# A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15-19 August

# $\label{eq:Part 6:} \end{tabular} \mbox{Part 6:} \\ \mbox{Existential-positive } FO^2 \mbox{ and } \mbox{Constraint Satisfaction} \end{tabular}$



Constraint Satisfaction Problem and Constraint Propagation



2 The existential k-pebble game





Time complexity of Arc Consistency



#### Constraint Satisfaction Problem and Constraint Propagation

#### 2 The existential k-pebble game

- 3 k-Consistency Checking
- 4 Time complexity of Arc Consistency

## Constraint Satisfaction Problem (CSP)

| Variables   | $x_1, x_2, x_3, x_4, x_5$                                       |
|-------------|-----------------------------------------------------------------|
| Values      | $x_i \in \{1, 2, 3\}$                                           |
| Constraints | $x_1  eq x_2$ , $x_2  eq x_3$ , $x_3  eq x_4$ , $x_4  eq x_1$ , |
|             | $x_1  eq x_5$ , $x_2  eq x_5$ , $x_3  eq x_5$ , $x_4  eq x_5$   |
| Question:   | Is there an assignment of values to the                         |
|             | variables satisfying all constraints?                           |



# Constraint Satisfaction Problem (CSP)

| Variables   | $x_1, x_2, x_3, x_4, x_5, x_6$                                                  |
|-------------|---------------------------------------------------------------------------------|
| Values      | $x_i \in \{1, 2, 3\}$                                                           |
| Constraints | $x_1 \neq x_2, \ x_2 \neq x_3, \ x_3 \neq x_4, \ x_4 \neq x_5, \ x_5 \neq x_1,$ |
|             | $x_1 \neq x_6, \ x_2 \neq x_6, \ x_3 \neq x_6, \ x_4 \neq x_6, \ x_5 \neq x_6$  |
| Question:   | ls there an assignment of values to the                                         |
|             | variables satisfying all constraints?                                           |



No!

Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$\frac{x=1, \ y \neq x}{y \neq 1} \quad \text{etc.}$$





Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$\frac{x=1, \ y \neq x}{y \neq 1} \quad \text{etc.}$$





Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$rac{x=1, \ y
eq x}{y
eq 1}$$
 etc.





Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$\frac{x=1, \ y \neq x}{y \neq 1} \quad \text{etc.}$$





Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$\frac{x=1, \ y \neq x}{y \neq 1} \quad \text{etc.}$$





Methodolody: derivation instead of search

Example: 3-COLORABILITY. We can choose an arbitrary edge and color it arbitrarily.

$$\frac{x=1, \ y \neq x}{y \neq 1} \quad \text{etc.}$$



The Feder-Vardi paradigm: a CSP = a Homomorphism Problem

For example, a graph G is 3-colorable iff there is a homomorphism from G to  $K_3$  (notation:  $G \to K_3$ ).



#### Constraint Satisfaction Problem and Constraint Propagation

#### 2 The existential k-pebble game

- 3 k-Consistency Checking
- 4 Time complexity of Arc Consistency

## A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:

- $G \not\rightarrow H$ ,
- some existential-positive formula distinguishes G from H,
- Spoiler has a winning strategy in the existential k-pebble game on G and H for some k.

## A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:

- $G \not\rightarrow H$ ,
- some existential-positive formula distinguishes G from H,
- Spoiler has a winning strategy in the existential k-pebble game on G and H for some k.

The existential-positive logic  $FO_{\exists,+}$  allows only monotone Boolean connectives (no negation) and only existential quantifiers (no universal quantification).

The existential k-pebble game on G and H is the version of the k-pebble Ehrenfeucht game where

- Spoiler moves always in G,
- Duplicator must keep a partial homomorphism.



















#### The existential k-pebble game

#### Observation:

If there is a homomorphism h from G to H, then Duplicator wins by pebbling h(v) if Spoiler pebbles v.

Hence, the game can be used as heuristics for the CSP.

Of course, it is incomplete if k is not large enough. In our example, k = 3 is enough and k = 2 is not.



Let  $G_n$  denote the wheel graph with n vertices. If n is even, then Spoiler wins the existential game on  $G_n$  and  $K_3$  with 4 pebbles.





Spoiler (1234)



Let  $G_n$  denote the wheel graph with n vertices. If n is even, then Spoiler wins the existential game on  $G_n$  and  $K_3$  with 4 pebbles.





 $\begin{array}{c} \mathsf{Spoiler} \\ \texttt{2}\texttt{3}\texttt{4} \end{array}$ 



Let  $G_n$  denote the wheel graph with n vertices. If n is even, then Spoiler wins the existential game on  $G_n$  and  $K_3$  with 4 pebbles.





 $\begin{array}{c} \mathsf{Spoiler} \\ \texttt{2}\texttt{3}\texttt{4} \end{array}$ 



























Spoiler







Spoiler

Duplicator





Spoiler

Duplicator





Spoiler

Duplicator



2 The existential k-pebble game





#### Theorem (Kolaitis, Vardi 95)

Suppose that  $G \not\rightarrow H$ . Then the following three conditions are equivalent:

- $W_{\exists,+}(G,H) \leq k$ , i.e., G is distinguishable from H by an existential-positive sentence with k variables;
- Spoiler wins the existential k-pebble game on G and H;
- k-Consistency Checking recognizes that  $G \not\rightarrow H$ .

# k-Consistency Checking (recasted)

#### Algorithmic problem

Given two finite structures G and H, does Spoiler win the existential k-pebble game on these structures?

- This is a relaxation of the homomorphism problem.
- For small k, it is commonly used as a heuristics approach.

A propagation-based algorithm makes derivations like



winning positions for Spoiler
↓
a winning position too

(a position is a mapping of  $\leq k$  vertices from V(G) into V(H)) Spoiler has a winning stategy  $\Leftrightarrow$  the uncolored graph is derivable. Since there are at most  $N = v(G)^k v(H)^k$  positions, all derivations can be generated in time  $N^{k+1}$  (the wasteful version of k-consistency checking).

Nevertheless, if k is fixed, this takes polynomial time (while CSP is NP-complete).

# The time complexity of k-Consistency Checking

#### Theorem

The k-Consistency problem is solvable in

- time  $O(v(G)^k v(H)^k) = O(n^{2k})$  for each k [Cooper 89]
- but not in time  $O(n^{\frac{k-3}{12}})$  for  $k \ge 15$  [Berkholz 12]

# The time complexity of k-Consistency Checking

#### Theorem

The k-Consistency problem is solvable in

- time  $O(v(G)^k v(H)^k) = O(n^{2k})$  for each k [Cooper 89]
- but not in time  $O(n^{\frac{k-3}{12}})$  for  $k \ge 15$  [Berkholz 12]

Question. What about Arc Consistency (k = 2)?

Remark. If k = 2, we consider directed graphs.

# The time complexity of k-Consistency Checking

#### Theorem

The k-Consistency problem is solvable in

- time  $O(v(G)^k v(H)^k) = O(n^{2k})$  for each k [Cooper 89]
- but not in time  $O(n^{\frac{k-3}{12}})$  for  $k \ge 15$  [Berkholz 12]

Question. What about Arc Consistency (k = 2)?

**Remark**. If k = 2, we consider directed graphs.

In practice: All known Arc Consistency (k = 2) algorithms

• AC-1, AC-3, AC-3.1 / AC-2001, AC-3.2, AC-3.3, AC-3<sub>d</sub>, AC-4, AC-5, AC-6, AC-7, AC-8, AC-\* etc.

are based on constraint propagation.



- 3 k-Consistency Checking



Time complexity of Arc Consistency

Denote the number of vertices and edges by v(G) and e(G) resp.

#### Theorem (Berkholz, V. 2013)

- Arc Consistency is solvable in time O(v(G)e(H) + e(G)v(H)), which implies  $O(n^3)$  in terms of n = v(G) + v(H).

## Proof-scheme

- A propagation-based algorithm  $\mapsto$  a winning strategy for Spoiler
- $\bullet$  The time on input  $G,H\mapsto$  the size of the game tree
- In fact, it is enough to show that the optimum depth of the game tree, which is equal to  $D_{\exists,+}(G,H)$ , is large for some G and H.

#### Lemma (constraint propagation can be slow)

There are directed graphs G and H with v(G)=v(H)-1=n such that

- Spoiler wins the existential 2-pebble game on G and H;
- Duplicator can resist in  $\Omega(n^2)$  rounds.

**Remark**.  $n^2 + 1$  rounds always suffice for Spoiler.

















































#### Open problem

Can Arc Consistency be solved faster than in time  $O(n^3)$  (by methods different from constraint propagation)?

- T. Feder, M. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28:57-104 (1998).
- C. Berkholz. Lower bounds for existential pebble games and k-consistency tests. LICS'12.
- C. Berkholz, O. Verbitsky: On the speed of Constraint Propagation and the time complexity of Arc Consistency testing. MFCS'13.