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Part 8: FOY, with k > 3:
Applications to Isomorphism Testing
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Closure properties of definable graphs

Definition
G denotes the complement graph of G:

V(G) =V(G) and wv € E(G) < wv ¢ E(G).

Exercise

Prove that, if G is definable in FO%, then G is also definable
in FO’;E.
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Closure properties of definable graphs

Definition
G171 + G5 denotes the vertex-disjoint union of graphs G1 and Gs.

Exercise

Let £ > 3. Suppose that connected graphs G1,...,G,, are
definable in FO’;&. Prove that G1 + G2 + ... + G,, is also definable
g k

in FO#.

Hint

As an example, let £k = 3 and suppose that G = 5A + 4B and

H = 4A + 5B for some connected A and B such that W4 (A, B) < 3. In
the first round, Spoiler makes a counting move in G by marking all
vertices in all A-components. Duplicator is forced to mark at least one
vertex v in a B-component of H. Spoiler pebbles v, and Duplicator can
only pebble some vertex u in an A-component of G. From now on,
Spoiler plays in the components that contain u and v using his winning
strategy for the game on A and B. If Duplicator marks a vertex in a
different combponent she loses anvwav (whv?) 6/21




Cographs

Definition
A graph is called a cograph if it contains no P, as an induced
subgraph.

Theorem (Corneil et al.1981)
© Py is a cograph.
© IfG is a cograph, then G is also a cograph.
© I/f G and H are cographs, then G + H is also a cograph.

© A graph is a cograph only if it can be constructed according to
the preceding statements.

Corollary

e Every cograph is definable in FOi.

@ The isomorphism problem for cographs is solvable in
polynomial time by the 2-dim Weisfeiler-Leman algorithm.
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k-dimensional Weisfeiler-Leman algorithm

@ 1-dim WL = the color refinement algorithm

o k-dim WL colors V(G)¥

o Initial coloring: C'(@) = the equality type of @ € V(G)* and
the isomorphism type of the spanned subgraph

° quor refinement: A
Ci(a) = {C* (@), {(C"(a""),...,C" (@) uev ),

where (ug, ... Ui, up)® = (Ug, ..., 2, ... ug)
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The Weisfeiler-Leman algorithm

purports to decide if input graphs G and H are isomorphic:

o If G = H, the output is correct,
e if G % H, the output can be wrong;

has two parameters: dimension and number of rounds.

Fixed dimension & = < n* rounds = polynomial
running time.

e Fixed dimension and O(logn) rounds = parallel logarithmic
time.
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The Weisfeiler-Leman algorithm

Corollary (Cai, Fiirer, Immerman 92)

Let C be a class of graphs G with W4 (G) < k for a constant k.
Then Graph Isomorphism for C is solvable in P.

Corollary (Grohe, V. 06)

© Let C be a class of graphs G with D’%;(G) = O(logn).

Then Graph Isomorphism for C is solvable in TC! C NC? C ACP.
Q Let C be a class of graphs G with D*(G) = O(logn).

Then Graph Isomorphism for C is solvable in AC' C TC!.
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Classes of graphs: Trees

e Wy(T) < 2 for every tree T'.
o Di(P)>% -1
@ Speed-up: one extra variable = logarithmic depth !

Theorem
IfT is a tree on n vertices, then D, (T) < 3logn + 2.
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Proof-sketch

We can easily distinguish between T" and TV 2 T if T’
@ is disconnected;
@ has different number of vertices;
@ has the same number of vertices, is connected but has a cycle;
@ has larger maximum degree.
It remains the case that T” is a tree with the same maximum

degree. For simplicity, assume that the maximum degree is 3 (then
no counting quantifiers are needed).
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Proof cont'd (a separator strategy)

We need to show that Spoiler wins the 3-pebble game on T and T’
in 3logn + 2 moves.

Step 1. Spoiler pebbles a separator v in T' (every component of

T — v has < n/2 vertices).

Step 2. Spoiler ensures pebbling u € N(v) and ' € N(v') so that
the corresponding components are non-isomorphic rooted trees.

u’

Spoiler forces further play

v v
on these components and
applies the same strategy
T T again.
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Proof cont'd

A complication: the strategy is now applied to a graph with one
vertex pebbled and we may need more than 3 pebbles. Assume that
up and u(, were pebbled earlier and T'— v and 7" — o/ differ only by
the components containing ug and u(,. Suppose that

d(v,up) = d(v', up).

Step 3. Spoiler pebbles vy
in the v-ug-path such that
T—wvy and T'—v] differ by
components with no peb-
ble

(assuming that

d(v,v1) = d(v',v])).
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Isomorphism of trees (history revision)

Theorem
If T is a tree on n vertices, then D}, (T) < 3logn + 2.

Testing isomorphism of trees is

@ in Log-Space [Lindell 1992]
e in AC! [Miller-Reif 1991]
e in AC! if A = O(logn) [Ruzzo 1981]
@ in Lin-Time by CR [Edmonds 1965]

Miller and Reif [SIAM J. Comput. 1991]: “No polylogarithmic
parallel algorithm was previously known for isomorphism of
unbounded- degree trees.”

However, the 3logn-round 2-WL solves it in TC! and is known
since 1968 !
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Classes of graphs: Bounded tree-width, planar, interval

For a graph G of tree-width & on n vertices
Wu(G) <k+2 [Grohe, Marifio 99];

D4#k+4(G) <2(k+1)logn+8k+9 [Grohe, V. 06].

For a planar graph GG on n vertices
Wx(G) =0O(1) [Grohe 98].
If G is, moreover, 3-connected, then

DB(G) < 11 logn +45 [V. 07].

For an interval graph G on n vertices
Wx(G) <3 [Evdokimov et al. 00, Laubner 10];

Dif(G) < 9logn + 8 [Kébler, Kuhnert, Laubner, V. 11].
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Graphs with an excluded minor

Theorem (Grohe 12)

For each F, if G excludes F' as a minor, then

Open problem
Is it then true that D’;&(G) = O(logn) for some constant k7
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