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Constraint Satisfaction Problem (CSP)

Variables x1, x2, x3, x4, x5
Values xi ∈ {1, 2, 3}
Constraints x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x1,

x1 6= x5, x2 6= x5, x3 6= x5, x4 6= x5
Question: Is there an assignment of values to the

variables satisfying all constraints?
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Variables x1, x2, x3, x4, x5, x6
Values xi ∈ {1, 2, 3}
Constraints x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1,
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Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

7/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

8/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

9/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

10/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

11/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23

12/62



The Feder-Vardi paradigm:
a CSP = a Homomorphism Problem

For example, a graph G is 3-colorable i� there is a homomorphism
from G to K3 (notation: G→ K3).
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A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:

G 6→ H,

some existential-positive formula distinguishes G from H,

Spoiler has a winning strategy in the existential k-pebble game
on G and H for some k.

The existential-positive logic FO∃,+ allows only monotone Boolean
connectives (no negation) and only existential quanti�ers (no
universal quanti�cation).

The existential k-pebble game on G and H is the version of the
k-pebble Ehrenfeucht game where

Spoiler moves always in G,

Duplicator must keep a partial homomorphism.
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The existential k-pebble game (Kolaitis-Vardi)

G H

Spoiler Duplicator

Objective:

show that ¬∃ homom. G → H it may exist
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The existential k-pebble game

Observation:

If there is a homomorphism h from G to H, then Duplicator wins
by pebbling h(v) if Spoiler pebbles v.

Hence, the game can be used as heuristics for the CSP.

Of course, it is incomplete if k is not large enough.
In our example, k = 3 is enough and k = 2 is not.

G H
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Another example

Let Gn denote the wheel graph with n vertices.
If n is even, then Spoiler wins the existential game on Gn and K3

with 4 pebbles.

Spoiler Duplicator

1 2 3 4 1 2 3 4

11

1

22

2

33

3
44

4

2
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The triad: A logic, a game, an algorithm

Theorem (Kolaitis, Vardi 95)

Suppose that G 6→ H. Then the following three conditions are
equivalent:

W∃,+(G,H) ≤ k, i.e., G is distinguishable from H by an
existential-positive sentence with k variables;

Spoiler wins the existential k-pebble game on G and H;

k-Consistency Checking recognizes that G 6→ H.
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k-Consistency Checking (recasted)

Algorithmic problem

Given two �nite structures G and H, does Spoiler win the
existential k-pebble game on these structures?

This is a relaxation of the homomorphism problem.

For small k, it is commonly used as a heuristics approach.

A propagation-based algorithm makes derivations like

- winning positions for Spoiler
⇓

- a winning position too

(a position is a mapping of ≤ k vertices from V (G) into V (H))

Spoiler has a winning stategy ⇔ the uncolored graph is derivable.
41/62



The time complexity of k-Consistency Checking

Since there are at most N = v(G)kv(H)k positions, all derivations
can be generated in time Nk+1 (the wasteful version of
k-consistency checking).

Nevertheless, if k is �xed, this takes polynomial time (while CSP is
NP-complete).
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The time complexity of k-Consistency Checking

Theorem

The k-Consistency problem is solvable in

time O(v(G)kv(H)k) = O(n2k) for each k [Cooper 89]

but not in time O(n
k−3
12 ) for k ≥ 15 [Berkholz 12]

Question. What about Arc Consistency (k = 2)?

Remark. If k = 2, we consider directed graphs.

In practice: All known Arc Consistency (k = 2) algorithms

AC-1, AC-3, AC-3.1 / AC-2001, AC-3.2, AC-3.3, AC-3d, AC-4,
AC-5, AC-6, AC-7, AC-8, AC-∗ etc.

are based on constraint propagation.
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Bounds for the propagation approach

Denote the number of vertices and edges by v(G) and e(G) resp.

Theorem (Berkholz, V. 2013)

1 Arc Consistency is solvable in time O(v(G)e(H) + e(G)v(H)),
which implies O(n3) in terms of n = v(G) + v(H).

2 Any propagation-based arc consistency algorithm takes time
Ω(n3).
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Proof-scheme

A propagation-based algorithm 7→ a winning strategy for
Spoiler

The time on input G,H 7→ the size of the game tree

In fact, it is enough to show that the optimum depth of the
game tree, which is equal to D∃,+(G,H), is large for some G
and H.

Lemma (constraint propagation can be slow)

There are directed graphs G and H with v(G) = v(H)− 1 = n
such that

Spoiler wins the existential 2-pebble game on G and H;

Duplicator can resist in Ω(n2) rounds.

Remark. n2 + 1 rounds always su�ce for Spoiler.
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An example of slow constraint propagation

G
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Open problem

Can Arc Consistency be solved faster than in time O(n3) (by
methods di�erent from constraint propagation)?
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