A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

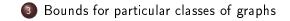
Humboldt University of Berlin, Germany

ESSLLI 2016, 15-19 August

Part 8: $FO_{\#}^k$ with $k \ge 3$: Applications to Isomorphism Testing

Outline

2 Weisfeiler-Leman algorithm



Outline

- 2 Weisfeiler-Leman algorithm
- 3 Bounds for particular classes of graphs

Definition

 \overline{G} denotes the *complement graph* of G: $V(\overline{G}) = V(G)$ and $uv \in E(\overline{G}) \iff uv \notin E(G)$.

Exercise

Prove that, if G is definable in ${\rm FO}_{\#}^k,$ then \overline{G} is also definable in ${\rm FO}_{\#}^k.$

Closure properties of definable graphs

Definition

 $G_1 + G_2$ denotes the vertex-disjoint union of graphs G_1 and G_2 .

Exercise

Let $k \geq 3$. Suppose that connected graphs G_1, \ldots, G_m are definable in $FO_{\#}^k$. Prove that $G_1 + G_2 + \ldots + G_m$ is also definable in $FO_{\#}^k$.

Hint

As an example, let k = 3 and suppose that G = 5A + 4B and H = 4A + 5B for some connected A and B such that $W_{\#}(A, B) \leq 3$. In the first round, Spoiler makes a counting move in G by marking all vertices in all A-components. Duplicator is forced to mark at least one vertex v in a B-component of H. Spoiler pebbles v, and Duplicator can only pebble some vertex u in an A-component of G. From now on, Spoiler plays in the components that contain u and v using his winning strategy for the game on A and B. If Duplicator marks a vertex in a different component, she loses anyway (why?).

Cographs

Definition

A graph is called a cograph if it contains no P_4 as an induced subgraph.

Theorem (Corneil et al.1981)

- P_1 is a cograph.
- 2 If G is a cograph, then \overline{G} is also a cograph.
- \bullet If G and H are cographs, then G + H is also a cograph.
- A graph is a cograph only if it can be constructed according to the preceding statements.

Corollary

- Every cograph is definable in $FO_{\#}^3$.
- The isomorphism problem for cographs is solvable in polynomial time by the 2-dim Weisfeiler-Leman algorithm.

2 Weisfeiler-Leman algorithm

3 Bounds for particular classes of graphs

4 References

k-dimensional Weisfeiler-Leman algorithm

- 1-dim WL = the color refinement algorithm
- k-dim WL colors $V(G)^k$
- Initial coloring: $C^1(\bar{u}) =$ the equality type of $\bar{u} \in V(G)^k$ and the isomorphism type of the spanned subgraph

• Color refinement:

$$C^{i}(\bar{u}) = \{C^{i-1}(\bar{u}), \{(C^{i-1}(\bar{u}^{1,x}), \dots, C^{i-1}(\bar{u}^{k,x}))\}_{x \in V}\},\$$

where $(u_{1}, \dots, u_{i}, \dots, u_{k})^{i,x} = (u_{1}, \dots, x, \dots, u_{k})$

- \bullet purports to decide if input graphs G and H are isomorphic:
 - If $G \cong H$, the output is correct,
 - if $G \not\cong H$, the output can be wrong;
- has two parameters: dimension and number of rounds.
- Fixed dimension $k \implies \leq n^k$ rounds \implies polynomial running time.
- Fixed dimension and $O(\log n)$ rounds \implies parallel logarithmic time.

Corollary (Cai, Fürer, Immerman 92)

Let C be a class of graphs G with $W_{\#}(G) \leq k$ for a constant k. Then Graph Isomorphism for C is solvable in P.

Corollary (Grohe, V. 06)

- Let C be a class of graphs G with $D^k_{\#}(G) = O(\log n)$. Then Graph Isomorphism for C is solvable in $\mathrm{TC}^1 \subseteq \mathrm{NC}^2 \subseteq \mathrm{AC}^2$.
- 2 Let C be a class of graphs G with $D^k(G) = O(\log n)$. Then Graph Isomorphism for C is solvable in $AC^1 \subseteq TC^1$.

Bounds for particular classes of graphs

Classes of graphs: Trees

- $W_{\#}(T) \leq 2$ for every tree T.
- $D^2_{\#}(P_n) \ge \frac{n}{2} 1$
- Speed-up: one extra variable \implies logarithmic depth !

Theorem

If T is a tree on n vertices, then $D^3_{\#}(T) \leq 3\log n + 2$.

We can easily distinguish between T and $T' \not\cong T$ if T'

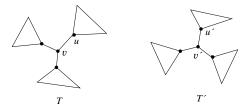
- is disconnected;
- has different number of vertices;
- has the same number of vertices, is connected but has a cycle;
- has larger maximum degree.

It remains the case that T' is a tree with the same maximum degree. For simplicity, assume that the maximum degree is 3 (then no counting quantifiers are needed).

We need to show that Spoiler wins the 3-pebble game on T and T' in $3\log n+2$ moves.

Step 1. Spoiler pebbles a separator v in T (every component of T-v has $\leq n/2$ vertices).

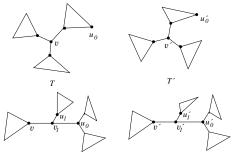
Step 2. Spoiler ensures pebbling $u \in N(v)$ and $u' \in N(v')$ so that the corresponding components are non-isomorphic rooted trees.



Spoiler forces further play on these components and applies the same strategy again.

Proof cont'd

A complication: the strategy is now applied to a graph with one vertex pebbled and we may need more than 3 pebbles. Assume that u_0 and u'_0 were pebbled earlier and T - v and T' - v' differ only by the components containing u_0 and u'_0 . Suppose that $d(v, u_0) = d(v', u'_0)$.



Step 3. Spoiler pebbles v_1 in the v- u_0 -path such that $T-v_1$ and $T'-v'_1$ differ by components with no pebble

(assuming that $d(v, v_1) = d(v', v_1')$).

lsomorphism of trees (history revision)

Theorem

If T is a tree on n vertices, then $D^3_{\#}(T) \leq 3\log n + 2$.

Testing isomorphism of trees is

- in Log-Space [Lindell 1992]
- in AC¹ [Miller-Reif 1991]
- in AC^1 if $\Delta = O(\log n)$
- in Lin-Time by CR

Miller-Reif 1991] [Ruzzo 1981] [Edmonds 1965]

Miller and Reif [SIAM J. Comput. 1991]: "No polylogarithmic parallel algorithm was previously known for isomorphism of unbounded- degree trees."

However, the $3 \log n$ -round 2-WL solves it in TC^1 and is known since 1968 !

Classes of graphs: Bounded tree-width, planar, interval

For a graph G of tree-width k on n vertices $W_{\#}(G) \leq k+2$ [Grohe, Mariño 99]; $D_{\#}^{4k+4}(G) < 2(k+1)\log n + 8k + 9$ [Grohe, V. 06].

For a planar graph G on n vertices $W_{\#}(G) = O(1)$ [Grohe 98]. If G is, moreover, 3-connected, then $D^{15}(G) < 11 \log n + 45$ [V. 07].

For an interval graph G on n vertices $W_{\#}(G) \leq 3$ [Evdokimov et al. 00, Laubner 10]; $D^{15}_{\#}(G) < 9 \log n + 8$ [Köbler, Kuhnert, Laubner, V. 11].

Theorem (Grohe 12)

For each F, if G excludes F as a minor, then

 $W_{\#}(G) = O(1).$

Open problem

Is it then true that $D^k_{\#}(G) = O(\log n)$ for some constant k?

- 2 Weisfeiler-Leman algorithm
 - 3 Bounds for particular classes of graphs

- J.-y. Cai, M. Fürer, N. Immerman. An optimal lower bound on the number of variables for graph identifications. Combinatorica 12: 389-410 (1992).
- M. Grohe, O. Verbitsky. Testing graph isomorphism in parallel by playing a game. ICALP'06.
- M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59 (2012).
- For practical aspects, see *http://pallini.di.uniroma1.it/*