A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15–19 August
Part 4: $\text{FO}_2^\#$ and linear-programming techniques.
1. The graph canonization problem

2. Fractional isomorphism and compactness

3. FO2#-definable graphs are compact

4. Tinhofer’s canonization algorithm

5. References
Outline

1. The graph canonization problem

2. Fractional isomorphism and compactness

3. $\text{FO}^2_\#$-definable graphs are compact

4. Tinhofer’s canonization algorithm

5. References
Canonizing almost all graphs

- All graphs on \(n \) vertices
- Efficiently canonizable graphs

Discrete graphs

Almost all graphs
Canonizing almost all graphs

All graphs on n vertices
Efficiently canonizable graphs
Graphs definable in $\text{FO}_\#^2$
Discrete graphs
Almost all graphs
Canonizing almost all graphs

All graphs on n vertices
Efficiently canonizable graphs
Compact graphs
Graphs definable in $\text{FO}_2^\#$
Discrete graphs
Almost all graphs
Outline

1. The graph canonization problem
2. Fractional isomorphism and compactness
3. $\text{FO}_\#^2$-definable graphs are compact
4. Tinhofer’s canonization algorithm
5. References
Consider graphs G and H with adjacency matrices A and B resp. $G \cong H$ iff there is a permutation matrix X such that

$$AX = XB.$$

(1)
Consider graphs G and H with adjacency matrices A and B resp. $G \cong H$ iff there is a permutation matrix X such that

$$AX = XB. \quad (1)$$

$X = (x_{ij})$ is doubly stochastic (d.s.) if $x_{ij} \geq 0$, $\sum_i x_{ij} = 1$ for all j, and $\sum_j x_{ij} = 1$ for all i.

Definition

G and H are fractionally isomorphic if (1) is true for some d.s. X.
Fractional isomorphism and equivalent concepts

Consider graphs G and H with adjacency matrices A and B resp. $G \cong H$ iff there is a permutation matrix X such that

$$AX = XB.$$ \hspace{1cm} (1)

$X = (x_{ij})$ is doubly stochastic (d.s.) if $x_{ij} \geq 0$, $\sum_i x_{ij} = 1$ for all j, and $\sum_j x_{ij} = 1$ for all i.

Definition

G and H are fractionally isomorphic if (1) is true for some d.s. X.

Theorem [Ramana, Scheinerman, Ullman 94; Immerman, Lander 90]

The following three conditions are equivalent:

- G and H are fractionally isomorphic,
- G and H are indistinguishable by Color Refinement,
- G and H are indistinguishable in $\text{FO}^2\#$.
Compactness

Let $S(G) = \{X - \text{d.s.} : AX =XA\}$, the set of all fractional automorphisms of G.

Compactness

Let \(S(G) = \{ X - \text{d.s.} : AX =XA \} \), the set of all fractional automorphisms of \(G \).
- This is a polytope in \(\mathbb{R}^{n^2} \).
Compactness

Let $S(G) = \{ X - \text{d.s.} : AX =XA \}$, the set of all fractional automorphisms of G.

- This is a polytope in \mathbb{R}^{n^2}.
- Automorphisms of G (permutation matrices) are extreme points of $S(G)$.

If $G \sim H$, then all extreme points of $S(G,H)$ are integral; if $G \not\sim H$, then $S(G,H)$ has no integral point.
Compactness

Let $S(G) = \{ X - d.s. : AX =XA \}$, the set of all fractional automorphisms of G.

- This is a polytope in \mathbb{R}^{n^2}.
- Automorphisms of G (permutation matrices) are extreme points of $S(G)$.

Definition (Tinhofer 1991)

G is **compact** if $S(G)$ has no other extreme points.
Let $S(G) = \{ X \text{ - d.s.} : AX =XA \}$, the set of all fractional automorphisms of G.

- This is a polytope in \mathbb{R}^{n^2}.
- Automorphisms of G (permutation matrices) are extreme points of $S(G)$.

Definition (Tinhofer 1991)

G is **compact** if $S(G)$ has no other extreme points.

Equivalently,

- all extreme points of $S(G)$ are integral, or
- every fractional automorphism of G is a convex combination of automorphisms of G.
Compactness

Let $S(G) = \{ X - \text{d.s.} : AX =XA \}$, the set of all fractional automorphisms of G.

- This is a polytope in \mathbb{R}^{n^2}.
- Automorphisms of G (permutation matrices) are extreme points of $S(G)$.

Definition (Tinhofer 1991)

G is compact if $S(G)$ has no other extreme points.

Equivalently,

- all extreme points of $S(G)$ are integral, or
- every fractional automorphism of G is a convex combination of automorphisms of G.

If G is known to be compact, then $G \cong H$ can be tested by computing an extreme point of $S(G, H) = \{ X - \text{d.s.} : AX =XB \}$:

- If $G \cong H$, then all extreme points of $S(G, H)$ are integral;
- If $G \not\cong H$, then $S(G, H)$ has no integral point.
Basic facts: Complete graphs

Complete graphs are compact.

Every $n \times n$ d.s. matrix is a fractional automorphism of K_n. Indeed, let J and I be the all-ones and the identity matrices. Then

$$X \text{ is d.s.} \implies JX = XJ \implies (J-I)X = X(J-I) \implies X \in S(K_n).$$

Birkhoff’s theorem
Every doubly stochastic matrix is a convex combination of permutation matrices.
Basic facts: Closure properties

G is compact iff its complement \overline{G} is compact.

Proof:

$\text{Aut}(G) = \text{Aut}(\overline{G})$ and $S(G) = S(\overline{G})$. Indeed,

$$X \in S(\overline{G}) \iff (J - I - A)X = X(J - I - A) \iff AX = XA \iff X \in S(G'),$$

where A is the adjacency matrix of G.

Lemma (Tinhofer 91)

If a connected graph G is compact, then the m-fold disjoint union mG is compact.

Example: The matching graph mK_2 and its complement mK_2 are compact.
Basic facts: Closure properties

G is compact iff its complement \overline{G} is compact.

Proof:

$\text{Aut}(G) = \text{Aut}(\overline{G})$ and $S(G) = S(\overline{G})$. Indeed,

\[X \in S(\overline{G}) \iff (J - I - A)X = X(J - I - A) \iff AX = XA \iff X \in S(G), \]

where A is the adjacency matrix of G.

Lemma (Tinhofer 91)

If a connected graph G is compact, then the m-fold disjoint union mG is compact.

Example: The matching graph mK_2 and its complement $\overline{mK_2}$ are compact.
Further examples of compact graphs

Thus, the cycle graphs $C_3 = K_3$ and $C_4 = 2K_2$ are compact.

C_5 is compact too.
Further examples of compact graphs

Thus, the cycle graphs $C_3 = K_3$ and $C_4 = 2K_2$ are compact.

C_5 is compact too.

Other examples:

- All cycles [Tinhofer 1986]
- All trees [Tinhofer 1986]
- Many regular graphs [Brualdi 88, Godsil 97, Wang and Li 05]
A negative example

\[C_3 \cup C_4 \text{ is not compact.} \]
A negative example

$C_3 \cup C_4$ is not compact.

Lemma (Tinhofer 1991)

A regular compact graph is vertex-transitive.

Proof:

- Consider the $n \times n$ all-ones matrix J, where n is the number of vertices in G.
- If G is regular, then $\frac{1}{n}J \in S(G)$.
- If G is compact, then
 \[
 \frac{1}{n} J = \sum_s \alpha_s P_s,
 \]
 a convex combination of permutation matrices from $\text{Aut}(G)$.
- Therefore, for all i and j there is s such that $[P_s]_{ij} = 1$.
Outline

1. The graph canonization problem
2. Fractional isomorphism and compactness
3. FO\(^2\)#-definable graphs are compact
4. Tinhofer’s canonization algorithm
5. References
Theorem (Arvind, Köbler, Rattan, V. 2015)

All graphs definable in $\text{FO}^2_\#$ are compact.
The proof is based on our characterization of $\text{FO}_2^\#$-definable graphs.
Proof-scheme

• The proof is based on our characterization of $\text{FO}_\#^2$-definable graphs.

Let G be a definable graph. If $X, Y \subseteq V(G)$ are vertex classes in the stable coloring of G (cells), then

• $G[X]$ is one of

$$K_s, \overline{K_s}, mK_2, \overline{mK_2}, \text{ and } C_5.$$

• $G[X, Y]$ is one of

$$K_{s,t}, \overline{K_{s+t}}, sK_{1,t}(s \geq 2), \text{ and its bipartite complement.}$$
homogeneous (isotropic) links $G[X, Y]$ can be ignored;
there is no cycle of non-homogeneous (anisotropic) links;
each of the corresponding tree-like components of G can be considered separately;
each such component contains at least one non-homogeneous cell X ($G[X] \cong mK_2, \overline{mK_2}$, or C_5);
induction on the number of cells is possible because fractional automorphisms respect the stable partition [Ramana, Scheinerman, Ullman 1994];
the base case is done by the compactness of $K_s, \overline{K_s}, mK_2, \overline{mK_2}$, and C_5.
1. The graph canonization problem

2. Fractional isomorphism and compactness

3. $\text{FO}_\#^2$-definable graphs are compact

4. Tinhofer’s canonization algorithm

5. References
Tinhofer’s canonization algorithm for compact graphs

Input: a graph G

1. Run Color Refinement on G till color stabilization.
2. If all color classes are singletons, terminate.
3. If there is a color class with 2 or more vertices, individualize one of them by assigning a new color (the lexicographically first unused one).

Theorem (Tinhofer 1991) If an input graph G is compact, then the above algorithm produces a canonical labeling of G for any choice of vertices to be individualized.
Tinhofer’s canonization algorithm for compact graphs

Input: a graph G

1. Run Color Refinement on G till color stabilization.
2. If all color classes are singletons, terminate.
3. If there is a color class with 2 or more vertices, individualize one of them by assigning a new color (the lexicographically first unused one).

Theorem (Tinhofer 1991)

If an input graph G is compact, then the above algorithm produces a canonical labeling of G for any choice of vertices to be individualized.
1. The graph canonization problem
2. Fractional isomorphism and compactness
3. $\text{FO}^2_\#$-definable graphs are compact
4. Tinhofer’s canonization algorithm
5. References

