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Fractional isomorphism and equivalent concepts

Consider graphs G and H with adjacency matrices A and B resp.

G ∼= H i� there is a permutation matrix X such that

AX = XB. (1)

X = (xij) is doubly stochastic (d.s.) if
xij ≥ 0,

∑
i xij = 1 for all j, and

∑
j xij = 1 for all i.

De�nition

G and H are fractionally isomorphic if (1) is true for some d.s. X.

Theorem [Ramana, Scheinerman, Ullman 94; Immerman, Lander 90]

The following three conditions are equivalent:

G and H are fractionally isomorphic,

G and H are indistinguishable by Color Re�nement,

G and H are indistinguishable in FO2
#.
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Compactness

Let S(G) = {X - d.s. : AX = XA},
the set of all fractional automorphisms of G.

This is a polytope in Rn2
.

Automorphisms of G (permutation matrices) are extreme
points of S(G).

De�nition (Tinhofer 1991)

G is compact if S(G) has no other extreme points.

Equivalently,

all extreme points of S(G) are integral, or

every fractional automorphism of G is a convex combination of
automorphisms of G.

If G is known to be compact, then G ∼= H can be tested by
computing an extreme point of S(G,H) = {X - d.s. : AX = XB}:

If G ∼= H, then all extreme points of S(G,H) are integral;

If G 6∼= H, then S(G,H) has no integral point.
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Basic facts: Complete graphs

Complete graphs are compact.

Every n× n d.s. matrix is a fractional automorphism of Kn.
Indeed, let J and I be the all-ones and the identity matrices. Then

X is d.s. =⇒ JX = XJ =⇒ (J−I)X = X(J−I) =⇒ X ∈ S(Kn).

Birkho�'s theorem

Every doubly stochastic matrix is a convex combination of
permutation matrices.
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Basic facts: Closure properties

G is compact i� its complement G is compact.

Proof:

Aut(G) = Aut(G) and S(G) = S(G). Indeed,

X ∈ S(G) ⇐⇒ (J − I −A)X = X(J − I −A)
⇐⇒ AX = XA ⇐⇒ X ∈ S(G),

where A is the adjacency matrix of G.

Lemma (Tinhofer 91)

If a connected graph G is compact, then the m-fold disjoint union

mG is compact.

Example: The matching graph mK2 and its complement mK2 are
compact.
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Further examples of compact graphs

Thus, the cycle graphs C3 = K3 and C4 = 2K2 are compact.

C5 is compact too.

Other examples:

All cycles [Tinhofer 1986]

All trees [Tinhofer 1986]

Many regular graphs [Brualdi 88, Godsil 97, Wang and Li 05]
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A negative example

C3 ∪ C4 is not compact.

Lemma (Tinhofer 1991)

A regular compact graph is vertex-transitive.

Proof:

Consider the n× n all-ones matrix J , where n is the number
of vertices in G.

If G is regular, then 1
nJ ∈ S(G).

If G is compact, then

1

n
J =

∑
s

αsPs,

a convex combination of permutation matrices from Aut(G).

Therefore, for all i and j there is s such that [Ps]ij = 1.
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FO2
#-De�nable ⊂ Compact

Theorem (Arvind, Köbler, Rattan, V. 2015)

All graphs de�nable in FO2
# are compact.
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Proof-scheme

The proof is based on our characterization of FO2
#-de�nable

graphs.

Let G be a de�nable graph. If X,Y ⊆ V (G) are vertex classes in
the stable coloring of G (cells), then

G[X] is one of

Ks, Ks, mK2, mK2, and C5.

G[X,Y ] is one of

Ks,t, Ks+t, sK1,t(s ≥ 2), and its bipartite complement.
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Proof-scheme (cont'd)

homogeneous (isotropic) links G[X,Y ] can be ignored;

there is no cycle of non-homogeneous (anisotropic) links;

each of the corresponding tree-like components of G can be
considered separately;

each such component contains at least one non-homogeneous
cell X (G[X] ∼= mK2,mK2, or C5);

induction on the number of cells is possible because fractional
automorphisms respect the stable partition [Ramana,
Scheinerman, Ullman 1994];

the base case is done by the compactness of Ks, Ks, mK2,
mK2, and C5.
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Tinhofer's canonization algorithm for compact graphs

Input: a graph G

1 Run Color Re�nement on G till color stabilization.

2 If all color classes are singletons, terminate.

3 If there is a color class with 2 or more vertices, individualize
one of them by assigning a new color (the lexicographically
�rst unused one).

4 Goto Step 1.

Theorem (Tinhofer 1991)

If an input graph G is compact, then the above algorithm produces

a canonical labeling of G for any choice of vertices to be individua-

lized.
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