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Contents of the Course

● Monday:
– introduction, major features of incremental processing

● Tuesday:
– incremental processing for sequence problems

● today:
– incremental processing for structured problems

● Thursday:
– generating output based on structured and partial input

● Friday:
– wrap-up and outlook, also based on your questions and interests



Short Recap

● Incrementalizing sequence problems
● Early decisions affect quality and stability  
● Mostly clear mapping between input tokens and output 

tokens
– Speech recognition: span of audio yields word

Nordwind
Sonne

...



Overview for today

● Real Incremental Parsing
● Parsing with Prediction
● Restart-incremental predictive Parsing
● Creating Incremental Training Data



Dependency Trees

ROOT

Dependency
NN

trees
NNS

look
VBP

like
IN

this
DT



Dependency Trees
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Incremental Structured Prediction

● An input sequence is mapped to a structure
● No clear correspondence between input and output

ROOT

A
DT

bear
NN

climbs
VBZ

a
DT

tree
NN

house
NN



Output Guarantees

● Monotonic output
– Definition of “monotonic” unclear
– Severely restricts output (in contrast to sequence problems)

● No guarantees
– Is the output useful if we don’t know whether it lasts?



Stability

Let                     be a series of outputs
● Full monotonicity (             ) leads to low accuracy 

drops to ~50% with prediction (Hassan et al. 2009)

● Instead: Focus on high stability (maximize              )
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Transition-based Parsing

The eatsbear Bob
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Transition-based Parsing
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Beam Search to the Rescue

● Keep multiple hypotheses in a beam
● Output the most likely one at each step
● Works without lookahead! (Andor et al. 2016)

– Greedy w/o lookahead: 72% acc.
– Beam 32 w/o lookahead: 94% acc.

Problem solved?



Bottom-up Parsing

● Most transition systems build trees bottom-up
● How do the sub-trees integrate?
● Once a word is attached, no other can be attached to it

– Especially problematic for right-branching constructs



Predictive Parsing



PLTAG

● Predictive Tree Adjoining Grammar
– Lexicon with tree snippets
– Operations to combine trees

● Open non-terminals denote upcoming input
● Psycholinguistically motivated

– Operations correspond to reading times

Demberg (2010)



PLTAG

Demberg (2010)





Limitations of PLTAG

● Monotonic output for each beam
● More prediction  more beams needed→

– Overcommitment
● Lef attachments similar problem to right ones in  

transition-based parsing 



Graph-based Parsing

● Nutshell: of all possible edges, select best ones
– Maximum spanning tree
– ILP (Constraint optimization)

The bear eats Bob



Incremental Gold Standard

● Important for training and evaluation
● Unlike Sequence problems, there is no 1:1 mapping 

from input to output
● Model reasonable expectations

– Hand-written rules



Incremental Gold Standard
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Incremental Gold Standard

● Determine what is predictable
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Incremental Gold Standard

● Determine what is predictable
● Delexicalize predicted words

– Nounish  [Noun]→
– Verbish  [Verb]→
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Incremental Gold Standard

● Determine what is predictable
● Delexicalize predicted words

– Nounish  [Noun]→
– Verbish  [Verb]→

● Hope that your domain knowledge matches reality
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The Challenge of Virtual Nodes

● “Normal” dependency parsing:
– Where should each word be attached to?

● Incremental dependency parsing:
– Additionally: Which Virtual Nodes to include?

● Both problems depend on each other

A two-step process doesn't work!



The Need for a Fixed Token Set

● Graph-based parsing: find MST
● Drives [Noun] has positive score→
● Which parse will be the best?
● If one prediction is good, two are better!

Mary drives a [Noun] [Noun] [Noun] .



Solving “which” with “where”

● Use fixed set of VNs
– Language-dependent
– Obtained from generated prefixes

● Introduce unused node
● unused and VNs attached to it not part of analysis

Mary drives a [Noun] [Verb]  unused
Subj

Det

Obj



Adapting TurboParser



Adapting TurboParser

● TP uses ILP to formulate the parsing problem
● Tree structure of analyses ensured by factors
● Additional factors for VN and unused:

– A VN attached to unused may not have any dependents 
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– A VN attached to unused may not have any dependents 
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Adapting TurboParser

● TP uses ILP to formulate the parsing problem
● Tree structure of analyses ensured by factors
● Additional factors for VN and unused:

– A VN attached to unused may not have any dependents 
– A VN may not be attached to 0 if it has no dependents.
– Only VNs may be attached to the unused node.

Mary drives a [Noun] [Verb]  unused
Subj



Training TurboParser

● Training doesn't work on
– whole sentences
– Prefixes from gold standard

● Instead: use padded prefixes
– Take gold standard
– Add virtual nodes until set used for parsing is reached



Demonstration



Evaluation

● Final accuracy: easy to measure, little use for 
incremental properties

● Attachment accuracy for newest words
● Prediction mapping

– To complete sentence
– To predictive gold standard



Evaluation (2)

● Capture dynamics of the incremental process
● Measure attachment accuracy of newest word

– Wrt. Gold standard (“accuracy”)
– Wrt. Parse of complete sentence (“stability”)

● Measure prediction precision and recall
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Prediction

Quality of the predicted VNs

●

● High prec. and rec. for TurboParser
● Clearly outperforms jwcdg (our previous parser)

English German German&Tagger German (jwcdg)
precision 75% 67% 65% 33%

recall 58% 47% 46% 36%



Stability

How stable are attachments wrt. final analysis?

● High stability even for the newest word
● Note: We do not optimize for stability!

Newest word Sixth newest word
unlabeled labeled unlabeled labeled

English 89.3% 84.9% 97.3% 97.11%
German 90.9% 88.9% 96.1% 95.7%



Wrap-up

● Every guarantee comes with a cost
● New training data needed for incremental processing
● Key concept for structured problems: Predictability
● If incremental is hard, try restart-incremental
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