

ESSLLI

Incremental Speech and Language Processing for Interactive Systems

Timo Baumann, Arne Köhn, Universität Hamburg, Informatics Department Natural Language Systems Division {baumann,koehn}@informatik.uni-hamburg.de

Contents of the Course

- Monday:
 - introduction, major features of incremental processing
- Tuesday:
 - incremental processing for sequence problems
- today:
 - incremental processing for structured problems
- Thursday:
 - generating output based on structured and partial input
- Friday:
 - wrap-up and outlook, also based on your questions and interests

Short Recap

- Incrementalizing sequence problems
- Early decisions affect quality and stability
- Mostly clear mapping between input tokens and output tokens
 - Speech recognition: span of audio yields word

Overview for today

- Real Incremental Parsing
- Parsing with Prediction
- Restart-incremental predictive Parsing
- Creating Incremental Training Data

Dependency Trees

Dependency Trees

Incremental Structured Prediction

- An input sequence is mapped to a structure
- No clear correspondence between input and output

Output Guarantees

- Monotonic output
 - Definition of "monotonic" unclear
 - Severely restricts output (in contrast to sequence problems)
- No guarantees
 - Is the output useful if we don't know whether it lasts?

Stability

Let $a_1 ... a_i ... a_n$ be a series of outputs

- Full monotonicity ($a_i \subseteq a_n$) leads to low accuracy drops to ~50% with prediction (Hassan et al. 2009)
- Instead: Focus on high stability (maximize $a_i \cap a_n$)

The bear eats Bob

The

bear eats Bob

shift

bear The eats Bob

shift

eats Bob

Left-arc

Bob

Shift

Bob

Left-arc

Shift

Right-arc

Beam Search to the Rescue

- Keep multiple hypotheses in a beam
- Output the most likely one at each step
- Works without lookahead! (Andor et al. 2016)
 - Greedy w/o lookahead: 72% acc.
 - Beam 32 w/o lookahead: 94% acc.

Problem solved?

Bottom-up Parsing

- Most transition systems build trees bottom-up
- How do the sub-trees integrate?
- Once a word is attached, no other can be attached to it
 - Especially problematic for right-branching constructs

Predictive Parsing

PLTAG

- Predictive Tree Adjoining Grammar
 - Lexicon with tree snippets
 - Operations to combine trees
- Open non-terminals denote upcoming input
- Psycholinguistically motivated
 - Operations correspond to reading times

PLTAG

Limitations of PLTAG

- Monotonic output for each beam
- More prediction → more beams needed
 - Overcommitment
- Left attachments similar problem to right ones in transition-based parsing

Graph-based Parsing

- Nutshell: of all possible edges, select best ones
 - Maximum spanning tree
 - ILP (Constraint optimization)

- Important for training and evaluation
- Unlike Sequence problems, there is no 1:1 mapping from input to output
- Model reasonable expectations
 - Hand-written rules

• Determine what is predictable

• Determine what is predictable

Incremental Gold Standard

- Determine what is predictable
- Delexicalize predicted words
 - Nounish \rightarrow [Noun]
 - Verbish → [Verb]

Incremental Gold Standard

- Determine what is predictable
- Delexicalize predicted words
 - Nounish \rightarrow [Noun]
 - Verbish → [Verb]

Incremental Gold Standard

- Determine what is predictable
- Delexicalize predicted words
 - Nounish \rightarrow [Noun]
 - Verbish → [Verb]
- Hope that your domain knowledge matches reality

The Challenge of Virtual Nodes

- "Normal" dependency parsing:
 - Where should each word be attached to?
- Incremental dependency parsing:
 - Additionally: Which Virtual Nodes to include?
- Both problems depend on each other

A two-step process doesn't work!

The Need for a Fixed Token Set

- Graph-based parsing: find MST
- Drives→[Noun] has positive score
- Which parse will be the best?
- If one prediction is good, two are better!

Solving "which" with "where"

- Use fixed set of VNs
 - Language-dependent
 - Obtained from generated prefixes
- Introduce unused node
- unused and VNs attached to it not part of analysis

- TP uses ILP to formulate the parsing problem
- Tree structure of analyses ensured by factors
- Additional factors for VN and unused:
 - A VN attached to unused may not have any dependents

- TP uses ILP to formulate the parsing problem
- Tree structure of analyses ensured by factors
- Additional factors for VN and unused:
 - A VN attached to unused may not have any dependents
 - A VN may not be attached to 0 if it has no dependents.

- TP uses ILP to formulate the parsing problem
- Tree structure of analyses ensured by factors
- Additional factors for VN and unused:
 - A VN attached to unused may not have any dependents
 - A VN may not be attached to 0 if it has no dependents.
 - Only VNs may be attached to the unused node.

Training TurboParser

- Training doesn't work on
 - whole sentences
 - Prefixes from gold standard
- Instead: use padded prefixes
 - Take gold standard
 - Add virtual nodes until set used for parsing is reached

Demonstration

Evaluation

- Final accuracy: easy to measure, little use for incremental properties
- Attachment accuracy for newest words
- Prediction mapping
 - To complete sentence
 - To predictive gold standard

Evaluation (2)

- Capture dynamics of the incremental process
- Measure attachment accuracy of newest word
 - Wrt. Gold standard ("accuracy")
 - Wrt. Parse of complete sentence ("stability")
- Measure prediction precision and recall

incrTurboParser

Prediction

Quality of the predicted VNs

	English	German	German&Tagger	German (jwcdg)
precision	75%	67%	65%	33%
recall	58%	47%	46%	36%

- High prec. and rec. for TurboParser
- Clearly outperforms jwcdg (our previous parser)

Stability

How stable are attachments wrt. final analysis?

	Newes	t word	Sixth newest word		
	unlabeled	labeled	unlabeled	labeled	
English	89.3%	84.9%	97.3%	97.11%	
German	90.9%	88.9%	96.1%	95.7%	

- High stability even for the newest word
- Note: We do **not** optimize for stability!

Wrap-up

- Every guarantee comes with a cost
- New training data needed for incremental processing
- Key concept for structured problems: Predictability
- If incremental is hard, try restart-incremental