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(UNIONS OF) CONJUNCTIVE QUERIES

IQs quite restricted: No selections and joins as in DB queries

Most work on OMQA adopts

A conjunctive query (CQ) is a first-order query g(X) of the form
3Y.Pi(t1) A -+ A Pa(tn)

where every variable in some t; appears in either X or j and every P;
is either a concept or role name

A union of CQs (UCQ) is a first-order query g(X) of the form
qi(X) V -+ V gn(X)

where the g;(X) are CQs with same tuple X of free vars
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WHAT CAN WE EXPRESS AS CQS?

Find pairs of restaurants and dishes they serve which contain an
spicy ingredient:

gi(x,y) = 3z.serves(x,y) A Dish(y) A hasingred(y, z) A Spicy(2)
Find restaurants that serve a vegetarian menu and a menu with a
spicy main dish, and that both have the same cake as dessert:

G2(X) = 3, V2,21, 22.5erves(x, yp) A vegMenu(yq) A
hasDessert(ys,21) A Cake(z;) A
serves(x,y2) A Menu(yz) A hasMain(ys,22) A
Spicy(z;) A hasDessert(ys, z1)
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Find restaurants that serve a vegetarian menu and a menu with a
spicy main dish, and that both have the same cake as dessert:

G2(X) = 3, V2,21, 22.5erves(x, yp) A vegMenu(yq) A
hasDessert(ys,21) A Cake(z;) A
serves(x,y2) A Menu(yz) A hasMain(ys,22) A
Spicy(z;) A hasDessert(ys, z1)

In general, not expressible as instance queries!
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WHAT CAN WE EXPRESS AS UCQS?

Find restaurants that serve a dish that contains an spicy ingredient,
or that contains an ingredient that contains an spicy ingredient:

qi(x) = (3y,z.serves(x,y) A Dish(y) A hasingred(y, z) A Spicy(z))

(31, Y, z.serves(x, y1) A Dish(yq) A
hasIingred(ys,y¥2) A hasingred(y,,z) A Spicy(z))
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CQS AND OTHER QUERY LANGUAGES

CQs correspond to:

- select-project-join queries of relational algebra / SQL

- basic graph patterns of SPARQL

Alternatively, CQs and UCQs can be seen as Datalog rules
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CQS AND UCQS IN DATALOG
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CQS AND UCQS IN DATALOG

CQs:

G(X) = PG A - APa(tn)  ~  a(X) + Pi(E1),- .., Pa(tn)

UCQs:
q(%) = IAPUE)A--- AP (L) q(x) « P(th),..., PL.(th)
VIBPUE) A AP() q(%)  PAB), ..., P(E2)
EUSY
V 3Pt A AP () q(X) « Pi(th), ..., PL,(tE)
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SEMANTICS OF CQS

Recall that d € cert(q, K) iff d € ans(q,Z) for every model Z of K

- A CQ g(X) is an FO formula, its satisfaction in an interpretation is
clear

d e ans(q,Z) iff T = q(X— @)
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SEMANTICS OF CQS

Recall that d € cert(q, K) iff d € ans(q,Z) for every model Z of K

- A CQ g(X) is an FO formula, its satisfaction in an interpretation is
clear

d e ans(q,Z) iff T = q(X— @)

- We can also use the notion of a
A for q(X) = 3y.(X,y) in an isa 7
from the inxuy in AT such that:

for every atom

for every atom

We write Z =, g(d) if = is a match for g(X) in Z and =(X) = d
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SEMANTICS OF QS (CONT.)

iff
of K we have
iff
of K there exists a such that
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SEMANTICS OF QS (CONT.)

iff
of K we have
iff
of K there exists a such that

Answering CQs = deciding if there is a match in every model

Challenge: how do we check that?

infinitely many models models can be infinite
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THE UNIVERSAL MODEL PROPERTY

For Horn DLs, each satisfiable K has a

Tx is ‘contained’ in every model Z of K

~ formally, there is a homomorphism from Zy to 7
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THE UNIVERSAL MODEL PROPERTY

For Horn DLs, each satisfiable K has a

Tx is ‘contained’ in every model Z of K

~ formally, there is a homomorphism from Zy to 7

An answer to a (U)CQ g in Zx is an answer to g in every model of K

~» matches of (U)CQs are preserved under homomorphisms

d € cert(q, K) iff d € ans(q, Zx)

So: Zx gives us the certain answers to g over K

Note: due to the universal model property, answering UCQs is not
harder than answering CQs why?
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Use the of (T, .A) for building a Ira
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CONSTRUCTING A UNIVERSAL MODEL

Use the of (T, .A) for building a Ira

Intuition: - Z7 4 contains the saturated ABox A’

- if an object satisfies M and M C 3R.M’ € sat(T),
a fresh object witnessing this is created

Use only logically strongest inclusions in sat(7), denoted sat™(7)

Formally, AZ7-4 contains words
arM, ... RyMp

with a € Ind(A) and:

- R; are roles and M; are conjunctions of concept names

- there exists M C 3R.M; € sat™™(T) such that T, A = M(a)

- for every 1 <i < n, exists M/ C 3R;,4.Mj 4 € sat>"(T) with M} C M;
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CONSTRUCTING A UNIVERSAL MODEL (CONT.)

Defining the interpretation function is straightforward:
N L a,
- a € AT iff A(a) € sat(T, A),
- eRM e AIT A iff A e M,
iff
iff ,and
if

Remark: For readability, in the examples we use shorter names instead of
the long words
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EXAMPLE OF THE CANONICAL MODEL CONSTRUCTION (1/3)

TBox: PenneArrab C 3Jhaslngred.Penne
Penne LC Pasta
PenneArrab T 3Jhaslngred.ArrabSauce
ArrabSauce L 3Jhaslngred.Peperonc
Peperonc LC Spicy
PizzaCalab C 3haslingred.Nduja
Nduja L Spicy

ABox: serves(r,b) serves(r, p) PenneArrab(b) PizzaCalab(p)

The saturated TBox additionally contains:

PenneArrab T Jhasingred.(Penne 1 Pasta)
ArrabSauce Jhaslingred.(Peperonc M Spicy)

C
PizzaCalab C 3hasingred.(Nduja rSpicy)
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EXAMPLE OF THE CANONICAL MODEL CONSTRUCTION (2/3)

T, 4 contains the ABox and is closed under inclusions

serves(r, b) serves(r, p) PenneArrab(b) PizzaCalab(p)

PizzaCalab serves serves PenneArrab
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EXAMPLE OF THE CANONICAL MODEL CONSTRUCTION (3/3)

The anonymous objects witnessing existential concepts form trees

PizzaCalab@ serves serves @PenneArrab
haslngred haslngred hasingred
ArrabSauce
Nduja, Spicy Penne, Pasta
haslngred
PenneArrab E dJhaslngred.ArrabSauce
PenneArrab T 3haslingred.(Penne M Pasta) A
ArrabSauce T 3hasingred.(PeperoncmSpicy) ~ Peperonc,spicy
PizzaCalab LC 3Jhaslingred.(Nduja M Spicy)
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FINDING ANSWERS IN THE CANONICAL MODEL

To answer CQ g, it suffices to test whether it has a match in Zr 4

But this is still challenging!
- I, 4 contains assertions and objects not present in A
- we cannot build Z7 4 explicitly: can be infinite!
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FINDING ANSWERS IN THE CANONICAL MODEL

To answer CQ g, it suffices to test whether it has a match in Zr 4

But this is still challenging!
- I, 4 contains assertions and objects not present in A
- we cannot build Z7 4 explicitly: can be infinite!

Our approach: use query rewriting!
Formally: given a CQ g, we construct a UCQ REW(q) such that
d € ans(q, Zr 4)
iff

there is @ match 7 for a disjunct g’ of rews(q) such that
I7.4 Ex q'(d) and 7 sends all vars to individuals from A
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REWRITING THE QUERY

Idea of the 1-step rewriting of g into g’

1. Choose leaf variable x so that no vars are mapped below it in Z7 4
2. Find MC 3R.N in sat(7) that ensures all atoms with x

3. Drop from g all atoms with x

4. Merge all neighbours of x and add M for the merged variable
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REWRITING THE QUERY

Idea of the 1-step rewriting of g into g’

1. Choose leaf variable x so that no vars are mapped below it in Z7 4
2. Find MC 3R.N in sat(7) that ensures all atoms with x

3. Drop from g all atoms with x
4. Merge all neighbours of x and add M for the merged variable

Properties:

- Every can be easily modified into
- For each match = for g, there is some g’ produced by the rewriting

step and a match =’ for g’
- The matches = and =" are essentially the same, but = matches x

closer to the ABox than =

We repeatedly apply the rewriting step to obtain a set of
queries whose relevant matches range over ABox individuals
17/31



EXAMPLE OF A REWRITING STEP (1/2)

q(y,x) = 3z,7 .serves(x,y) A haslngred(y, z) A hasingred(z,z') A Spicy(z')

We have Zk x q(b,r) withw(x)=r, 7(y)=b, w(z)=es w(z')=es

PizzaCalab

serves

PenneArrab

hasIingred

&
Nduja, Spicy

serves @ o)

haslngre/ &slngred

93 ArrabSauce
Penne Pasta

hasingred

m(Z')(es
Peperonc, Spicy
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PizzaCalab PenneArrab
serves serves

()

@ )
hasIingred hasingred hasingred

m(2) ArrabSauce
Nduja, Spicy Penne, Pasta
hasingred

e Choose 7' as ‘leaf’

e Choose ArrabSauce C 3hasingred.Spicy € sat(T) n(7)(ex) _
e RHS ensures haslngred(z,z'), Spicy(z) Peperonc, spicy
e We replace these atoms by ArrabSauce(z)
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q(y,x) = 3z,7 .serves(x,y) A haslngred(y, z) A hasingred(z,z') A Spicy(z')

We have Zk x q(b,r) withw(x)=r, 7(y)=b, w(z)=es w(z')=es

PizzaCalab PenneArrab
serves serves

()

@ )
hasIingred hasingred hasingred

m(2) ArrabSauce
Nduja, Spicy Penne, Pasta
hasingred

e Choose 7' as ‘leaf’

e Choose ArrabSauce C 3hasingred.Spicy € sat(T) n(7)(ex) _
e RHS ensures haslngred(z,z'), Spicy(z) Peperonc, spicy
e We replace these atoms by ArrabSauce(z)

q'(y,x) = Fz.serves(x,y) A hasingred(y, z) A ArrabSauce(2)
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EXAMPLE OF A REWRITING STEP (2/2)

q(y,x) =3z,7".serves(x,y) A hasingred(y,z) A hasingred(z,z’) A Spicy(z)
q'(y,x) = Jz.serves(x,y) A hasingred(y, z) A ArrabSauce(z)
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ANOTHER REWRITING STEP (1/2)

q'(y,x) = Jz.serves(x,y) A hasingred(y, z) A ArrabSauce(z)

Ik ):7r’ q/(bv f)

PizzaCalab PenneArrab
serves serves
® @W’(y)
7(X)

haslngred| hasingred hasingred

W’(Z)ArrabSauce

Nduja, Spicy Penne, Pasta
hasingred
€y

Peperonc, Spicy
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e Choose PenneArrab C Jhasingred.ArrabSauce
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ey
Peperonc, Spicy

q"(y,x) = serves(x,y) A PenneArrab(y)
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ANOTHER REWRITING STEP (2/2)
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ANOTHER REWRITING STEP (2/2)
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ANOTHER REWRITING STEP (2/2)

q(y,x) =3z, 7'serves(x,y) A hasingred(y, z) A hasingred(z,z") A Spicy(zZ')
q'(y,x) = Jz.serves(x,y) A hasingred(y, z) A ArrabSauce(z)
q" (y,x) = serves(x,y) A PenneArrab(y)

Ix Ex q(b,1) Ix Fr q'(b,1) Ix Fx q"(b,1)
PizzaCalab serves serves PenneArrab
B (B) =) )" )
m(x),w ()" (X)
haslngred| hasingred hasingred
7(2) ' (2)(e3 JArrabSauce
Nduja, Spicy Penne; Pasta
hasingred
") (@)

Peperonc, Spicy
In 7' all variables are mapped to individuals
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DECISION PROCEDURE

Theorem For every satisfiable ELHT | KB K = (T,.A), and CQ q(X):
d € cert(q,K) iff Zx. - q'(d) for some g’ € rewr(q) and some  that
maps all variables to individuals in A.
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Theorem For every satisfiable ELHT | KB K = (T,.A), and CQ q(X):
d € cert(q,K) iff Zx. - q'(d) for some g’ € rewr(q) and some  that
maps all variables to individuals in A.

There is a of such restricted T

Checking if  is match reduces to linearly many instance checks

Yields terminating, sound, and complete CQ answering procedure
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COMPLEXITY OF CQ ANSWERING

Combined complexity:
sat(T) and rewr(q) can be constructed in single exponential time
single exponential bound on candidate matches =

~+ instance checking in single exponential time
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COMPLEXITY OF CQ ANSWERING

Combined complexity:
sat(T) and rewr(q) can be constructed in single exponential time
single exponential bound on candidate matches =

~+ instance checking in single exponential time

Data complexity:

sat(7T) and rewr(q) are ABox independent

polynomial bound on candidate matches «

~+ instance checking in polynomial time

Theorem CQ answering in ELHT  and Horn-SHZQ is Exp-complete
in combined complexity and P-complete in data complexity.

23/31



OPTIMAL BOUNDS FOR LIGHTWEIGHT DLS

Adapting our technique gives optimal bounds for lightweight DLs:

For ££LH and DL-Liter we get NP in combined complexity:

- compute sat(7) in polynomial time

- non-deterministically build the right ¢’ € rewr(q)

- guess a candidate =

- check if it is a match ~ instance checking in polynomial time

CQ answering is NP-hard over ABox alone seen as DB (no TBox)
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CQ answering is NP-hard over ABox alone seen as DB (no TBox)

For ££ in data complexity, yields P membership
~ optimal since instance queries already P-hard

In DL-Lite, we get a FO-rewriting (later) ~ in AC, for data compl.

Theorem CQ answering in ELH and DL-Liteg is NP-complete in
combined complexity. For ££H the data complexity is P-complete,
and for the . 24/31



DATALOG REWRITING

Our procedure yields a Datalog rewriting:

- rewr(q) is a UCQ ~ translate into set of Datalog rules Mey(q)
- use Q in head of rules

- the program N(7, %) (from earlier) computes all entailed ABox
assertions
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DATALOG REWRITING

Our procedure yields a Datalog rewriting:

- rewr(q) is a UCQ ~ translate into set of Datalog rules Mey(q)
- use Q in head of rules

- the program N(7, %) (from earlier) computes all entailed ABox
assertions

(I'Irew(q) U I'I(T, Z), Q)

is a Datalog rewriting of g w.rt. T relative to consistent -ABoxes
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COMBINED APPROACH FOR CQS IN ELHI

Alternatively, view as a combined approach: saturation + rewriting
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COMBINED APPROACH FOR CQS IN ELHI

Alternatively, view as a combined approach: saturation + rewriting

Know that it suffices to evaluate the UCQ rews(q) over the set of
ABox assertions entailed from the KB K

Also know: =

Materialize assertions in sat(K) and view result as database

+ only need to evaluate a UCQ
can use standard relational database systems

- materializing not always convenient
saturation needs to be updated if data changes
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AN FO REWRITING APPROACH FOR CQS IN DL-LITE

For DL-Liter we can generate an FO-rewriting as follows.

Replace in all g’ € rews(q) each atom by its FO-rewriting for
instance checking:
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AN FO REWRITING APPROACH FOR CQS IN DL-LITE

For DL-Liter we can generate an FO-rewriting as follows.
Replace in all g’ € rews(q) each atom by its FO-rewriting for
instance checking:

- replace each A(t) by RewritelQ(A, T)

- replace each by

Resulting FO formula:

- positive, can be transformed into a UCQ
- it'is a rewriting of g and T (relative to consistent ABoxes)
- yields ACy upper bound in data complexity
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OTHER HORN DLS

- Similar results hold for other dialects of DL-Lite and ££
- Also for more expressive Horn DLs, like Horn-SHOZQ

- For answering CQs and UCQs in Horn DLs, usually we have:

- Data complexity is in P
- The combined complexity is either:

- NP-complete for tractable DLs
- the same as for instance queries in richer Horn DLs

- With complex role inclusions the complexity increases

- CQs undecidable for ££ ++
- If suitably restricted, PSPACE-complete
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UNDECIDABILITY OF CQ ANSWERING WITH COMPLEX ROLE INCLUSIONS

We can reduce emptiness of the intersection of two CF languages to
CQ answering in ££ (or DL-Lite) with complex role inclusions

rhMo---orpb s
Given two (the non-terminals Ny and N, are disjoint)
1€ {1,2}
We define a TBox
T={TC3r.T|teTtu{n oo Crn|A—=A- A, ePUP}

Then
L(G)NL(G) #0 iff T,{A(c)} & Ix.S1(c,x) A Sy(c,x)
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A GLIMPSE BEYOND HORN DLS

- No universal model property
- CQ answering usually exponentially harder than instance queries
- exponential blow-up in the size of the query

- Automata on infinite trees
- Reductions to satisfiability using treefications and rolling-up
- Resolution, decompositions, typ/knot elimination, etc.

- Often best-case exponential, implementations still not in sight

- Usually bounds for UCQs and CQs coincide, and even for positive
existential queries

- For the well-known decidability and complexity elusive
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COMPLEXITY OF ANSWERING (U)cQs

1Qs CQs, UCQs

data combined data combined
complexity complexity complexity complexity

DL-Lite

. in ACo NLOGSPACE in AC NP
DL-Liter
EL,ELH p p p NP
ELL, ELHT., P Exp P Exp
Horn-SHOZQ
AL CONP Exp coNP Exp
ALCHQ
A S coNP Exp coNP 2Exp
SHIQ
SHOTQ coNP coNExp  coNP-hard" coN2Exp-hard’

" decidability open
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