
A logical approach to Isomorphism Testing
and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15–19 August

1/32

Part 5: FO2
and Distributed Computing.

2/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

3/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

4/32

Three pillars

1980

L. Babai, P. Erdős, and S.M. Selkow. Random graph
isomorphism. SIAM J. Comput.
D. Angluin. Local and global properties in networks of
processors. STOC’80.

1990

N. Immerman and E. Lander. Describing graphs: A first-order
approach to graph canonization. In Complexity Theory
Retrospective, Springer.

5/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

6/32

Color refinement algorithm (formal definition)

C1(v) = deg v

Ci+1(v) =
{{
Ci(u) : u ∈ N(v)

}}
Exercise

If φ is an isomorphism from G to H, then Ci(v) = Ci(φ(v)).

Therefore,
G ∼= H =⇒

{{
Ci(u)

}}
u∈V (G)

=
{{
Ci(v)

}}
v∈V (H)

Color Refinement accepts G and H as isomorphic
iff

the equality is true for all i.

The output “non-isomorphic” is always true.
The output “isomorphic” can be wrong.

7/32

Color refinement and 2-variable counting logic

Immerman and Lander:
The following three conditions are equivalent:

Color refinement distinguishes G and H;
G and H are distinguishable in two-variable first-order logic
with counting quantifiers.
Spoiler has a winning strategy in the 2-pebble counting game
on G and H.

In particular, if color refinement distinguishes G and H in less than
s rounds, then G and H are distiguishable with quantifier depth s.

8/32

Question
Suppose that color refinement distinguishes n-vertex G and H.
How many refinement rounds does it need?

Just 2 for almost all G (Babai, Erdős, Selkow).
What about the worst case?

A related question

How large can D2
#(G) be for G definable in FO2

#?

9/32

We already know that n rounds always suffice.

At least n/2− 2 rounds are sometimes needed:
e.g., on Pn and Pn−3 + C3.

Thus, the optimum is between n/2 and n. Where?

10/32

Theorem (Krebs, V. 2015)

There are n-vertex G and H distinguishable in 2-variable counting
logic but only with quantifier depth (1− o(1))n.

Corollary
There are n-vertex G and H such that color refinement needs
(1− o(1))n refinement rounds to distinguish them.

11/32

Moreover,

color refinement stabilizes on the disjoint union G+H in
(2− o(1))n rounds
(despite the stabilization on each of G and H is reached in less
than n rounds).

12/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

13/32

Basic concepts

A network = a graph G
A processor (a finite automaton) = a node in G
The initial states are identical for nodes of the same degree
In a unit of time — a message exchange along each edge

Examples of problems.
Leader election: Exactly one processor has to come in a
distinguished state “elected”.
Network topology recognition: One of the processors (or all of
them) has to come in a special state iff G has a specified property
(for example, G is bipartite, planar, . . .).

14/32

Covering maps — basic definitions

Let G and H be connected.
α is a covering map from H to G if α is

a homomorphism from H onto G,
a bijection from N(v) onto N(α(v)) for each v ∈ V (H).

We say that H is a covering graph of G or that H covers G.

x x

Ux(G) is the “unfolding” of G from x into an (infinite) tree.

x

Ux(G) covers any covering graph of G and is called a universal
cover of G.

15/32

Another example of a universal cover

G

x

U4
x(G)

x

16/32

Applications in distributed computing: an example

Lemma
Let α : H → G be a covering map for the networks G and H.
Then the processors v and α(v) will be always in the same state.

Lemma
Planar graphs are not closed under covering maps.

Corollary
Planarity is not recognizable by local computations.

17/32

Color refinement in distributed computing

Angluin:
The following conditions are equivalent.

G and H have a common covering graph.
U(G) ∼= U(H){
Ci(u) : u ∈ V (G)

}
=

{
Ci(v) : v ∈ V (H)

}
, for all i.

18/32

Relation to FO2
#

Angluin + Immerman & Lander + Ramana et al.
If G and H have equally many vertices, then the following
conditions are equivalent.

G and H are indistinguishable in FO2
#.

G and H are fractionally isomorphic.
G and H are indistinguishable by Color Refinement.
G and H have isomorphic universal covers.

19/32

Truncated universal covers

Ux(G) ∼= Uy(H) =⇒ the processors x and y are all the time in
equal states (i.e., indistinguishable by local computations).

Let U t
x(G) denote the rooted tree Ux(G) truncated at depth t.

U t
x(G)

∼= U t
y(H) =⇒ x and y are in equal states up to time t.

Lemma

U t
x(G)

∼= U t
y(H) iff Ct(x) = Ct(y).

20/32

Truncated universal covers

Ux(G) ∼= Uy(H) =⇒ the processors x and y are all the time in
equal states (i.e., indistinguishable by local computations).

Let U t
x(G) denote the rooted tree Ux(G) truncated at depth t.

U t
x(G)

∼= U t
y(H) =⇒ x and y are in equal states up to time t.

Lemma

U t
x(G)

∼= U t
y(H) iff Ct(x) = Ct(y).

21/32

Lemma

U t
x(G)

∼= U t
y(H) iff Ct(x) = Ct(y).

Exercise
Prove it by induction on t.

Hint
Prove first the following Tree Reconstruction Lemma:
Let T and S be trees, x ∈ V (T), y ∈ V (S), N(x) = {x1, . . . , xk},
and N(y) = {y1, . . . , yk}. Then

T r
x
∼= Sr

y and T r
xi
∼= Sr

yi for all i ≤ k =⇒ T r+1
x
∼= Sr+1

y .

Exercise

Apply it for another proof that every tree is definable in FO2
#.

22/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

23/32

What truncation depth is enough?

Lemma

U t
x(G)

∼= U t
y(H) iff Ct(x) = Ct(y).

By the color stabilization argument:
if G and H are two graphs with at most n vertices each, then

U2n−1
x (G) ∼= U2n−1

y (H) =⇒ Ux(G) ∼= Uy(H).

Norris’s question (1995)

Can 2n− 1 be improved to n in this implication?
(Yes if G = H)

24/32

Theorem (Krebs, V. 2015)

There are n-vertex graphs G and H with vertices x ∈ V (G) and
y ∈ V (H) such that

1 U
2n−16

√
n

x (G) ∼= U
2n−16

√
n

y (H) while Ux(G) 6∼= Uy(H);

2 D2
#(G,H) > n− 8

√
n.

25/32

Construction of G = Gs,t and H = Hs,t

Each graph is a chain of t blocks:
one head block,
t− 1 tail blocks

All tail blocks are identical and have s+ 10 vertices.

The tail block for s = 5
.

26/32

x

the head block
t− 1 tail blocks

y

The graphs Gs,t and Hs,t for s = 3, t = 3.
27/32

We distinguish ds/2e+ 3 types of vertices, presented by
auxiliary colors.
This auxiliary coloring is almost stable: All vertex
neighborhoods (excepting for x and y) are

, , , , .

Ci(x) = Ci(y) iff Duplicator has a winning strategy in the
i-round bisimulation version of the Immerman-Lander game on
(G, x,H, y). This is so for i = 2t(s+ 5)− 2, while Spoiler has
a winning strategy for larger i.
The graphs have n = (t+ 1)(s+ 10)− 5 vertices. Take
s = 2t+ 1.

28/32

Conclusion

The universal cover Ux(G) contains all knowledge about the
network G available to a particular party x.
A large bunch of distributed algorithms is based on computing
the isomorphism type of Ux(G) by the party x.
The bound of 2n is a standard upper bound for the
communication round complexity of such algorithms.
Our solution of Norris’s problem implies that this bound is
tight up to a term of o(n).
This seems to be the first application of FMT in the field.

Open problem

Can the lower bound of 2n−O(
√
n) be improved to 2n−O(1)?

29/32

Conclusion

The universal cover Ux(G) contains all knowledge about the
network G available to a particular party x.
A large bunch of distributed algorithms is based on computing
the isomorphism type of Ux(G) by the party x.
The bound of 2n is a standard upper bound for the
communication round complexity of such algorithms.
Our solution of Norris’s problem implies that this bound is
tight up to a term of o(n).
This seems to be the first application of FMT in the field.

Open problem

Can the lower bound of 2n−O(
√
n) be improved to 2n−O(1)?

30/32

Outline

1 A retrospective view

2 Color refinement in isomorphism testing (recap)

3 Color refinement in distributed computing

4 Norris’s problem

5 References

31/32

References

Andreas Krebs and Oleg Verbitsky. Universal covers, color
refinement, and two-variable counting logic: Lower bounds for
the depth. LICS 2015.

32/32

	A retrospective view
	Color refinement in isomorphism testing (recap)
	Color refinement in distributed computing
	Norris's problem
	References

