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Part 6:
Existential-positive FO? and Constraint Satisfaction
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Outline

@ Constraint Satisfaction Problem and Constraint Propagation

© The existential k-pebble game

© k-Consistency Checking

@ Time complexity of Arc Consistency
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@ Constraint Satisfaction Problem and Constraint Propagation

4/62



Constraint Satisfaction Problem (CSP)

Variables T1,%2,X3, T4, T5

Values x; € {1,2,3}

Constraints  x1 # o, T2 # T3, T3 F# T4, T4 F X1,
T # X5, Ty # T, T3 £ Ts, Ty F Ty

Question: Is there an assignment of values to the
variables satisfying all constraints?
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Constraint Satisfaction Problem (CSP)

Variables T1, %2, X3, T4, T, TG

Values x; € {1,2,3}

Constraints 1 # X9, Xo # T3, T3 F T4, T4 F# T5, T5 £ T1,
T1 # Te, T2 F Te, T3 F T6, T4 7 T6, T5 7 L6

Question: Is there an assignment of values to the
variables satisfying all constraints?

@ No!

6/62



Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

. r=1 X
Derivation rules: ,—y# etc.
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Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

. r=1 X
Derivation rules: ,—y# etc.
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The Feder-Vardi paradigm:
a CSP = a Homomorphism Problem

For example, a graph G is 3-colorable iff there is a homomorphism
from G to K3 (notation: G — K3).
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Outline

© The existential k-pebble game
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A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:
o GA H,
@ some existential-positive formula distinguishes G from H,

@ Spoiler has a winning strategy in the existential k-pebble game
on G and H for some k.
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A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:
o GA H,
@ some existential-positive formula distinguishes G from H,

@ Spoiler has a winning strategy in the existential k-pebble game
on G and H for some k.

The existential-positive logic FOg , allows only monotone Boolean
connectives (no negation) and only existential quantifiers (no
universal quantification).

The existential k-pebble game on G and H is the version of the
k-pebble Ehrenfeucht game where

@ Spoiler moves always in G,

@ Duplicator must keep a partial homomorphism.
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The existential k-pebble game (Kolaitis-Vardi)

G H
Spoiler Duplicator
® o o e o o

Objective:
show that —3 homom. G — H it may exist
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The existential k-pebble game (Kolaitis-Vardi)

G H

Spoiler Duplicator
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The existential k-pebble game

Observation:

If there is a homomorphism h from G to H, then Duplicator wins
by pebbling h(v) if Spoiler pebbles v.

Hence, the game can be used as heuristics for the CSP.

Of course, it is incomplete if k is not large enough.
In our example, k = 3 is enough and k& = 2 is not.

G H
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Another example

Let G,, denote the wheel graph with n vertices.
If n is even, then Spoiler wins the existential game on G,, and K3
with 4 pebbles.

Spoiler Duplicator
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Another example

Let G,, denote the wheel graph with n vertices.
If n is even, then Spoiler wins the existential game on G,, and K3
with 4 pebbles.

Spoiler Duplicator
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Outline

© k-Consistency Checking
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The triad: A logic, a game, an algorithm

Theorem (Kolaitis, Vardi 95)

Suppose that G /» H. Then the following three conditions are
equivalent:

e W3, (G,H) <k, ie., G is distinguishable from H by an
existential-positive sentence with k variables;

@ Spoiler wins the existential k-pebble game on G and H;
e k-Consistency Checking recognizes that G /A H.
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k-Consistency Checking (recasted)

Algorithmic problem

Given two finite structures G and H, does Spoiler win the
existential k-pebble game on these structures?

@ This is a relaxation of the homomorphism problem.

@ For small k, it is commonly used as a heuristics approach.

A propagation-based algorithm makes derivations like

% C% % - winning positions for Spoiler

4

% - a winning position too

(a position is a mapping of < k vertices from V(G) into V(H))

Spoiler has a winning stategy < the uncolored graph is derivable.
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The time complexity of k-Consistency Checking

Since there are at most N = v(G)*v(H)* positions, all derivations
can be generated in time N**1 (the wasteful version of
k-consistency checking).

Nevertheless, if k is fixed, this takes polynomial time (while CSP is
NP-complete).
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The time complexity of k-Consistency Checking

Theorem

The k-Consistency problem is solvable in
o time O(v(G)*v(H)*) = O(n?*) for each k  [Cooper 89]
@ but not in time O(n%) for k > 15 [Berkholz 12]
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The time complexity of k-Consistency Checking

Theorem

The k-Consistency problem is solvable in
o time O(v(G)*v(H)*) = O(n?*) for each k  [Cooper 89]
e but not in time O(n%) for k > 15 [Berkholz 12]

Question. What about Arc Consistency (k = 2)7

Remark. If k& = 2, we consider directed graphs.

In practice: All known Arc Consistency (k = 2) algorithms

e AC-1, AC-3, AC-3.1 / AC-2001, AC-3.2, AC-3.3, AC-3,, AC-4,
AC-5, AC-6, AC-7, AC-8, AC-x etc.

are based on constraint propagation.
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Outline

@ Time complexity of Arc Consistency
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Bounds for the propagation approach

Denote the number of vertices and edges by v(G) and e(G) resp.

Theorem (Berkholz, V. 2013)
@ Arc Consistency is solvable in time O(v(G)e(H) + e(G)v(H)),
which implies O(n®) in terms of n = v(G) + v(H).
@ Any propagation-based arc consistency algorithm takes time
Q(n?).
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Proof-scheme

@ A propagation-based algorithm +— a winning strategy for
Spoiler
@ The time on input G, H + the size of the game tree

@ In fact, it is enough to show that the optimum depth of the
game tree, which is equal to D3, (G, H), is large for some G
and H.

Lemma (constraint propagation can be slow)

There are directed graphs G and H with v(G) =v(H)—1=n
such that

@ Spoiler wins the existential 2-pebble game on G and H;

@ Duplicator can resist in Q(n?) rounds.

Remark. n? + 1 rounds always suffice for Spoiler.
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An example of slow constraint propagation
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An example of slow constraint propagation
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Open problem

Can Arc Consistency be solved faster than in time O(n3) (by
methods different from constraint propagation)?
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