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conjunctive queries



(unions of) conjunctive queries

IQs quite restricted: No selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query q(⃗x) of the form

∃⃗y.P1(t⃗1) ∧ · · · ∧ Pn(t⃗n)

where every variable in some t⃗i appears in either x⃗ or y⃗ and every Pi
is either a concept or role name

A union of CQs (UCQ) is a first-order query q(⃗x) of the form

q1(⃗x) ∨ · · · ∨ qn(⃗x)

where the qi(⃗x) are CQs with same tuple x⃗ of free vars
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what can we express as cqs?

Find pairs of restaurants and dishes they serve which contain an
spicy ingredient:

q1(x, y) = ∃z.serves(x, y) ∧ Dish(y) ∧ hasIngred(y, z) ∧ Spicy(z)

Find restaurants that serve a vegetarian menu and a menu with a
spicy main dish, and that both have the same cake as dessert:

q2(x) = ∃y1, y2, z1, z2.serves(x, y1) ∧ vegMenu(y1) ∧
hasDessert(y1, z1) ∧ Cake(z1) ∧
serves(x, y2) ∧Menu(y2) ∧ hasMain(y2, z2) ∧
Spicy(z2) ∧ hasDessert(y2, z1)

In general, not expressible as instance queries!
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what can we express as ucqs?

Find restaurants that serve a dish that contains an spicy ingredient,
or that contains an ingredient that contains an spicy ingredient:

q1(x) =
(
∃y, z.serves(x, y) ∧ Dish(y) ∧ hasIngred(y, z) ∧ Spicy(z)

)
∨(
∃y1, y2, z.serves(x, y1) ∧ Dish(y1) ∧

hasIngred(y1, y2) ∧ hasIngred(y2, z) ∧ Spicy(z)
)
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cqs and other query languages

CQs correspond to:

∙ select-project-join queries of relational algebra / SQL

∙ basic graph patterns of SPARQL

Alternatively, CQs and UCQs can be seen as Datalog rules

6/31



cqs and ucqs in datalog

CQs:

q(⃗x) = ∃⃗y.P1(t⃗1) ∧ · · · ∧ Pn(t⃗n) ⇝ q(⃗x)← P1(t⃗1), . . . ,Pn(t⃗n)

UCQs:

q(⃗x) = ∃y⃗1.P11(t⃗11) ∧ · · · ∧ P1n1(t⃗1n1) q(⃗x)← P11(t⃗11), . . . ,P1n1(t⃗1n1)

∨ ∃y⃗2.P21(t⃗21) ∧ · · · ∧ P2n2(t⃗2n2) q(⃗x)← P21(t⃗21), . . . ,P2n(t⃗2n)
... ⇝

...

∨ ∃y⃗ℓ.Pℓ1(t⃗ℓ1) ∧ · · · ∧ Pℓnℓ(t⃗ℓnℓ) q(⃗x)← Pℓ1(t⃗ℓ1), . . . ,Pℓnℓ(t⃗ℓnℓ)
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semantics of cqs

Recall that a⃗ ∈ cert(q,K) iff a⃗ ∈ ans(q, I) for every model I of K

∙ A CQ q(⃗x) is an FO formula, its satisfaction in an interpretation is
clear

a⃗ ∈ ans(q, I) iff I |= q(⃗x 7→ a⃗)

∙ We can also use the notion of a match

A match for q(⃗x) = ∃⃗y.φ(⃗x, y⃗) in an interpretation I is a mapping π

from the variables in x⃗ ∪ y⃗ to objects in ∆I such that:
∙ π(t) ∈ AI for every atom A(t) ∈ q
∙ π(t, t′) ∈ rI for every atom r(t, t′) ∈ q

We write I |=π q(a⃗) if π is a match for q(⃗x) in I and π(⃗x) = a⃗
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semantics of cqs (cont.)

a⃗ ∈ cert(q,K)
iff

for every model I of K we have a⃗ ∈ ans(q, I)
iff

for every model I of K there exists a match π such that I |=π q(a⃗)

Answering CQs = deciding if there is a match in every model

Challenge: how do we check that?

infinitely many models models can be infinite
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the universal model property

For Horn DLs, each satisfiable K has a universal model IK

IK is ‘contained’ in every model I of K

⇝ formally, there is a homomorphism from IK to I

An answer to a (U)CQ q in IK is an answer to q in every model of K

⇝ matches of (U)CQs are preserved under homomorphisms

a⃗ ∈ cert(q,K) iff a⃗ ∈ ans(q, IK)

So: IK gives us the certain answers to q over K

Note: due to the universal model property, answering UCQs is not
harder than answering CQs why?
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constructing a universal model

Use the saturation of (T ,A) for building a universal model IT ,A

Intuition: - IT ,A contains the saturated ABox A′

- if an object satisfies M and M⊑ ∃R.M′ ∈ sat(T ),
a fresh object witnessing this is created

Use only logically strongest inclusions in sat(T ), denoted satstr(T )

Formally, ∆IT ,A contains words

aR1M1 . . .RnMn

with a ∈ Ind(A) and:
∙ Ri are roles and Mi are conjunctions of concept names
∙ there exists M⊑ ∃R1.M1 ∈ satstr(T ) such that T ,A |= M(a)
∙ for every 1 ≤ i < n, exists M′

i ⊑ ∃Ri+1.Mi+1 ∈ satstr(T ) with M′
i ⊆ Mi
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constructing a universal model (cont.)

Defining the interpretation function is straightforward:

∙ aIT ,A = a,

∙ a ∈ AI iff A(a) ∈ sat(T ,A),
∙ eRM ∈ AIT ,A iff A ∈ M,

∙ (a,b) ∈ rI iff r(a,b) ∈ sat(T ,A),
∙ (e, eRM) ∈ rIT ,A iff R ⊑ r ∈ sat(T ), and
∙ (eRM, e) ∈ rIT ,A if R ⊑ r− ∈ sat(T )

Remark: For readability, in the examples we use shorter names instead of
the long words
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example of the canonical model construction (1/3)

TBox: PenneArrab ⊑ ∃hasIngred.Penne
Penne ⊑ Pasta

PenneArrab ⊑ ∃hasIngred.ArrabSauce
ArrabSauce ⊑ ∃hasIngred.Peperonc
Peperonc ⊑ Spicy
PizzaCalab ⊑ ∃hasIngred.Nduja

Nduja ⊑ Spicy

ABox: serves(r,b) serves(r,p) PenneArrab(b) PizzaCalab(p)

The saturated TBox additionally contains:

PenneArrab ⊑ ∃hasIngred.(Penne ⊓ Pasta)
ArrabSauce ⊑ ∃hasIngred.(Peperonc ⊓ Spicy)
PizzaCalab ⊑ ∃hasIngred.(Nduja ⊓ Spicy)
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example of the canonical model construction (2/3)

IT ,A contains the ABox and is closed under inclusions

serves(r,b) serves(r,p) PenneArrab(b) PizzaCalab(p)

rp
PizzaCalab

b
PenneArrabserves serves
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example of the canonical model construction (3/3)

The anonymous objects witnessing existential concepts form trees

rp
PizzaCalab

b
PenneArrab

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauce

e4
Peperonc, Spicy

serves serves

hasIngred hasIngred hasIngred

hasIngred

PenneArrab ⊑ ∃hasIngred.ArrabSauce
PenneArrab ⊑ ∃hasIngred.(Penne ⊓ Pasta)
ArrabSauce ⊑ ∃hasIngred.(Peperonc ⊓ Spicy)
PizzaCalab ⊑ ∃hasIngred.(Nduja ⊓ Spicy)
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finding answers in the canonical model

To answer CQ q, it suffices to test whether it has a match in IT ,A

But this is still challenging!
- IT ,A contains assertions and objects not present in A
- we cannot build IT ,A explicitly: can be infinite!

Our approach: use query rewriting!

Formally: given a CQ q, we construct a UCQ REWT (q) such that

a⃗ ∈ ans(q, IT ,A)

iff
there is a match π for a disjunct q′ of rewT (q) such that
IT ,A |=π q′(a⃗) and π sends all vars to individuals from A
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rewriting the query

Idea of the 1-step rewriting of q into q′:

1. Choose leaf variable x so that no vars are mapped below it in IT ,A

2. Find M⊑ ∃R.N in sat(T ) that ensures all atoms with x
3. Drop from q all atoms with x
4. Merge all neighbours of x and add M for the merged variable

Properties:

∙ Every match π′ for q′ can be easily modified into match π for q
∙ For each match π for q, there is some q′ produced by the rewriting
step and a match π′ for q′

∙ The matches π and π′ are essentially the same, but π′ matches x
closer to the ABox than π

We repeatedly apply the rewriting step to obtain a set of
queries whose relevant matches range over ABox individuals
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example of a rewriting step (1/2)

q(y, x) = ∃z, z′.serves(x, y) ∧ hasIngred(y, z) ∧ hasIngred(z, z′) ∧ Spicy(z′)

We have IK |=π q(b, r) with π(x)= r, π(y)= b, π(z)= e3, π(z′)= e4

r
π(x)

p
PizzaCalab

b
PenneArrab
π(y)

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauceπ(z)

e4
Peperonc, Spicy
π(z′)

serves serves

hasIngred hasIngred hasIngred

hasIngred

• Choose z′ as ‘leaf’
• Choose ArrabSauce⊑ ∃hasIngred.Spicy ∈ sat(T )

• RHS ensures hasIngred(z, z′), Spicy(z′)
• We replace these atoms by ArrabSauce(z)

q′(y, x) = ∃z.serves(x, y) ∧ hasIngred(y, z) ∧ ArrabSauce(z)
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e4
Peperonc, Spicy
π(z′)

serves serves

hasIngred hasIngred hasIngred

hasIngred

• Choose z′ as ‘leaf’
• Choose ArrabSauce⊑ ∃hasIngred.Spicy ∈ sat(T )

• RHS ensures hasIngred(z, z′), Spicy(z′)
• We replace these atoms by ArrabSauce(z)

q′(y, x) = ∃z.serves(x, y) ∧ hasIngred(y, z) ∧ ArrabSauce(z)
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another rewriting step (1/2)

q′(y, x) = ∃z.serves(x, y) ∧ hasIngred(y, z) ∧ ArrabSauce(z)

IK |=π′ q′(b, r)

r
π′(x)

p
PizzaCalab

b
PenneArrab
π′(y)

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauceπ′(z)

e4
Peperonc, Spicy

serves serves

hasIngred hasIngred hasIngred

hasIngred

• Choose z as leaf
• Choose PenneArrab⊑ ∃hasIngred.ArrabSauce
• RHS yields hasIngred(y, z) and ArrabSauce(z)
• We replace these atoms by PenneArrab(y)

q′′(y, x) = serves(x, y) ∧ PenneArrab(y)
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another rewriting step (2/2)
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hasIngred

depth(π) > depth(π′) > depth(π′′)

In π′′ all variables are mapped to individuals
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decision procedure

Theorem For every satisfiable ELHI⊥KB K = (T ,A), and CQ q(⃗x):
a⃗ ∈ cert(q,K) iff IK |=π q′(a⃗) for some q′ ∈ rewT (q) and some π that
maps all variables to individuals in A.

There is a bounded number of such restricted matches π

Checking if π is match reduces to linearly many instance checks

Yields terminating, sound, and complete CQ answering procedure
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complexity of cq answering

Combined complexity:

sat(T ) and rewT (q) can be constructed in single exponential time

single exponential bound on candidate matches π

⇝ instance checking in single exponential time

Data complexity:

sat(T ) and rewT (q) are ABox independent

polynomial bound on candidate matches π

⇝ instance checking in polynomial time

Theorem CQ answering in ELHI⊥and Horn-SHIQ is Exp-complete
in combined complexity and P-complete in data complexity.
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optimal bounds for lightweight dls

Adapting our technique gives optimal bounds for lightweight DLs:

For ELH and DL-LiteR we get NP in combined complexity:

∙ compute sat(T ) in polynomial time
∙ non-deterministically build the right q′ ∈ rewT (q)
∙ guess a candidate π

∙ check if it is a match⇝ instance checking in polynomial time

CQ answering is NP-hard over ABox alone seen as DB (no TBox)

For EL in data complexity, yields P membership
⇝ optimal since instance queries already P-hard

In DL-LiteR, we get a FO-rewriting (later)⇝ in AC0 for data compl.

Theorem CQ answering in ELH and DL-LiteR is NP-complete in
combined complexity. For ELH the data complexity is P-complete,
and for DL-LiteR the data complexity is in AC0.
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datalog rewriting

Our procedure yields a Datalog rewriting:

∙ rewT (q) is a UCQ⇝ translate into set of Datalog rules Πrew(q)
∙ use Q in head of rules

∙ the program Π(T ,Σ) (from earlier) computes all entailed ABox
assertions

(Πrew(q) ∪ Π(T ,Σ),Q)

is a Datalog rewriting of q w.r.t. T relative to consistent Σ-ABoxes
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combined approach for cqs in elhi

Alternatively, view as a combined approach: saturation + rewriting

Know that it suffices to evaluate the UCQ rewT (q) over the set of
ABox assertions entailed from the KB K

Also know: assertions entailed from K = assertions in sat(K)

Materialize assertions in sat(K) and view result as database

+ only need to evaluate a UCQ
can use standard relational database systems

– materializing not always convenient
saturation needs to be updated if data changes
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an fo rewriting approach for cqs in dl-lite

For DL-LiteR we can generate an FO-rewriting as follows.

Replace in all q′ ∈ rewT (q) each atom by its FO-rewriting for
instance checking:

∙ replace each A(t) by RewriteIQ(A, T )
∙ replace each r(t, t′) by RewriteIQ(r, T )

Resulting FO formula:

∙ positive, can be transformed into a UCQ
∙ it is a rewriting of q and T (relative to consistent ABoxes)
∙ yields AC0 upper bound in data complexity
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other horn dls

∙ Similar results hold for other dialects of DL-Lite and EL
∙ Also for more expressive Horn DLs, like Horn-SHOIQ

∙ For answering CQs and UCQs in Horn DLs, usually we have:
∙ Data complexity is in P
∙ The combined complexity is either:
∙ NP-complete for tractable DLs
∙ the same as for instance queries in richer Horn DLs

∙ With complex role inclusions the complexity increases
∙ CQs undecidable for EL ++

∙ If suitably restricted, PSpace-complete
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undecidability of cq answering with complex role inclusions

We can reduce emptiness of the intersection of two CF languages to
CQ answering in EL (or DL-Lite) with complex role inclusions

r1 ◦ · · · ◦ rn ⊑ s

Given two CFGs (the non-terminals N1 and N2 are disjoint)

Gi = (Ni, T,Pi, Si) i ∈ {1, 2}

We define a TBox

T = {⊤ ⊑ ∃rt.⊤ | t ∈ T} ∪ {rA1 ◦ · · · ◦ rAn ⊑ rA | A→ A1 · · ·An ∈ P1 ∪ P2}

Then

L(G1) ∩ L(G2) ̸= ∅ iff T , {A(c)} |= ∃x.S1(c, x) ∧ S2(c, x)
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a glimpse beyond horn dls

∙ No universal model property
∙ CQ answering usually exponentially harder than instance queries
∙ exponential blow-up in the size of the query

∙ Different techniques:
∙ Automata on infinite trees
∙ Reductions to satisfiability using treefications and rolling-up
∙ Resolution, decompositions, typ/knot elimination, etc.

∙ Often best-case exponential, implementations still not in sight
∙ Usually bounds for UCQs and CQs coincide, and even for positive
existential queries

∙ For the well-known SHOIQ decidability and complexity elusive
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complexity of answering (u)cqs

IQs CQs, UCQs

data
complexity

combined
complexity

data
complexity

combined
complexity

DL-Lite
DL-LiteR

in AC0 NLogSpace in AC0 NP

EL, ELH P P P NP

ELI , ELHI⊥,
Horn-SHOIQ

P Exp P Exp

ALC,
ALCHQ

coNP Exp coNP Exp

ALCI , SH,
SHIQ

coNP Exp coNP 2Exp

SHOIQ coNP coNExp coNP-hard1 coN2Exp-hard1

1 decidability open
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