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Three pillars

1980

@ L. Babai, P. Erdés, and S.M. Selkow. Random graph
isomorphism. SIAM J. Comput.
@ D. Angluin. Local and global properties in networks of
processors. STOC'80.
1990

@ N. Immerman and E. Lander. Describing graphs: A first-order
approach to graph canonization. In Complexity Theory
Retrospective, Springer.

5/32



Outline

© Color refinement in isomorphism testing (recap)

6/32



Color refinement algorithm (formal definition)
C'(v) = degv
Citl(v) = £ C'(u) : u e N(v) B}

Exercise
If ¢ is an isomorphism from G to H, then C*(v) = C*(4(v)).

Therefore, ‘ .
G2H = {C'u) }}uEV(G) ={C'(v) }}vGV(H)

Color Refinement accepts G and H as isomorphic
iff

the equality is true for all i.

@ The output “non-isomorphic” is always true.

@ The output “isomorphic” can be wrong.
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Color refinement and 2-variable counting logic

Immerman and Lander:
The following three conditions are equivalent:
@ Color refinement distinguishes G and H;
@ (G and H are distinguishable in two-variable first-order logic
with counting quantifiers.
@ Spoiler has a winning strategy in the 2-pebble counting game
on G and H.

In particular, if color refinement distinguishes G and H in less than
s rounds, then G and H are distiguishable with quantifier depth s.

4
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Question

Suppose that color refinement distinguishes n-vertex G and H.

How many refinement rounds does it need?

@ Just 2 for almost all G' (Babai, Erdés, Selkow).
e What about the worst case?

A related question

How large can DZ(G) be for G definable in FOZ,?
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We already know that n rounds always suffice.

At least /2 — 2 rounds are sometimes needed:
e.g.,on P, and P, 3+ Cj.

@ Thus, the optimum is between n/2 and n. Where?
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Theorem (Krebs, V. 2015)

There are n-vertex G and H distinguishable in 2-variable counting
logic but only with quantifier depth (1 — o(1))n.

Corollary

There are n-vertex G and H such that color refinement needs
(1 — o(1))n refinement rounds to distinguish them.
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Moreover,

color refinement stabilizes on the disjoint union G + H in
(2 —o(1))n rounds

(despite the stabilization on each of G and H is reached in less
than n rounds).
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Basic concepts

@ A network = a graph G

@ A processor (a finite automaton) = a node in G

@ The initial states are identical for nodes of the same degree
@ In a unit of time — a message exchange along each edge
Examples of problems.

Leader election: Exactly one processor has to come in a
distinguished state “elected”.

Network topology recognition: One of the processors (or all of
them) has to come in a special state iff G has a specified property
(for example, G is bipartite, planar, ...).
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Covering maps — basic definitions

Let G and H be connected.
a is a covering map from H to G if a is

@ a homomorphism from H onto G,
@ a bijection from N (v) onto N(«(v)) for each v € V(H).
We say that H is a covering graph of G or that H covers G.

T i

Uz(Q) is the “unfolding” of G from z into an (infinite) tree.

x

U, (G) covers any covering graph of G and is called a universal

cover of G.
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Another example of a universal cover
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Applications in distributed computing: an example

Lemma

Let oo : H — G be a covering map for the networks G and H .
Then the processors v and a(v) will be always in the same state.

v

Lemma

Planar graphs are not closed under covering maps.

Corollary

Planarity is not recognizable by local computations.
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Color refinement in distributed computing

Angluin:
The following conditions are equivalent.
@ (G and H have a common covering graph.
e U(G)XU(H)
o {C'(u): ueV(G)} ={Cv): veV(H)}, forall i.
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Relation to FOi

Angluin + Immerman & Lander + Ramana et al.

If G and H have equally many vertices, then the following
conditions are equivalent.

@ GG and H are indistinguishable in FOi.
@ GG and H are fractionally isomorphic.
@ GG and H are indistinguishable by Color Refinement.

@ (G and H have isomorphic universal covers.
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Truncated universal covers

U.(G) = Uy(H) = the processors z and y are all the time in
equal states (i.e., indistinguishable by local computations).

Let UX(G) denote the rooted tree U,(G) truncated at depth ¢.
Ui(G) 2 Uj(H) = =z and y are in equal states up to time ¢.
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Truncated universal covers

U.(G) = Uy(H) = the processors z and y are all the time in
equal states (i.e., indistinguishable by local computations).

Let UX(G) denote the rooted tree U,(G) truncated at depth ¢.
Ui(G) 2 Uj(H) = =z and y are in equal states up to time ¢.

Lemma

UL(G) = UL(H) iff C*(x) = C'(y).
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Lemma

ULG) = Uz’j(H) iff Ct(x) = Ct(y).

Exercise

Prove it by induction on t.

Hint

Prove first the following Tree Reconstruction Lemma:

Let T and S be trees, x € V(T'), y € V(S), N(z) = {x1,..., 2},
and N(y) = {y1,...,yx}. Then

Ty =Sy and Ty = 5) foralli <k = T+t S;H.

Exercise

Apply it for another proof that every tree is definable in FO;E.
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What truncation depth is enough?

Lemma
ULG) = Uz’j(H) iff Ct(z) = Cl(y). J

By the color stabilization argument:
if G and H are two graphs with at most n vertices each, then

U HG) = Uy N (H) = Us(G) = Uy(H).

Norris's question (1995)

Can 2n — 1 be improved to n in this implication?
(Yes if G = H)
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Theorem (Krebs, V. 2015)

There are n-vertex graphs G and H with vertices x € V(G) and
y € V(H) such that

@ U1V (G) = Uy VI (H) while Us(G) 3 Uy (H);
@ D%(G,H)>n—8yn.
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Construction of G = G4 and H = Hy,

@ Each graph is a chain of ¢ blocks:
e one head block,
e ¢ —1 tail blocks

o All tail blocks are identical and have s 4 10 vertices.

The tail block for s =5
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the head block

t — 1 tail blocks

€L Y

The graphs G5 and H; for s =3, t = 3.
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e We distinguish [s/2] + 3 types of vertices, presented by
auxiliary colors.

@ This auxiliary coloring is almost stable: All vertex
neighborhoods (excepting for = and y) are

e C'(z) = C'(y) iff Duplicator has a winning strategy in the
i-round bisimulation version of the Immerman-Lander game on
(G,x,H,y). This is so for i = 2t(s + 5) — 2, while Spoiler has
a winning strategy for larger i.

@ The graphs have n = (t + 1)(s + 10) — 5 vertices. Take
s=2t+1.
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Conclusion

@ The universal cover U,(G) contains all knowledge about the
network G available to a particular party z.

@ A large bunch of distributed algorithms is based on computing
the isomorphism type of U,(G) by the party z.

@ The bound of 2n is a standard upper bound for the
communication round complexity of such algorithms.

@ Our solution of Norris's problem implies that this bound is
tight up to a term of o(n).

@ This seems to be the first application of FMT in the field.
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Conclusion

@ The universal cover U,(G) contains all knowledge about the
network G available to a particular party z.

@ A large bunch of distributed algorithms is based on computing
the isomorphism type of U,(G) by the party z.

@ The bound of 2n is a standard upper bound for the
communication round complexity of such algorithms.

@ Our solution of Norris's problem implies that this bound is
tight up to a term of o(n).

@ This seems to be the first application of FMT in the field.

Open problem
Can the lower bound of 2n — O(y/n) be improved to 2n — O(1)?
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