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Part 8: FOk
# with k ≥ 3:

Applications to Isomorphism Testing

2/21



Outline

1 Warm-up

2 Weisfeiler-Leman algorithm

3 Bounds for particular classes of graphs

4 References

3/21



Outline

1 Warm-up

2 Weisfeiler-Leman algorithm

3 Bounds for particular classes of graphs

4 References

4/21



Closure properties of de�nable graphs

De�nition

G denotes the complement graph of G:
V (G) = V (G) and uv ∈ E(G) ⇐⇒ uv /∈ E(G).

Exercise

Prove that, if G is de�nable in FOk
#, then G is also de�nable

in FOk
#.
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Closure properties of de�nable graphs

De�nition

G1 + G2 denotes the vertex-disjoint union of graphs G1 and G2.

Exercise

Let k ≥ 3. Suppose that connected graphs G1, . . . , Gm are
de�nable in FOk

#. Prove that G1 + G2 + . . . + Gm is also de�nable

in FOk
#.

Hint

As an example, let k = 3 and suppose that G = 5A + 4B and
H = 4A + 5B for some connected A and B such that W#(A,B) ≤ 3. In
the �rst round, Spoiler makes a counting move in G by marking all
vertices in all A-components. Duplicator is forced to mark at least one
vertex v in a B-component of H. Spoiler pebbles v, and Duplicator can
only pebble some vertex u in an A-component of G. From now on,
Spoiler plays in the components that contain u and v using his winning
strategy for the game on A and B. If Duplicator marks a vertex in a
di�erent component, she loses anyway (why?). 6/21



Cographs

De�nition

A graph is called a cograph if it contains no P4 as an induced
subgraph.

Theorem (Corneil et al.1981)

1 P1 is a cograph.

2 If G is a cograph, then G is also a cograph.

3 If G and H are cographs, then G + H is also a cograph.

4 A graph is a cograph only if it can be constructed according to
the preceding statements.

Corollary

Every cograph is de�nable in FO3
#.

The isomorphism problem for cographs is solvable in
polynomial time by the 2-dim Weisfeiler-Leman algorithm.
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k-dimensional Weisfeiler-Leman algorithm

1-dim WL = the color re�nement algorithm

k-dim WL colors V (G)k

Initial coloring: C1(ū) = the equality type of ū ∈ V (G)k and
the isomorphism type of the spanned subgraph

Color re�nement:
Ci(ū) = {Ci−1(ū), {(Ci−1(ū1,x), . . . , Ci−1(ūk,x))}x∈V },
where (u1, . . . , ui, . . . , uk)i,x = (u1, . . . , x, . . . , uk)
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The Weisfeiler-Leman algorithm

purports to decide if input graphs G and H are isomorphic:

If G ∼= H, the output is correct,
if G 6∼= H, the output can be wrong;

has two parameters: dimension and number of rounds.

Fixed dimension k =⇒ ≤ nk rounds =⇒ polynomial
running time.

Fixed dimension and O(log n) rounds =⇒ parallel logarithmic
time.
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The Weisfeiler-Leman algorithm

Corollary (Cai, Fürer, Immerman 92)

Let C be a class of graphs G with W#(G) ≤ k for a constant k.
Then Graph Isomorphism for C is solvable in P .

Corollary (Grohe, V. 06)

1 Let C be a class of graphs G with Dk
#(G) = O(log n).

Then Graph Isomorphism for C is solvable in TC1 ⊆ NC2 ⊆ AC2.

2 Let C be a class of graphs G with Dk(G) = O(log n).
Then Graph Isomorphism for C is solvable in AC1 ⊆ TC1.
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Classes of graphs: Trees

W#(T ) ≤ 2 for every tree T .

D2
#(Pn) ≥ n

2 − 1

Speed-up: one extra variable =⇒ logarithmic depth !

Theorem

If T is a tree on n vertices, then D3
#(T ) ≤ 3 log n + 2.
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Proof-sketch

We can easily distinguish between T and T ′ 6∼= T if T ′

is disconnected;

has di�erent number of vertices;

has the same number of vertices, is connected but has a cycle;

has larger maximum degree.

It remains the case that T ′ is a tree with the same maximum
degree. For simplicity, assume that the maximum degree is 3 (then
no counting quanti�ers are needed).
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Proof cont'd (a separator strategy)

We need to show that Spoiler wins the 3-pebble game on T and T ′

in 3 log n + 2 moves.
Step 1. Spoiler pebbles a separator v in T (every component of
T − v has ≤ n/2 vertices).
Step 2. Spoiler ensures pebbling u ∈ N(v) and u′ ∈ N(v′) so that
the corresponding components are non-isomorphic rooted trees.

u

T T´

u´

v v´
Spoiler forces further play
on these components and
applies the same strategy
again.
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Proof cont'd

A complication: the strategy is now applied to a graph with one
vertex pebbled and we may need more than 3 pebbles. Assume that
u0 and u′0 were pebbled earlier and T − v and T ′ − v′ di�er only by
the components containing u0 and u′0. Suppose that
d(v, u0) = d(v′, u′0).

T T´

u
0

u
0́

u

u

0

1

1

u
0́

u
1́

1
v´ v´

v´v

v v

Step 3. Spoiler pebbles v1
in the v-u0-path such that
T−v1 and T ′−v′1 di�er by
components with no peb-
ble
(assuming that
d(v, v1) = d(v′, v′1)).
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Isomorphism of trees (history revision)

Theorem

If T is a tree on n vertices, then D3
#(T ) ≤ 3 log n + 2.

Testing isomorphism of trees is

in Log-Space [Lindell 1992]

in AC1 [Miller-Reif 1991]

in AC1 if ∆ = O(log n) [Ruzzo 1981]

in Lin-Time by CR [Edmonds 1965]

Miller and Reif [SIAM J. Comput. 1991]: �No polylogarithmic
parallel algorithm was previously known for isomorphism of
unbounded- degree trees.�

However, the 3 log n-round 2-WL solves it in TC1 and is known
since 1968 !
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Classes of graphs: Bounded tree-width, planar, interval

For a graph G of tree-width k on n vertices

W#(G) ≤ k + 2 [Grohe, Mariño 99];

D4k+4
# (G) < 2(k + 1) log n + 8k + 9 [Grohe, V. 06].

For a planar graph G on n vertices

W#(G) = O(1) [Grohe 98].

If G is, moreover, 3-connected, then

D15(G) < 11 log n + 45 [V. 07].

For an interval graph G on n vertices

W#(G) ≤ 3 [Evdokimov et al. 00, Laubner 10];

D15
# (G) < 9 log n + 8 [Köbler, Kuhnert, Laubner, V. 11].
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Graphs with an excluded minor

Theorem (Grohe 12)

For each F , if G excludes F as a minor, then

W#(G) = O(1).

Open problem

Is it then true that Dk
#(G) = O(log n) for some constant k?
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