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Contents of the Course

Monday:

— introduction, major features of incremental processing
Tuesday:

— incremental processing for sequence problems

Wednesday:

— incremental processing for structured problems
Thursday:

— generating output based on structured and partial input
today:

— placement of examples, classification, wrap-up and outlook
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Granularity

» Some problems are trivially incremental
at some level of granularity

— Grapheme to Phoneme: words as basic unit
— Syntax: sentences as basic unit

« More fine-grained processing
— more room for error

— room for improvements

o Usually pays oft



1:1
n:1
I:n

n:m

Input-Output relation

POS tagging
frame semantics
language generation

Grapheme-to-Phoneme conversion



Incremental Processing Types



Classifying Incremental Processors

Non-monotonicity possible

[nput Output Sequence Structured
Discrete PoS tagging Parsing
Continuous  Speech recognition ¢
Only Monotonic output
Input Output Sequence Structured
Discrete Speech synthesis  Natural language
generation

Continuous ¢ ¢



Discrete to Sequence

The easiest one

Monotonic Delay output until enough context available

— Fixed number
— Dynamic based on estimates

— If everyone does that, you degrate to non-incrementality!
Non-monotonic output

— Maybe guarantee monotonicity for output in the past

— Give stability estimates
Multiple Alternatives ¥

— Pass the problem on to downstream applications



Continuous to Sequence

« Output can be created all the time

— creates lots of noise, but is quickest

o Delay based on the age of hypothesis (or smarter)

— estimate trade-off curve

— pick operating point

Stability

= = = Right Context
® No Stabilization
ik Oracle Stability

0.2 0.4 0.6
Average Lag (seconds)

0.8



Discrete to Structured

e Need to devise intermediate structure format

e« Maximize information

— predict whats predictable

- High commitment cost if monotonic guarantee
o Adapt training objective

— Adapt data and/or

— Adapt your algorithm



Incremental Output Generation

o Output is inherently monotonic

o [Suboptimal output] + [Incremental] > [Optimal output]
— People might prefer your output just because it's faster

o Be slightly suboptimal at the start

— Change word ordering etc. “33\5\3“:\?5\(\\ s
— Better than crashing at the end Cogpee T

— e.g. use re-inforcement learning for optimization



Algorithms



Incremental Algorithms

Extend monotonically left-to-right
Use beam

Output best item in beam at each time point
— Results in non-monotonic output

Much harder for structured prediction
¢How to do this for

— structured input?

— non-monotonic input?



Restart-incremental

Often the first and easiest step
Uses more CPU time
No monotonicity guarantees

Monotonicity usually not even enforceable
— for visible output non-monotonicity is limited

Non-monotonic input is no problem



Incremental Units Model



Incremental Units Model

o incrementality is mostly fun in end-to-end systems

— modular systems in practice
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Incremental Units Model

o incrementality is mostly fun in end-to-end systems

— modular systems in practice

— many problems require grounded/non-modular input

o aligning gestures with speech requires timed words (not just words)
o alignment of referring expressions

DM reasoning/decision: need to grab to be able to put = confirm
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Incremental Units Model

o incrementality is mostly fun in end-to-end systems

— modular systems in practice

— many problems require grounded/non-modular input

o aligning gestures with speech requires timed words (not just words)

o alignment of referring expressions

DM reasoning/d)is'gn: need to grab to be able to put —= confirm

/
& N\
put(cross,Y) ack(take(X),put(X,Y)), X=cross
N\ \
put p;{cross ack take cr‘}ss
’ \ - : kreuz/
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Incremental Units Model

o also supports N-best hypotheses
— to the point of forwarding the full beam
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Incremental Units Model

o also supports N-best hypotheses
— to the point of forwarding the full beam

Uy, potential for
Uy N-best output
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Current and Future
Research Opportunities



Speech-to-speech translation

o in its simplest form: ASR + translation + TTS

o incrementally: how much latency?

— estimate effect of latency on accomodating all reordering

Baumann, Bangalore & Hirschberg (2014)



Speech-to-speech translation

o in its simplest form: ASR + translation + TTS

o incrementally: how much latency?

— estimate effect of latency on accomodating all reordering

en—-de (goo)

en-es (goo)

0O 2 4 6 8 10 0O 2 4

Delay necessary to account for all re-orderings before speech can start.

6

8 10

en—-es (own)
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German is worse on average, but all languages have a long tail.

Baumann, Bangalore & Hirschberg (2014)

de—en (goo)




Interactive Translation

Ich habe gestern in einem Restaurant Spaghetti gegessen

Yesterday, [ ate spaghetti in a restaurant
o Predict final verb, correct if wrong (or keep suboptimal)

» Reorder target language



Learning without Incremental Gold
Standard

o Generated incremental gold standard unsatisfactory

— Maybe more can be predicted
— Predictions could be more fine-grained
o Predict word identities

— “Invert” objective function to create predictions

— Only possible if we still know the words



Structure to Structure Processing

e Not discussed this week

o Conceptually most difficult (? — not left-to-right)

« Example: Syntax — Semantics

=

Peter drives a red [Noun]

IMP\_Q x8 (P) (Q)
Peter[x8,]

SUBJ[x9,x8,]
drive[x9,]
OBJA[Xx9,x10,]
exists x10 (P) (Q)
red[x10]

/

Peter drives a red
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SUBJ[x9,x8,]
drive[x9,]

exists x10 (P) (Q)
red[x11]
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Speech and Gesture Recognition

Input: Speech and Gestures (e.g. pointing)
Integration at different levels possible

Tight: One HMM trained with two (raw) inputs
— Needs coupled training data
Use candidate beams, find good matches

— Can change both speech and gesture stream output

— Variant: one-way integration with dominant channel

Loose coupling: only create matches for streams



Further Speculation?



XXX

Thank you.

{baumann,koehn}@informatik.uni-hamburg.de
get the code at inprotk.sf.net.



