Model counting for logical theories Problem set 3

- 1. (Von Neumann's problem.) Suppose you are given a coin that turns up heads with probability $p \in (0, 1)$, but you don't know the value of p. Can you *simulate* a fair coin flip using just this (potentially biased) coin? (*Hint:* The running time of your algorithm may follow geometric distribution with parameter that depends on p.)
- 2. Suppose you are given a fair coin, i.e., one that turns up heads with probability 1/2. Also suppose you are given a number $p \in (0, 1)$. Can you *simulate* a flip of a biased coin that turns up heads with probability p, just using the fair one?
- 3. Consider the following random experiment. There is a box with three balls, each of which can be either black or white. In a single step of the experiment, a ball is taken uniformly at random from the box and replaced with a (new) ball of the other colour. This step can be repeated arbitrarily many times.
 - (a) Write the transition probability matrix for the Markov chain whose state is the number of black balls in the box.
 - (b) Compute transition probabilities for two consecutive steps of the experiment.
 - (c) Does the Markov chain have a stationary distribution? (*Hint:* Yes.)
 - (d) Is the stationary distribution unique?
 - (e) Does this Markov chain always converge to a stationary distribution? Why?
- 4. In the lecture on Thursday we claimed that the constant $\frac{3}{4}$ probability of success of the oracle \mathcal{E} does not prevent us from using the oracle to implement an algorithm with confidence level 1α for any error probability α . This exercise essentially asks you to demonstrate how this is possible.

You are given an algorithm \mathcal{A} for a decision problem L that is such that

$$x \in L \Longrightarrow \mathsf{P}[\mathcal{A}(x) \text{ accepts}] \ge 3/4$$
$$x \notin L \Longrightarrow \mathsf{P}[\mathcal{A}(x) \text{ accepts}] \le 1/4.$$

You want to design an algorithm \mathcal{B} which

- receives as input a vector (x_1, \ldots, x_n) of inputs to \mathcal{A} , and $\alpha \in [0, 1]$,
- returns a vector $(y_1, \ldots, y_n) \in \{0, 1\}^n$ such that with probability at least 1α it holds for all $i \in \{1, \ldots, n\}$ that $y_i = 1$ iff $x_i \in L$.

Algorithm \mathcal{B} has a tunable parameter r and

- runs r independent copies $A_{i,1}, \ldots, A_{i,r}$ of \mathcal{A} on each x_i , and
- returns a vector $(y_1, \ldots, y_n) \in \{0, 1\}^n$ where y_i is the result of the majority vote on x_i :

$$y_i = \begin{cases} 1 & \text{if } \sum_{j=1}^r \mathcal{A}_{i,j}(x_i) \ge \frac{r}{2}, \\ 0 & \text{otheriwse.} \end{cases}$$

For a given $\alpha \in [0, 1]$ and n, determine a value of the parameter r, for which with probability at least $1 - \alpha$ the the output of \mathcal{B} meets the requirements.

5. Suppose you are given an implementation of the oracle \mathcal{E} from the lecture on Thursday that guarantees for some fixed constants 0 < c < C that

$$\mathsf{mc}(\varphi) \ge C \cdot 2^m \Longrightarrow \mathsf{P}[\mathcal{E}(\varphi, n) = \mathsf{YES}] \ge \frac{3}{4}$$
$$\mathsf{mc}(\varphi) \le c \cdot 2^m \Longrightarrow \mathsf{P}[\mathcal{E}(\varphi, n) = \mathsf{NO}] \ge \frac{3}{4}$$

How would you implement an oracle \mathcal{E}' such that

$$\begin{split} \mathsf{mc}(\varphi) &\geq 2^{m+1} \Longrightarrow \mathsf{P}\left[\,\mathcal{E}'(\varphi, n) = \mathsf{YES}\,\right] \geq \frac{3}{4} \\ \mathsf{mc}(\varphi) &\leq 2^m \Longrightarrow \mathsf{P}\left[\,\mathcal{E}'(\varphi, n) = \mathsf{NO}\,\right] \geq \frac{3}{4}. \end{split}$$

6. Show that random affine operators over the field of two elements form a family of pairwise independent hash functions. To do this, assume that \boldsymbol{x} and \boldsymbol{y} are distinct vectors from $\{0,1\}^n$, and $\boldsymbol{w}_1, \boldsymbol{w}_2$ are some vectors from $\{0,1\}^m$. Prove that if a matrix $A \in \{0,1\}^{m \times n}$ and a vector $\boldsymbol{b} \in \{0,1\}^m$ are chosen uniformly at random and independently, then the function $h: \{0,1\}^n \to \{0,1\}^m$ given by

$$h(\boldsymbol{x}) = A \cdot \boldsymbol{x} + \boldsymbol{b} \bmod 2$$

satisfies the equality $\mathsf{P}[h(\boldsymbol{x}) = \boldsymbol{w}_1, h(\boldsymbol{y}) = \boldsymbol{w}_2] = (1/2^m)^2$. *Hint:* If X is any random variable and b is chosen uniformly at random from $\{0, 1\}$ independently from X, then the sum $(X + b) \mod 2$ has uniform distribution over $\{0, 1\}$.

7. Complete the proof of the Leftover Hash Lemma (simplified version), which we have seen in the lecture on Thursday: Let \mathcal{H} be a family of pairwise independent hash functions $h: \{0,1\}^n \to \{0,1\}^m$. Let $S \subseteq \{0,1\}^n$ satisfy $|S| \ge 4/\rho^2 \cdot 2^m$ for some $\rho > 0$. For $h \in \mathcal{H}$, let Z be the cardinality of the set $\{w \in S : h(w) = 0^m\}$. Prove that

$$\mathsf{P}\left[\left|Z - \frac{|S|}{2^m}\right| \ge \rho \cdot \frac{|S|}{2^m}\right] \le \frac{1}{4}$$

- 8. Assuming the Leftover Hash Lemma (simplified version), show that the Estimate oracle that we have described has the required properties:
 - (a) Prove that if $\mathsf{mc}(\varphi) \ge 1000 \cdot 2^m$, then the formula $\psi(\boldsymbol{x}) := \varphi(\boldsymbol{x}) \land (h(\boldsymbol{x}) = 0^m)$ is unsatisfiable with probability at most 1/4. *Guidelines:* Suppose $Z = \mathsf{mc}(\psi)$. If Z = 0, then $|Z - 1000| \ge 1000$. Apply LHL and find a suitable parameter $\rho > 0$.
 - (b) Prove that if mc(φ) ≤ 0.001 · 2^m, then the formula ψ(x) := φ(x) ∧ (h(x) = 0^m) is satisfiable with probability at most 1/4. Guidelines: Let S' be any set that contains [[φ]] and satisfies |S'| ≥ 4 · 2^m/ρ² for some ρ > 0, to be fixed later. Suppose Z = mc(ψ) and Z' = mc(ψ') where ψ' is some fixed formula that satisfies [[ψ']] = S'. Show that if Z ≥ 1, then |Z' - 0.001| ≥ 0.999. Apply LHL to S' and find a suitable parameter ρ > 0.