Model counting for logical theories Problem set 2

1. Prove the *inclusion-exclusion principle*:

$$\mathsf{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} \mathsf{P}(A_{i_{1}} \dots A_{i_{k}}).$$

Hint: Partition events into disjoint unions of events of the form $A_1^{\sigma_1} \dots A_n^{\sigma_n}$ where each $A_i^{\sigma_i}$ is either A_i or $\overline{A_i}$. Compare the coefficient at $\mathsf{P}(A_1^{\sigma_1} \dots A_n^{\sigma_n})$ in the left-and right-hand sides. (Alternatively, you can use induction on n.)

- 2. Prove the union bound: $\mathsf{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{n} \mathsf{P}(A_{i}).$ Hint: We already know that $\mathsf{P}(A \cup B) \leq \mathsf{P}(A) + \mathsf{P}(B).$
- 3. Let $(\Omega, 2^{\Omega}, \mathsf{P})$ be a discrete probability space with Ω a finite set. Suppose $B \in 2^{\Omega}$ is such that $\mathsf{P}(B) > 0$. Prove that the function $\mathsf{Q} \colon 2^{\Omega} \to \mathbb{R}$ defined by $\mathsf{Q}(A) = \mathsf{P}(A \mid B)$ is a probability measure:
 - (a) Show that $\mathbf{Q}(A) \geq 0$ for all $A \in 2^{\Omega}$.
 - (b) Show that $Q(\Omega) = 1$.
 - (c) Show that $\mathbf{Q}(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n \mathbf{Q}(A_i)$ if the events A_1, \ldots, A_n are pairwise disjoint, i.e., if $A_i \cap A_j = \emptyset$ for $i \neq j$.
- 4. From the set of strings $\{000, 001, 002, \dots, 999\}$ a string $X_1X_2X_3$ is picked uniformly at random. We have proved in class that the events $X_1 = 5$, $X_2 = 5$, and $X_3 = 5$ are independent. What if the original set is replaced with $\{000, 001, 002, \dots, 998\}$?
- 5. In class we have constructed a probability space $(\Omega, 2^{\Omega}, \mathsf{P})$ and three events $A_1, A_2, A_3 \in 2^{\Omega}$ such that $\mathsf{P}(A_iA_j) = \mathsf{P}(A_i) \mathsf{P}(A_j)$ for all $i \neq j$, but A_1, A_2, A_3 are not independent. Can you come up with a (possibly different) probability space and three events B_1, B_2, B_3 such that $\mathsf{P}(B_1B_2B_3) = \mathsf{P}(B_1) \mathsf{P}(B_2) \mathsf{P}(B_3)$, but B_1, B_2, B_3 are not independent?
- 6. Can there exist random variables X, Y that have Cov(X, Y) = 0 but are not independent? If yes, find an example, otherwise prove this impossible.
- 7. Verify that the expectation and the variance of a geometrically distributed random variable with parameter $p \in (0, 1)$ are q/p and q/p^2 , respectively.