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Part 2:
Isomorphism Testing by Color Refinement and FOi
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Graph Isomorphism Problem
Are two given graphs G and H isomorphic?

o the best algorithm takes time n/°8°" [Babai 2015]

@ in NP, but not NP-complete unless the polynomial-time hierar-
chy collapses [Schoning 1988, Boppana, Hastad, Zachos 1987]
@ polynomial time algorithms are known only in particular cases,
e.g., for
o bounded genus [Filotti, Mayer 1980; Miller 1980]
o bounded degree [Luks 1982]
e more generally,
classes excluding a topological minor [Grohe, Marx 2012]
e interval graphs [Lueker, Booth 1979]
@ in some cases, even logspace algorithms:
o bounded genus [Elberfeld, Kawarabayashi 2014]
o bounded treewidth [Elberfeld, Schweitzer 2016]
e interval graphs [Kobler, Kuhnert, Laubner, V. 2011]
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Color refinement algorithm: An example

Start with the monochromatic coloring.



Color refinement algorithm: An example

New color of a vertex = old colors of all neighbours.

@®-0O0C
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Color refinement algorithm: An example

Next refinement.

®- {., .} (absent in the second graph)
®- {O, O} (absent in the second graph)
@-00O

0- 000
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Color refinement algorithm: Formal definition
C'(v) = degv
CH_I(U) = {{ Cl(u) }}uEN(v)

Exercise
If ¢ is an isomorphism from G to H, then C*(v) = C*(¢(v)).

Therefore, ‘ .
G=H = {C') }}Uev(G) ={c'w) }}veV(H)

Color Refinement accepts G and H as isomorphic
iff

the equality is true for all i.

@ The output “non-isomorphic” is always true.

@ The output “isomorphic” can be wrong.
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How many refinement steps are needed on n-vertex graphs?

Exercise
C'H_l(v) — Ci-i—l(vl) _— C’i(v) — Cz‘(vl)_

Regard C* as a coloring of the graph F' = G + H.

Let P? be the partition of V(F) = V(G) U V(H) according to C*.
Pitlis a refinement of P (by Exercise) —

Ps = Pt for some s < 2n =

For any X,Y € P?, the induced subgraph F[X] is regular and the
induced bipartite subgraph F[X,Y] is bi-regular. —-

Pstl = Pst2 = | (partition stabilization) =

For any v,v' € V(G)UV (H), if C%(v) = C*(v') then
Ci(v) = C'(v') forall i > 5. =

CR distinguishes G and H either in s < 2n steps or never.
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How many refinement steps are needed on n-vertex graphs?

In fact, n refinement steps are enough.

Indeed, if P! is a proper refinement of P* and

) Yoeviey = £ ) Yoevin -

then P*1 is a proper refinement of P? on both V(G) and V(H).
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Color refinement algorithm: Implementation details

The length of C%(v) grows exponentially as i increases.

Solution: Enumerate (rename) the colors lexicographically after
each refinement round!
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Graph Canonization Problem

Given: a graph G on the vertex set {1,...,n}
Find: a permutation ag of {1,...,n} such that

ag(G) = ag(H) whenever G = H.
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Color refinement algorithm: An example of canonization

An input graph



Color refinement algorithm: An example of canonization

Initial coloring: C*(v) = degv



Color refinement algorithm: An example of canonization

Initial coloring: C!(v) = degv

A color refinement step: C*(v) = { C(u) }}uGN(v)



Color refinement algorithm: An example of canonization

1st refinement step: C?(v) = {{ C*(u) }}ueN(U)

0-00), O=({@,0y
0-000), O=(0,0n
@®-000) @-0.0
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Color refinement algorithm: An example of canonization

2nd refinement step: C3(v) = { C?(u) }}ueN(v)

@ - O0n
®-0O0)
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CR canonizes almost all graphs

Definition

We call G discrete if its stable partition consists of singletons.

Theorem (Babai, Erdés, Selkow 1980)
G, /2 is discrete with high probability.

Proof-scheme
Let m = o(+/n/logn) and U be the set of vertices with the m
largest degrees. Then, with high probability,

e vertices in U have pairwise distinct degrees, cf. [Bollobas 1981]

@ vertices not in U have pairwise distinct sets of neighbors in U,
assuming also that m > 3log, n.
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Color Refinement and FO;E

Lemma (Immerman and Lander 1990)

For any possible C'-color c there is ®(x) € FO;E such that
G,vE®x) iff C'(v)=c

for every G and v € V(G).

Corollary

Discrete graphs are definable in FO;E.
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Proof of the Immerman-Lander lemma

Base case i = 1.

degv = d can be expressed by
®(x) & Iy (y ~ 2) A-F Y (y ~ @)
(shorter: 3=y (y ~ x)).

Induction step i — i+ 1

Assumption: Each C'-color c is definable by ®.(z).

Suppose C*F1(v) = ¢ iff v has s1 neighbors u with C%(u) = ¢,
so neighbors u with C?(u) = ¢ and so on.

Then ¢ is definable by

Do) = NIy (y ~ 2 A, (y)) ATT9Ey (y ~ 2).
i
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Color Refinement and FO;E

Theorem (Immerman and Lander 1990)
The following two conditions are equivalent:
© G and H are indistinguishable by CR.
@ G and H are indistinguishable in FO;E.

Example

Cs is not definable in FO;E because CR cannot distinguish it
from 2C5.
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Proof of the Immerman-Lander theorem

—(1) = —(2) by the preceding lemma
(1) = (2). The asumption (1) means that

{ C'(v) }}vEV(G) ={C'(v) }}UGV(H) for all i.

Let P? be the stable partition of V(G) UV (H). P* consists of
unions Z U Z' such that Z C V(QG), Z' CV(H), |Z| = |Z'|, and
all vertices in Z have the same C*-color as all vertices in Z’.

We design a winning strategy for Duplicator in the 2-pebble
counting game on GG and H.

Ist round. If Spoiler marks a set of vertices A C V(G), Duplicator
responds with B C V(H) such that

|ANZ|=|BnZ|forevery ZUZ' € P*

and ensures pebbling a pair of vertices x € X and 2/ € X’
for some X U X’ € Ps.
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Proof of the Immerman-Lander theorem (cont'd)

Forany XUX' € P and YUY’ € P*
e G[X] and H[X'] are regular graphs of the same degree;
e G[X,Y] and H[X',Y'] are bi-regular graphs with the same
degrees.

i-th round. Suppose that € X and 2/ € X’ are pebbled. If Spoiler
marks A C V(G), Duplicator responds with B C V(H) such that

[AN(ZnN(@)| = [BN(Z' NN,
[AN(Z\N(x))] = [BN(Z'\N()|

for every Z U Z'. Therewith she ensures pebbling a pair of vertices
yeY and y € Y’ for some YUY’ € P?® such that

y € N(z) < y € N(&).
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Conclusion

Color Refinement works correctly on G and every H
iff
G is definable in FOi.
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Conclusion

Color Refinement works correctly on G and every H
iff
G is definable in FOi.

Question
Which graphs are definable in FO%E?

28/30



Outline

@ References

29/30



References

@ N. Immerman and E. Lander. Describing graphs: A first-order
approach to graph canonization. In Complexity Theory
Retrospective, Springer, 1990.

o C. Berkholz, P.S. Bonsma, M. Grohe. Tight lower and upper
bounds for the complexity of canonical colour refinement.
ESA'13.

30/30



	Graph Isomorphism Problem
	Color Refinement Algorithm
	Relation to FO2#
	References

