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Which graphs are de�nable in FO2
#?

Every discrete graph; hence, almost all graphs.

Every unigraph, i.e., every graph characterizable by its degree
sequence up to isomorphism, like Kn, K1,n, mK2, C4, C5 . . .

Every tree; because every tree is characterizable by Color
Re�nement [Edmonds 65] (a proof is postponed).
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Example

Which one of the following two graphs is de�nable in FO2
#?
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Local structure of de�nable graphs

De�nition

Call the stable color classes of vertices cells.

Let X be a cell in G.

G[X] is regular.

If G is de�nable, then G[X] must be a unigraph
(to be proved shortly).

Complete list of regular unigraphs [Johnson 1975]

Complete and empty graphs. (homogeneous)

Matchings mK2 and their complements. (heterogeneous)

The cycle C5. (heterogeneous)
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Local structure of de�nable graphs

Let X,Y be cells in G.

G[X,Y ] is bi-regular.

If G is de�nable, then G[X,Y ] is identi�ed by its degrees.

Complete list of such bi-regular graphs [Koren 1976]

Complete bipartite graphs and empty graphs.
(isotropic)

Forests of stars sK1,t, s ≥ 2, and their bipartite complements.
(anisotropic)
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Local structure of de�nable graphs

Lemma

If G is de�nable, then for any cells X,Y

(A) G[X] is from the Johnson list.

(B) G[X,Y ] is from the Koren list.

Proof of (A)

Assume that G[X] is not a unigraph, that is, there is a regular
graph F 6∼= G[X] of the same degree with as many vertices.
Change G on X so that G′[X] ∼= F , where G′ denotes the
modi�ed graph. Then

For every vertex v, Ci(v) is the same in G and G′

(induction on i);

Therefore, CR does not distinguish G and G′;

G 6∼= G′ because any isomorphism respects the color classes
and should be an isomorphism also between G[X] and G′[X].
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Cell-Graph

� a cell

Heterogeneous cells (matching/co-matching/C5),

Homogeneous cells (empty/complete),

Anisotropic edges (sK1,t and bipartite complements)

Isotropic edges (empty/complete bipartite)
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Example
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Global structure of de�nable graphs

Con�gurations forbidden in the cell-graph of a de�nable graph:

(C) An anisotropic path of equally sized cells connecting two
heteregenous cells:

(D) Two cells connected via an anisotropic path along larger cells:

(E) A cell connected to a larger heterogenous cell via an
anisotropic path:

(F) Anisotropic cycles:
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Proof-sketch of Condition (C)
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Proof-sketch of Condition (C)
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Characterization of de�nable graphs

Theorem (Arvind, Köbler, Rattan, V. 2015 and Kiefer, Schweitzer,
Selman 2015)

Conditions (A)�(F) are both necessary and su�cient

for de�nability of a graph in FO2
#.

Corollary

The class of graphs de�nable in FO2
# is recognizable in polynomial

time.
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Exercise

Using the characterization of FO2
#-de�nable graphs, prove that

every forest is de�nable in FO2
#.
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