, {\rm H} \ \, {\rm are} \ \, {\rm indistinguishable} \ \, {\rm by} \ \, {\rm CR}.$
- **2** G and H are indistinguishable in $FO_{\#}^2$.

Example

 C_6 is not definable in ${\rm FO}_\#^2$ because CR cannot distinguish it from $2C_3.$

Proof of the Immerman-Lander theorem

$$eg(1) \implies
eg(2)$$
 by the preceding lemma

 $(1) \implies (2)$. The asumption (1) means that

$$\{\!\!\{ C^i(v) \}\!\!\}_{v \in V(G)} = \{\!\!\{ C^i(v) \}\!\!\}_{v \in V(H)}$$
 for all i .

Let \mathcal{P}^s be the stable partition of $V(G) \cup V(H)$. \mathcal{P}^s consists of unions $Z \cup Z'$ such that $Z \subseteq V(G)$, $Z' \subseteq V(H)$, |Z| = |Z'|, and all vertices in Z have the same C^s -color as all vertices in Z'.

We design a winning strategy for Duplicator in the 2-pebble counting game on G and H.

1st round. If Spoiler marks a set of vertices $A \subseteq V(G)$, Duplicator responds with $B \subseteq V(H)$ such that

$$|A \cap Z| = |B \cap Z'|$$
 for every $Z \cup Z' \in \mathcal{P}^s$

and ensures pebbling a pair of vertices $x \in X$ and $x' \in X'$ for some $X \cup X' \in \mathcal{P}^s$.

Proof of the Immerman-Lander theorem (cont'd)

For any $X\cup X'\in \mathcal{P}^s$ and $Y\cup Y'\in \mathcal{P}^s$

- G[X] and H[X'] are regular graphs of the same degree;
- G[X,Y] and H[X',Y'] are bi-regular graphs with the same degrees.

i-th round. Suppose that $x \in X$ and $x' \in X'$ are pebbled. If Spoiler marks $A \subseteq V(G)$, Duplicator responds with $B \subseteq V(H)$ such that

$$|A \cap (Z \cap N(x))| = |B \cap (Z' \cap N(x'))|,$$

$$|A \cap (Z \setminus N(x))| = |B \cap (Z' \setminus N(x'))|$$

for every $Z\cup Z'$. Therewith she ensures pebbling a pair of vertices $y\in Y$ and $y'\in Y'$ for some $Y\cup Y'\in \mathcal{P}^s$ such that

$$y \in N(x) \iff y' \in N(x').$$

Color Refinement works correctly on G and every H iff $G \text{ is definable in FO}_{\#}^2.$

Color Refinement works correctly on G and every H iff $G \text{ is definable in } \mathrm{FO}_{\#}^2.$

Question

Which graphs are definable in $FO_{\#}^2$?

2 Color Refinement Algorithm

- N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canonization. In *Complexity Theory Retrospective*, Springer, 1990.
- C. Berkholz, P.S. Bonsma, M. Grohe. Tight lower and upper bounds for the complexity of canonical colour refinement. ESA'13.