Description logic syntax and semantics

N_C : set of <i>concept names</i> (unary predicates, classes)	A, B
N_R : set of role names (binary predicates, properties)	r, s
$N_{R}^{\pm} = \{r, r^{-} \mid r \in N_{R}\}: \text{ set of role names and } inverse \ roles$	R, S
N_{I} : set of individuals names (constants)	a,b,c,\dots

Complex concepts (built from N_C , N_R using constructors: see below) C, D

$$\begin{split} & \text{TBox (ontology)} = \text{set of terminological axioms} & \mathcal{T} \\ & \text{ABox (dataset)} = \text{set of ABox assertions } (A(a), \, r(a, b)) & \mathcal{A} \\ & \text{Knowledge base (KB)} = \text{TBox} + \text{ABox} & \mathcal{K} \end{split}$$

Name	Syntax	Semantics	
Top concept	Т	$\Delta^{\mathcal{I}}$	Concepts
Bottom concept	\perp	\emptyset	
Negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	
Conjunction	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	
Existential restriction	$\exists R.C$	$\{d_1 \mid \text{there exists } (d_1, d_2)\}$	$0 \in R^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}$
Inverse	r^{-}	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}\$	Roles
Role negation	$\neg R$	$(\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$	
Concept inclusion	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$	TBox Axioms
Role inclusion	$R \sqsubseteq S$	$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$	
Transitivity axiom	trans(R)	$R^{\mathcal{I}} \cdot R^{\mathcal{I}} \subseteq R^{\mathcal{I}}$	
Concept assertion	A(a)	$a^{\mathcal{I}} \in A^{\mathcal{I}}$	ABox Assertions
Role assertion	r(a,b)	$(a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}}$	

Horn DLs

$\mathrm{DL}\text{-}\mathrm{Lite}_R$:

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$, with B_1, B_2 of the form $A \in N_{\mathsf{C}}$ or $\exists R \ (R \in N_{\mathsf{R}}^{\pm})$
- role inclusions $R_1 \sqsubseteq (\neg)R_2$, where $R_1, R_2 \in \mathsf{N}^{\pm}_{\mathsf{R}}$
- note: $\exists R$ can be seen as shorthand for $\exists R. \top$

\mathcal{EL} :

- concept constructors: \top , \square , and $\exists r.C$
- only concept inclusions $C \sqsubseteq D$ in TBox
- normal form: can assume all inclusions of the following forms

$$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

 \mathcal{ELHI}_{\perp} :

- concept constructors: \top , \bot , \Box , and $\exists R.C \ (R \in \mathsf{N}_{\mathsf{R}}^{\pm})$
- both concept inclusions and role inclusions $(R_1 \sqsubseteq R_2, \text{ with } R_1, R_2 \in \mathsf{N}_\mathsf{R}^\pm)$

Certain answers

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a DL KB, and let q be an n-ary query. The set $\operatorname{cert}(q, \mathcal{K})$ of certain answers to q over \mathcal{K} is defined as follows:

$$\{(a_1,\ldots,a_n)\in\operatorname{Ind}(\mathcal{A})^n\mid (a_1^{\mathcal{I}},\ldots,a_n^{\mathcal{I}})\in\operatorname{ans}(q,\mathcal{I}) \text{ for every } \mathcal{I}\in\operatorname{\mathsf{Mods}}(\mathcal{K})\}$$

Query rewriting

Let \mathcal{T} be a DL TBox, and let q, q', q_{\perp} be queries.

- We say that q' is a rewriting of q w.r.t. \mathcal{T} just in the case that $\operatorname{cert}(q,(\mathcal{T},\mathcal{A})) = \operatorname{ans}(q',\mathcal{I}_{\mathcal{A}})$ for every ABox \mathcal{A} .
- We call q' a rewriting of q w.r.t. \mathcal{T}, Σ relative to consistent ABoxes if $\operatorname{cert}(q, (\mathcal{T}, \mathcal{A})) = \operatorname{ans}(q', \mathcal{I}_{\mathcal{A}})$ for every ABox \mathcal{A} such that $(\mathcal{T}, \mathcal{A})$ is satisfiable.
- We call q_{\perp} a rewriting of unsatisfiability w.r.t. \mathcal{T} if for every ABox \mathcal{A} , we have $\operatorname{cert}(q,(\mathcal{T},\mathcal{A})) = ()$ iff $(\mathcal{T},\mathcal{A})$ is unsatisfiable.

Saturation Rules for \mathcal{EL}

$$\frac{A \sqsubseteq B_i \ (1 \le i \le n) \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \ \mathbf{T1} \qquad \frac{A \sqsubseteq B \quad B \sqsubseteq \exists r.D}{A \sqsubseteq \exists r.D} \ \mathbf{T2}$$

$$\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq E}{A \sqsubseteq E} \ \mathbf{T3}$$

$$\frac{A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A_i(a) \ (1 \le i \le n)}{B(a)} \ \mathbf{A1} \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} \ \mathbf{A2}$$

Saturation Rules for \mathcal{ELHI}_{\perp}

$$\frac{\{A \sqsubseteq B_i\}_{i=1}^n \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \text{ T1} \qquad \frac{R \sqsubseteq S \quad S \sqsubseteq T}{R \sqsubseteq T} \text{ T4} \qquad \frac{M \sqsubseteq \exists R.(N \sqcap \bot)}{M \sqsubseteq \bot} \text{ T5}$$

$$\frac{M \sqsubseteq \exists R.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists R.(N \sqcap N' \sqcap A)} \text{ T6} \qquad \frac{M \sqsubseteq \exists R.(N \sqcap A) \quad \exists S.A \sqsubseteq B \quad R \sqsubseteq S}{M \sqsubseteq B} \text{ T7}$$

$$\frac{M \sqsubseteq \exists R.N \quad \exists \mathsf{inv}(S).A \sqsubseteq B \quad R \sqsubseteq S}{M \sqcap A \sqsubseteq \exists R.(N \sqcap B)} \text{ T8}$$

$$\frac{A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A_i(a) \ (1 \le i \le n)}{B(a)} \text{ A1} \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} \text{ A2}$$

$$\frac{\exists r^-.B \sqsubseteq A \quad r(b,a) \quad B(b)}{A(a)} \text{ A3} \qquad \frac{r \sqsubseteq s \quad r(a,b)}{s(a,b)} \text{ A4} \qquad \frac{r \sqsubseteq s^- \quad r(a,b)}{s(b,a)} \text{ A5}$$