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Graph Isomorphism Problem

Are two given graphs G and H isomorphic?

the best algorithm takes time nlog
c n [Babai 2015]

in NP, but not NP-complete unless the polynomial-time hierar-
chy collapses [Schöning 1988, Boppana, Håstad, Zachos 1987]

polynomial time algorithms are known only in particular cases,
e.g., for

bounded genus [Filotti, Mayer 1980; Miller 1980]
bounded degree [Luks 1982]
more generally,
classes excluding a topological minor [Grohe, Marx 2012]
interval graphs [Lueker, Booth 1979]

in some cases, even logspace algorithms:

bounded genus [Elberfeld, Kawarabayashi 2014]
bounded treewidth [Elberfeld, Schweitzer 2016]
interval graphs [Köbler, Kuhnert, Laubner, V. 2011]
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Color re�nement algorithm: An example

Start with the monochromatic coloring.

New color of a vertex = old colors of all neighbours.

= { , }
= { , , }

Next re�nement.

= { , } (absent in the second graph)

= { , } (absent in the second graph)

= { , }
= { , , }
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Color re�nement algorithm: Formal de�nition

C1(v) = deg v

Ci+1(v) =
{{
Ci(u)

}}
u∈N(v)

Exercise

If φ is an isomorphism from G to H, then Ci(v) = Ci(φ(v)).

Therefore,
G ∼= H =⇒

{{
Ci(v)

}}
v∈V (G)

=
{{
Ci(v)

}}
v∈V (H)

Color Re�nement accepts G and H as isomorphic
i�

the equality is true for all i.

The output �non-isomorphic� is always true.

The output �isomorphic� can be wrong.
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How many re�nement steps are needed on n-vertex graphs?

Exercise

Ci+1(v) = Ci+1(v′) =⇒ Ci(v) = Ci(v′).

Regard Ci as a coloring of the graph F = G+H.

Let P i be the partition of V (F ) = V (G) ∪ V (H) according to Ci.

P i+1 is a re�nement of P i (by Exercise) =⇒

Ps = Ps+1 for some s < 2n =⇒

For any X,Y ∈ Ps, the induced subgraph F [X] is regular and the
induced bipartite subgraph F [X,Y ] is bi-regular. =⇒

Ps+1 = Ps+2 = . . . (partition stabilization) =⇒

For any v, v′ ∈ V (G) ∪ V (H), if Cs(v) = Cs(v′) then
Ci(v) = Ci(v′) for all i ≥ s. =⇒

CR distinguishes G and H either in s < 2n steps or never.
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How many re�nement steps are needed on n-vertex graphs?

In fact, n re�nement steps are enough.

Indeed, if P i+1 is a proper re�nement of P i and{{
Ci+1(v)

}}
v∈V (G)

=
{{
Ci+1(v)

}}
v∈V (H)

,

then P i+1 is a proper re�nement of P i on both V (G) and V (H).
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Color re�nement algorithm: Implementation details

The length of Ci(v) grows exponentially as i increases.

Solution: Enumerate (rename) the colors lexicographically after
each re�nement round!
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Graph Canonization Problem

Given: a graph G on the vertex set {1, . . . , n}
Find: a permutation αG of {1, . . . , n} such that

αG(G) = αH(H) whenever G ∼= H.
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Color re�nement algorithm: An example of canonization

An input graph

Initial coloring: C1(v) = deg vInitial coloring: C1(v) = deg v

A color re�nement step: Ci+1(v) =
{{
Ci(u)

}}
u∈N(v)

1st re�nement step: C2(v) =
{{
C1(u)

}}
u∈N(v)

= {{ , }}
= {{ , , }}
= {{ , , }}
= {{ }}

= {{ , }}
= {{ , }}
= {{ , }}
= {{ }}

2nd re�nement step: C3(v) =
{{
C2(u)

}}
u∈N(v)

= {{ , }}
= {{ , }}

. . .
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CR canonizes almost all graphs

De�nition

We call G discrete if its stable partition consists of singletons.

Theorem (Babai, Erd®s, Selkow 1980)

Gn,1/2 is discrete with high probability.

Proof-scheme

Let m = o( 4
√
n/ log n) and U be the set of vertices with the m

largest degrees. Then, with high probability,

vertices in U have pairwise distinct degrees, cf. [Bollobás 1981]

vertices not in U have pairwise distinct sets of neighbors in U ,
assuming also that m > 3 log2 n.
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Color Re�nement and FO2
#

Lemma (Immerman and Lander 1990)

For any possible Ci-color c there is Φ(x) ∈ FO2
# such that

G, v |= Φ(x) i� Ci(v) = c

for every G and v ∈ V (G).

Corollary

Discrete graphs are de�nable in FO2
#.
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Proof of the Immerman-Lander lemma

Base case i = 1.

deg v = d can be expressed by

Φ(x)
def
= ∃≥dy(y ∼ x) ∧ ¬∃≥d+1y(y ∼ x)

(shorter: ∃=dy(y ∼ x)).

Induction step i 7→ i+ 1

Assumption: Each Ci-color c is de�nable by Φc(x).
Suppose Ci+1(v) = c′ i� v has s1 neighbors u with Ci(u) = c1,
s2 neighbors u with Ci(u) = c2 and so on.
Then c′ is de�nable by

Φc′(x)
def
=
∧
j

∃=sjy (y ∼ x ∧ Φcj (y)) ∧ ∃=deg vy (y ∼ x).
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Color Re�nement and FO2
#

Theorem (Immerman and Lander 1990)

The following two conditions are equivalent:

1 G and H are indistinguishable by CR.

2 G and H are indistinguishable in FO2
#.

Example

C6 is not de�nable in FO2
# because CR cannot distinguish it

from 2C3.
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Proof of the Immerman-Lander theorem

¬(1) =⇒ ¬(2) by the preceding lemma

(1) =⇒ (2). The asumption (1) means that{{
Ci(v)

}}
v∈V (G)

=
{{
Ci(v)

}}
v∈V (H)

for all i.

Let Ps be the stable partition of V (G) ∪ V (H). Ps consists of
unions Z ∪ Z ′ such that Z ⊆ V (G), Z ′ ⊆ V (H), |Z| = |Z ′|, and
all vertices in Z have the same Cs-color as all vertices in Z ′.

We design a winning strategy for Duplicator in the 2-pebble
counting game on G and H.

1st round. If Spoiler marks a set of vertices A ⊆ V (G), Duplicator
responds with B ⊆ V (H) such that

|A ∩ Z| = |B ∩ Z ′| for every Z ∪ Z ′ ∈ Ps

and ensures pebbling a pair of vertices x ∈ X and x′ ∈ X ′
for some X ∪X ′ ∈ Ps.
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Proof of the Immerman-Lander theorem (cont'd)

For any X ∪X ′ ∈ Ps and Y ∪ Y ′ ∈ Ps

G[X] and H[X ′] are regular graphs of the same degree;

G[X,Y ] and H[X ′, Y ′] are bi-regular graphs with the same
degrees.

i-th round. Suppose that x ∈ X and x′ ∈ X ′ are pebbled. If Spoiler
marks A ⊆ V (G), Duplicator responds with B ⊆ V (H) such that

|A ∩ (Z ∩N(x))| = |B ∩ (Z ′ ∩N(x′))|,
|A ∩ (Z \N(x))| = |B ∩ (Z ′ \N(x′))|

for every Z ∪ Z ′. Therewith she ensures pebbling a pair of vertices
y ∈ Y and y′ ∈ Y ′ for some Y ∪ Y ′ ∈ Ps such that

y ∈ N(x) ⇐⇒ y′ ∈ N(x′).
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Conclusion

Color Re�nement works correctly on G and every H
i�

G is de�nable in FO2
#.

Question

Which graphs are de�nable in FO2
#?
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