QUERY ANSWERING WITH DESCRIPTION LOGIC ONTOLOGIES

Meghyn Bienvenu (CNRS & Université de Montpellier) Magdalena Ortiz (Vienna University of Technology)

CONJUNCTIVE QUERIES

(UNIONS OF) CONJUNCTIVE QUERIES

IQs quite restricted: No selections and joins as in DB queries

IQs quite restricted: No selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs)

IQs quite restricted: No selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query $q(\vec{x})$ of the form

 $\exists \vec{y}. P_1(\vec{t_1}) \land \cdots \land P_n(\vec{t_n})$

where every variable in some $\vec{t_i}$ appears in either \vec{x} or \vec{y} and every P_i is either a concept or role name

IQs quite restricted: No selections and joins as in DB queries

Most work on OMQA adopts (unions of) conjunctive queries (CQs)

A **conjunctive query (CQ)** is a first-order query $q(\vec{x})$ of the form

 $\exists \vec{y}. P_1(\vec{t_1}) \land \cdots \land P_n(\vec{t_n})$

where every variable in some $\vec{t_i}$ appears in either \vec{x} or \vec{y} and every P_i is either a concept or role name

A union of CQs (UCQ) is a first-order query $q(\vec{x})$ of the form

 $q_1(\vec{x}) \lor \cdots \lor q_n(\vec{x})$

where the $q_i(\vec{x})$ are CQs with same tuple \vec{x} of free vars

Find pairs of restaurants and dishes they serve which contain an spicy ingredient:

 $q_1(x,y) = \exists z.serves(x,y) \land Dish(y) \land hasIngred(y,z) \land Spicy(z)$

Find restaurants that serve a vegetarian menu and a menu with a spicy main dish, and that both have the same cake as dessert:

$$q_{2}(x) = \exists y_{1}, y_{2}, z_{1}, z_{2}.serves(x, y_{1}) \land vegMenu(y_{1}) \land \\ hasDessert(y_{1}, z_{1}) \land Cake(z_{1}) \land \\ serves(x, y_{2}) \land Menu(y_{2}) \land hasMain(y_{2}, z_{2}) \land \\ Spicy(z_{2}) \land hasDessert(y_{2}, z_{1})$$

Find pairs of restaurants and dishes they serve which contain an spicy ingredient:

 $q_1(x,y) = \exists z.serves(x,y) \land Dish(y) \land hasIngred(y,z) \land Spicy(z)$

Find restaurants that serve a vegetarian menu and a menu with a spicy main dish, and that both have the same cake as dessert:

$$q_{2}(x) = \exists y_{1}, y_{2}, z_{1}, z_{2}.serves(x, y_{1}) \land vegMenu(y_{1}) \land \\ hasDessert(y_{1}, z_{1}) \land Cake(z_{1}) \land \\ serves(x, y_{2}) \land Menu(y_{2}) \land hasMain(y_{2}, z_{2}) \land \\ Spicy(z_{2}) \land hasDessert(y_{2}, z_{1})$$

In general, not expressible as instance queries!

Find restaurants that serve a dish that contains an spicy ingredient, or that contains an ingredient that contains an spicy ingredient:

 $q_{1}(x) = (\exists y, z. serves(x, y) \land Dish(y) \land hasIngred(y, z) \land Spicy(z)) \\ \lor \\ (\exists y_{1}, y_{2}, z. serves(x, y_{1}) \land Dish(y_{1}) \land \\ hasIngred(y_{1}, y_{2}) \land hasIngred(y_{2}, z) \land Spicy(z)) \end{cases}$

CQs correspond to:

- · select-project-join queries of relational algebra / SQL
- · basic graph patterns of SPARQL

Alternatively, CQs and UCQs can be seen as Datalog rules

CQs:

$$q(\vec{x}) = \exists \vec{y}. P_1(\vec{t_1}) \land \dots \land P_n(\vec{t_n}) \quad \rightsquigarrow \quad q(\vec{x}) \leftarrow P_1(\vec{t_1}), \dots, P_n(\vec{t_n})$$

CQs:

$$q(\vec{x}) = \exists \vec{y}.P_1(\vec{t_1}) \land \dots \land P_n(\vec{t_n}) \quad \rightsquigarrow \quad q(\vec{x}) \leftarrow P_1(\vec{t_1}), \dots, P_n(\vec{t_n})$$

$$\begin{aligned} q(\vec{x}) &= \exists \vec{y_1}.P_1^1(\vec{t_1}) \land \dots \land P_{n_1}^1(\vec{t_{n_1}}) & q(\vec{x}) \leftarrow P_1^1(\vec{t_1}), \dots, P_{n_1}^1(\vec{t_{n_1}}) \\ &\vee \exists \vec{y_2}.P_1^2(\vec{t_1}) \land \dots \land P_{n_2}^2(\vec{t_{n_2}}) & q(\vec{x}) \leftarrow P_1^2(\vec{t_1}), \dots, P_n^2(\vec{t_n}) \\ &\vdots & & \vdots \\ &\vee \exists \vec{y_\ell}.P_1^\ell(\vec{t_1}) \land \dots \land P_{n_\ell}^\ell(\vec{t_{n_\ell}}) & q(\vec{x}) \leftarrow P_1^\ell(\vec{t_1}), \dots, P_{n_\ell}^\ell(\vec{t_{n_\ell}}) \end{aligned}$$

Recall that $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\vec{a} \in \operatorname{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

• A CQ $q(\vec{x})$ is an FO formula, its satisfaction in an interpretation is clear

$$\vec{a} \in \operatorname{ans}(q, \mathcal{I}) \text{ iff } \mathcal{I} \models q(\vec{x} \mapsto \vec{a})$$

Recall that $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\vec{a} \in \operatorname{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

• A CQ $q(\vec{x})$ is an FO formula, its satisfaction in an interpretation is clear

$$\vec{a} \in \operatorname{ans}(q, \mathcal{I}) \text{ iff } \mathcal{I} \models q(\vec{x} \mapsto \vec{a})$$

 $\cdot\,$ We can also use the notion of a match

Recall that $\vec{a} \in \text{cert}(q, \mathcal{K})$ iff $\vec{a} \in \text{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

• A CQ $q(\vec{x})$ is an FO formula, its satisfaction in an interpretation is clear

$$\vec{a} \in \operatorname{ans}(q, \mathcal{I}) \text{ iff } \mathcal{I} \models q(\vec{x} \mapsto \vec{a})$$

 \cdot We can also use the notion of a match

A match for $q(\vec{x}) = \exists \vec{y}.\varphi(\vec{x},\vec{y})$ in an interpretation \mathcal{I} is a mapping π from the variables in $\vec{x} \cup \vec{y}$ to objects in $\Delta^{\mathcal{I}}$ such that:

- $\cdot \pi(t) \in A^{\mathcal{I}}$ for every atom $A(t) \in q$
- $\cdot \pi(t,t') \in r^{\mathcal{I}}$ for every atom $r(t,t') \in q$

Recall that $\vec{a} \in \text{cert}(q, \mathcal{K})$ iff $\vec{a} \in \text{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

• A CQ $q(\vec{x})$ is an FO formula, its satisfaction in an interpretation is clear

$$\vec{a} \in \operatorname{ans}(q, \mathcal{I}) \text{ iff } \mathcal{I} \models q(\vec{x} \mapsto \vec{a})$$

 \cdot We can also use the notion of a match

A match for $q(\vec{x}) = \exists \vec{y}.\varphi(\vec{x},\vec{y})$ in an interpretation \mathcal{I} is a mapping π from the variables in $\vec{x} \cup \vec{y}$ to objects in $\Delta^{\mathcal{I}}$ such that:

- $\cdot \pi(t) \in A^{\mathcal{I}}$ for every atom $A(t) \in q$
- $\cdot \pi(t,t') \in r^{\mathcal{I}}$ for every atom $r(t,t') \in q$

We write $\mathcal{I} \models_{\pi} q(\vec{a})$ if π is a match for $q(\vec{x})$ in \mathcal{I} and $\pi(\vec{x}) = \vec{a}$

$\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff for every model \mathcal{I} of \mathcal{K} we have $\vec{a} \in \operatorname{ans}(q, \mathcal{I})$ iff for every model \mathcal{I} of \mathcal{K} there exists a match π such that $\mathcal{I} \models_{\pi} q(\vec{a})$

$\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff for every model \mathcal{I} of \mathcal{K} we have $\vec{a} \in \operatorname{ans}(q, \mathcal{I})$ iff for every model \mathcal{I} of \mathcal{K} there exists a match π such that $\mathcal{I} \models_{\pi} q(\vec{a})$

Answering CQs = deciding if there is a match in every model

$\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff for every model \mathcal{I} of \mathcal{K} we have $\vec{a} \in \operatorname{ans}(q, \mathcal{I})$ iff for every model \mathcal{I} of \mathcal{K} there exists a match π such that $\mathcal{I} \models_{\pi} q(\vec{a})$

Answering CQs = deciding if there is a match in every model

Challenge: how do we check that?

infinitely many models models can be infinite

For Horn DLs, each satisfiable ${\mathcal K}$ has a universal model ${\mathcal I}_{{\mathcal K}}$

 $\mathcal{I}_{\mathcal{K}}$ is 'contained' in every model $\mathcal I$ of $\mathcal K$

 \rightsquigarrow formally, there is a homomorphism from $\mathcal{I}_{\mathcal{K}}$ to \mathcal{I}

For Horn DLs, each satisfiable ${\mathcal K}$ has a universal model ${\mathcal I}_{{\mathcal K}}$

 $\mathcal{I}_\mathcal{K}$ is 'contained' in every model $\mathcal I$ of $\mathcal K$

 \rightsquigarrow formally, there is a homomorphism from $\mathcal{I}_\mathcal{K}$ to \mathcal{I}

An **answer** to a (U)CQ q in $\mathcal{I}_{\mathcal{K}}$ is an **answer** to q in every model of \mathcal{K}

→ matches of (U)CQs are preserved under homomorphisms

 $\vec{a} \in \operatorname{cert}(q, \mathcal{K}) \text{ iff } \vec{a} \in \operatorname{ans}(q, \mathcal{I}_{\mathcal{K}})$

So: $\mathcal{I}_{\mathcal{K}}$ gives us the certain answers to q over \mathcal{K}

For Horn DLs, each satisfiable ${\mathcal K}$ has a universal model ${\mathcal I}_{{\mathcal K}}$

 $\mathcal{I}_\mathcal{K}$ is 'contained' in every model $\mathcal I$ of $\mathcal K$

 \rightsquigarrow formally, there is a homomorphism from $\mathcal{I}_\mathcal{K}$ to \mathcal{I}

An **answer** to a (U)CQ q in $\mathcal{I}_{\mathcal{K}}$ is an **answer** to q in every model of \mathcal{K}

→ matches of (U)CQs are preserved under homomorphisms

 $\vec{a} \in \operatorname{cert}(q, \mathcal{K}) \text{ iff } \vec{a} \in \operatorname{ans}(q, \mathcal{I}_{\mathcal{K}})$

So: $\mathcal{I}_{\mathcal{K}}$ gives us the certain answers to q over \mathcal{K}

Note: due to the universal model property, answering UCQs is not harder than answering CQs why?

Use the saturation of $(\mathcal{T}, \mathcal{A})$ for building a universal model $\mathcal{I}_{\mathcal{T}, \mathcal{A}}$

Use the saturation of $(\mathcal{T}, \mathcal{A})$ for building a universal model $\mathcal{I}_{\mathcal{T}, \mathcal{A}}$

Intuition: $-\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains the saturated ABox \mathcal{A}' - if an object satisfies M and $M \sqsubseteq \exists R.M' \in sat(\mathcal{T})$, a **fresh object** witnessing this is created

Use only logically strongest inclusions in sat(\mathcal{T}), denoted sat^{str}(\mathcal{T})

Use the saturation of $(\mathcal{T}, \mathcal{A})$ for building a universal model $\mathcal{I}_{\mathcal{T}, \mathcal{A}}$

Intuition: $-\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains the saturated ABox \mathcal{A}' - if an object satisfies M and $M \sqsubseteq \exists R.M' \in sat(\mathcal{T})$, a **fresh object** witnessing this is created

Use only logically strongest inclusions in sat(\mathcal{T}), denoted sat^{str}(\mathcal{T})

Formally, $\Delta^{\mathcal{I}_{\mathcal{T},\mathcal{A}}}$ contains words

 $aR_1M_1\ldots R_nM_n$

with $a \in Ind(A)$ and:

- \cdot R_i are roles and M_i are conjunctions of concept names
- there exists $M \sqsubseteq \exists R_1.M_1 \in \mathsf{sat}^{\mathsf{str}}(\mathcal{T})$ such that $\mathcal{T}, \mathcal{A} \models M(a)$
- for every $1 \le i < n$, exists $M'_i \sqsubseteq \exists R_{i+1}.M_{i+1} \in \operatorname{sat}^{\operatorname{str}}(\mathcal{T})$ with $M'_i \subseteq M_i$

Defining the interpretation function is straightforward:

- $\cdot a^{\mathcal{I}_{\mathcal{T},\mathcal{A}}} = a,$
- $\cdot a \in A^{\mathcal{I}} \text{ iff } A(a) \in \text{sat}(\mathcal{T}, \mathcal{A}),$
- $\cdot eRM \in A^{\mathcal{I}_{\mathcal{T},\mathcal{A}}} \text{ iff } A \in M$,
- $(a,b) \in r^{\mathcal{I}} \text{ iff } r(a,b) \in \text{sat}(\mathcal{T},\mathcal{A}),$
- \cdot (*e*, *eRM*) $\in r^{\mathcal{I}_{\mathcal{T},\mathcal{A}}}$ iff $R \sqsubseteq r \in sat(\mathcal{T})$, and
- $(eRM, e) \in r^{\mathcal{I}_{\mathcal{T}, \mathcal{A}}}$ if $R \sqsubseteq r^- \in sat(\mathcal{T})$

Remark: For readability, in the examples we use shorter names instead of the long words

TBox:	PenneArrab Penne PenneArrab ArrabSauce Peperonc PizzaCalab Nduja		Hasingr Pasta Hasingr Hasingr Spicy Hasingr Spicy	red.Penne red.ArrabSauce red.Peperonc red.Nduja	
ABox:	serves(r, b)	serv	es(r,p)	PenneArrab(b)	PizzaCalab(p)
The saturated TBox additionally contains:					
PenneArrab□∃hasIngred.(Penne □ Pasta)ArrabSauce□∃hasIngred.(Peperonc □ Spicy)PizzaCalab□∃hasIngred.(Nduja □ Spicy)					

$\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains the ABox and is closed under inclusions

The anonymous objects witnessing existential concepts form trees

To answer CQ q, it suffices to test whether it has a match in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$

But this is still challenging!

- $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains assertions and objects not present in \mathcal{A}
- we cannot build $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ explicitly: can be infinite!

To answer CQ q, it suffices to test whether it has a match in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$

But this is still challenging!

- $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains assertions and objects not present in \mathcal{A}
- we cannot build $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ explicitly: can be infinite!

Our approach: use query rewriting!

To answer CQ q, it suffices to test whether it has a match in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$

But this is still challenging!

- $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ contains assertions and objects not present in \mathcal{A}
- we cannot build $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ explicitly: can be **infinite**!

Our approach: use query rewriting!

Formally: given a CQ q, we construct a UCQ $REW_T(q)$ such that

$\vec{a} \in ans(q, \mathcal{I}_{\mathcal{T}, \mathcal{A}})$ iff

there is a match π for a disjunct q' of rew_{\mathcal{T}}(q) such that $\mathcal{I}_{\mathcal{T},\mathcal{A}} \models_{\pi} q'(\vec{a})$ and π sends all vars to individuals from \mathcal{A}

- 1. Choose leaf variable x so that no vars are mapped below it in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$
- 2. Find $M \sqsubseteq \exists R.N \text{ in sat}(\mathcal{T})$ that ensures all atoms with x
- 3. **Drop** from *q* all atoms with *x*
- 4. Merge all neighbours of x and add M for the merged variable

- 1. Choose leaf variable x so that no vars are mapped below it in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$
- 2. Find $M \sqsubseteq \exists R.N \text{ in sat}(\mathcal{T})$ that ensures all atoms with x
- 3. **Drop** from *q* all atoms with *x*
- 4. Merge all neighbours of x and add M for the merged variable

Properties:

· Every match π' for q' can be easily modified into match π for q

- 1. Choose leaf variable x so that no vars are mapped below it in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$
- 2. Find $M \sqsubseteq \exists R.N \text{ in sat}(\mathcal{T})$ that ensures all atoms with x
- 3. **Drop** from *q* all atoms with *x*
- 4. Merge all neighbours of x and add M for the merged variable

Properties:

- Every match π' for q' can be easily modified into match π for q
- For each match π for q, there is some q' produced by the rewriting step and a match π' for q'

- 1. Choose leaf variable x so that no vars are mapped below it in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$
- 2. Find $M \sqsubseteq \exists R.N \text{ in sat}(\mathcal{T})$ that ensures all atoms with x
- 3. **Drop** from *q* all atoms with *x*
- 4. Merge all neighbours of x and add M for the merged variable

Properties:

- · Every match π' for q' can be easily modified into match π for q
- For each match π for q, there is some q' produced by the rewriting step and a match π' for q'
- $\cdot\,$ The matches π and π' are essentially the same, but π' matches x closer to the ABox than $\pi\,$
Idea of the 1-step rewriting of q into q':

- 1. Choose leaf variable x so that no vars are mapped below it in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$
- 2. Find $M \sqsubseteq \exists R.N \text{ in sat}(\mathcal{T})$ that ensures all atoms with x
- 3. **Drop** from *q* all atoms with *x*
- 4. Merge all neighbours of x and add M for the merged variable

Properties:

- · Every match π' for q' can be easily modified into match π for q
- For each match π for q, there is some q' produced by the rewriting step and a match π' for q'
- \cdot The matches π and π' are essentially the same, but π' matches x closer to the ABox than π

We **repeatedly apply the rewriting step** to obtain a set of queries whose relevant matches **range over ABox individuals**

EXAMPLE OF A REWRITING STEP (1/2)

 $q(y, x) = \exists z, z'$.serves $(x, y) \land hasIngred(y, z) \land hasIngred(z, z') \land Spicy(z')$

We have $\mathcal{I}_{\mathcal{K}} \models_{\pi} q(b, r)$ with $\pi(x) = r, \pi(y) = b, \pi(z) = e_3, \pi(z') = e_4$

EXAMPLE OF A REWRITING STEP (1/2)

 $q(y,x) = \exists z, z'.serves(x,y) \land hasIngred(y,z) \land hasIngred(z,z') \land Spicy(z')$

We have $\mathcal{I}_{\mathcal{K}} \models_{\pi} q(b, r)$ with $\pi(x) = r, \pi(y) = b, \pi(z) = e_3, \pi(z') = e_4$

EXAMPLE OF A REWRITING STEP (1/2)

 $q(y,x) = \exists z, z'.serves(x,y) \land hasIngred(y,z) \land hasIngred(z,z') \land Spicy(z')$

We have $\mathcal{I}_{\mathcal{K}} \models_{\pi} q(b, r)$ with $\pi(x) = r, \pi(y) = b, \pi(z) = e_3, \pi(z') = e_4$

 $q'(y,x) = \exists z.serves(x,y) \land hasIngred(y,z) \land ArrabSauce(z)$

 $q(y,x) = \exists z, z'.serves(x, y) \land hasIngred(y, z) \land hasIngred(z, z') \land Spicy(z')$ $q'(y,x) = \exists z.serves(x, y) \land hasIngred(y, z) \land ArrabSauce(z)$ $q(y,x) = \exists z, z'.serves(x, y) \land hasIngred(y, z) \land hasIngred(z, z') \land Spicy(z')$ $q'(y,x) = \exists z.serves(x, y) \land hasIngred(y, z) \land ArrabSauce(z)$

 $q(y,x) = \exists z, z'.serves(x, y) \land hasIngred(y, z) \land hasIngred(z, z') \land Spicy(z')$ $q'(y,x) = \exists z.serves(x, y) \land hasIngred(y, z) \land ArrabSauce(z)$

$q'(y,x) = \exists z.serves(x,y) \land hasIngred(y,z) \land ArrabSauce(z)$

 $\mathcal{I}_{\mathcal{K}}\models_{\pi'} q'(b,r)$

$q'(y, x) = \exists z.serves(x, y) \land hasIngred(y, z) \land ArrabSauce(z)$

 $\mathcal{I}_{\mathcal{K}}\models_{\pi'} q'(b,r)$

- Choose z as leaf
- Choose PenneArrab $\sqsubseteq \exists hasIngred.ArrabSauce$
- RHS yields hasIngred(y, z) and ArrabSauce(z)
- We replace these atoms by PenneArrab(y)

e4

Peperonc, Spicy

$q'(y, x) = \exists z.serves(x, y) \land hasIngred(y, z) \land ArrabSauce(z)$

 $\mathcal{I}_{\mathcal{K}}\models_{\pi'} q'(b,r)$

• We replace these atoms by PenneArrab(y)

 $q''(y,x) = serves(x,y) \land PenneArrab(y)$

$$\mathcal{I}_{\mathcal{K}} \models_{\pi} q(b, r) \qquad \qquad \mathcal{I}_{\mathcal{K}} \models_{\pi'} q'(b, r) \qquad \qquad \mathcal{I}_{\mathcal{K}} \models_{\pi''} q''(b, r)$$

In π'' all variables are mapped to individuals

Theorem For every satisfiable \mathcal{ELHI}_{\perp} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and CQ $q(\vec{x})$: $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\mathcal{I}_{\mathcal{K}} \models_{\pi} q'(\vec{a})$ for some $q' \in \operatorname{rew}_{\mathcal{T}}(q)$ and some π that maps all variables to individuals in \mathcal{A} . **Theorem** For every satisfiable \mathcal{ELHI}_{\perp} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and CQ $q(\vec{x})$: $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\mathcal{I}_{\mathcal{K}} \models_{\pi} q'(\vec{a})$ for some $q' \in \operatorname{rew}_{\mathcal{T}}(q)$ and some π that maps all variables to individuals in \mathcal{A} .

There is a **bounded number** of such restricted matches π Checking if π is match reduces to linearly many instance checks **Theorem** For every satisfiable \mathcal{ELHI}_{\perp} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and CQ $q(\vec{x})$: $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\mathcal{I}_{\mathcal{K}} \models_{\pi} q'(\vec{a})$ for some $q' \in \operatorname{rew}_{\mathcal{T}}(q)$ and some π that maps all variables to individuals in \mathcal{A} .

There is a **bounded number** of such restricted matches π Checking if π is match reduces to linearly many instance checks

Yields terminating, sound, and complete CQ answering procedure

Combined complexity:

sat(\mathcal{T}) and rew_{\mathcal{T}}(q) can be constructed in single exponential time single exponential bound on candidate matches π \rightsquigarrow instance checking in single exponential time

Combined complexity:

sat(\mathcal{T}) and rew_{\mathcal{T}}(q) can be constructed in single exponential time single exponential bound on candidate matches π \rightarrow instance checking in single exponential time

Data complexity:

sat(\mathcal{T}) and rew_{\mathcal{T}}(q) are ABox independent polynomial bound on candidate matches π \rightsquigarrow instance checking in polynomial time

Combined complexity:

sat(\mathcal{T}) and rew_{\mathcal{T}}(q) can be constructed in single exponential time single exponential bound on candidate matches π \rightarrow instance checking in single exponential time

Data complexity:

sat(\mathcal{T}) and rew_{\mathcal{T}}(q) are ABox independent polynomial bound on candidate matches π \rightarrow instance checking in polynomial time

Theorem CQ answering in \mathcal{ELHI}_{\perp} and Horn- \mathcal{SHIQ} is Exp-complete in combined complexity and P-complete in data complexity.

For \mathcal{ELH} and DL-Lite_R we get NP in combined complexity:

- \cdot compute sat(\mathcal{T}) in polynomial time
- · non-deterministically build the right $q' \in \operatorname{rew}_{\mathcal{T}}(q)$
- $\cdot\,$ guess a candidate π
- $\cdot\,$ check if it is a match \rightsquigarrow instance checking in polynomial time

CQ answering is NP-hard over ABox alone seen as DB (no TBox)

For \mathcal{ELH} and DL-Lite_R we get NP in combined complexity:

- \cdot compute sat(\mathcal{T}) in polynomial time
- · non-deterministically build the right $q' \in \operatorname{rew}_{\mathcal{T}}(q)$
- $\cdot\,$ guess a candidate π
- $\cdot\,$ check if it is a match \rightsquigarrow instance checking in polynomial time

CQ answering is **NP-hard** over ABox alone seen as DB (no TBox)

For *EL* in **data complexity**, yields P membership → optimal since instance queries already P-hard

For \mathcal{ELH} and DL-Lite_R we get NP in combined complexity:

- \cdot compute sat(\mathcal{T}) in polynomial time
- · non-deterministically build the right $q' \in \operatorname{rew}_{\mathcal{T}}(q)$
- $\cdot\,$ guess a candidate π
- $\cdot\,$ check if it is a match \rightsquigarrow instance checking in polynomial time

CQ answering is NP-hard over ABox alone seen as DB (no TBox)

For *EL* in **data complexity**, yields **P** membership → optimal since instance queries already **P-hard**

In $DL-Lite_{\mathcal{R}}$, we get a FO-rewriting (later) \rightsquigarrow in AC_0 for data compl.

For \mathcal{ELH} and DL-Lite_R we get NP in combined complexity:

- \cdot compute sat(\mathcal{T}) in polynomial time
- · non-deterministically build the right $q' \in \operatorname{rew}_{\mathcal{T}}(q)$
- $\cdot\,$ guess a candidate π
- $\cdot\,$ check if it is a match \rightsquigarrow instance checking in polynomial time

CQ answering is NP-hard over ABox alone seen as DB (no TBox)

For *EL* in **data complexity**, yields P membership → optimal since instance queries already P-hard

In DL-Lite_{\mathcal{R}}, we get a FO-rewriting (later) \rightsquigarrow in AC₀ for data compl.

Theorem CQ answering in \mathcal{ELH} and DL-Lite_{\mathcal{R}} is NP-complete in combined complexity. For \mathcal{ELH} the data complexity is P-complete, and for DL-Lite_{\mathcal{R}} the data complexity is in AC₀.

Our procedure yields a Datalog rewriting:

- $\cdot \operatorname{rew}_{\mathcal{T}}(q)$ is a UCQ \rightsquigarrow translate into set of Datalog rules $\Pi_{\operatorname{rew}(q)}$
 - $\cdot \,$ use Q in head of rules
- · the program $\Pi(\mathcal{T},\Sigma)$ (from earlier) computes all entailed ABox assertions

Our procedure yields a Datalog rewriting:

- $\cdot \operatorname{rew}_{\mathcal{T}}(q)$ is a UCQ \rightsquigarrow translate into set of Datalog rules $\Pi_{\operatorname{rew}(q)}$
 - $\cdot \,$ use Q in head of rules
- · the program $\Pi(\mathcal{T}, \Sigma)$ (from earlier) computes all entailed ABox assertions

 $(\Pi_{\mathsf{rew}(q)} \cup \Pi(\mathcal{T}, \Sigma), Q)$

is a **Datalog rewriting** of q w.r.t. T relative to consistent Σ -ABoxes

Know that it suffices to evaluate the UCQ $\operatorname{rew}_{\mathcal{T}}(q)$ over the set of ABox assertions entailed from the KB \mathcal{K}

Know that it suffices to evaluate the UCQ $\operatorname{rew}_{\mathcal{T}}(q)$ over the set of ABox assertions entailed from the KB \mathcal{K}

Also know: assertions entailed from \mathcal{K} = assertions in sat(\mathcal{K})

Know that it suffices to evaluate the UCQ $\operatorname{rew}_{\mathcal{T}}(q)$ over the set of ABox assertions entailed from the KB \mathcal{K}

Also know: assertions entailed from \mathcal{K} = assertions in sat(\mathcal{K})

Materialize assertions in sat(\mathcal{K}) and view result as database

- only need to evaluate a UCQ can use standard relational database systems
- materializing not always convenient saturation needs to be updated if data changes

For DL-Lite $_{\mathcal{R}}$ we can generate an FO-rewriting as follows.

Replace in all $q' \in \text{rew}_{\mathcal{T}}(q)$ each atom by its FO-rewriting for instance checking:

For DL-Lite $_{\mathcal{R}}$ we can generate an FO-rewriting as follows.

Replace in all $q' \in \text{rew}_{\mathcal{T}}(q)$ each atom by its FO-rewriting for instance checking:

- · replace each A(t) by RewriteIQ(A, T)
- replace each r(t, t') by RewriteIQ(r, T)

For DL-Lite $_{\mathcal{R}}$ we can generate an FO-rewriting as follows.

Replace in all $q' \in \text{rew}_{\mathcal{T}}(q)$ each atom by its FO-rewriting for instance checking:

- · replace each A(t) by RewriteIQ(A, T)
- replace each r(t, t') by RewriteIQ(r, T)

Resulting FO formula:

- · positive, can be transformed into a UCQ
- · it is a **rewriting of** q and T (relative to consistent ABoxes)
- yields AC₀ upper bound in data complexity

- $\cdot\,$ Similar results hold for other dialects of DL-Lite and \mathcal{EL}
- \cdot Also for more expressive Horn DLs, like Horn-SHOIQ
- For answering CQs and UCQs in Horn DLs, usually we have:
 - · Data complexity is in P
 - · The **combined** complexity is either:
 - NP-complete for tractable DLs
 - the same as for instance queries in richer Horn DLs
- · With complex role inclusions the complexity increases
 - $\cdot \,$ CQs undecidable for $\mathcal{EL} + +$
 - · If suitably restricted, PSPACE-complete

We can reduce **emptiness of the intersection of two CF languages** to CQ answering in \mathcal{EL} (or DL-Lite) with **complex role inclusions**

 $r_1 \circ \cdots \circ r_n \sqsubseteq s$

Given two CFGs

(the non-terminals N_1 and N_2 are disjoint)

 $G_i = (N_i, T, P_i, S_i)$ $i \in \{1, 2\}$

We define a **TBox**

 $\mathcal{T} = \{\top \sqsubseteq \exists r_t. \top \mid t \in T\} \cup \{r_{A_1} \circ \cdots \circ r_{A_n} \sqsubseteq r_A \mid A \to A_1 \cdots A_n \in P_1 \cup P_2\}$

Then

 $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) \neq \emptyset \quad \text{iff} \quad \mathcal{T}, \{A(c)\} \models \exists x.S_1(c,x) \land S_2(c,x)$
· No universal model property

- · CQ answering usually exponentially harder than instance queries
 - $\cdot\,$ exponential blow-up in the size of the query
- Different techniques:
 - · Automata on infinite trees
 - $\cdot\,$ Reductions to satisfiability using treefications and rolling-up
 - · Resolution, decompositions, typ/knot elimination, etc.
- · Often **best-case exponential**, implementations still not in sight
- Usually bounds for UCQs and CQs coincide, and even for positive existential queries
- \cdot For the well-known \mathcal{SHOIQ} decidability and complexity elusive

COMPLEXITY OF ANSWERING (U)CQS

	lQs		CQs, UCQs	
	data complexity	combined complexity	data complexity	combined complexity
DL-Lite DL-Lite _R	in AC_0	NLOGSPACE	in AC_0	NP
$\mathcal{EL},\mathcal{ELH}$	Р	Р	Р	NP
ELI, ELHI⊥, Horn-SHOIQ	Ρ	Ехр	Р	Ехр
ALC, ALCHQ	coNP	Ехр	coNP	Exp
ALCI, SH, SHIQ	coNP	Ехр	coNP	2Exp
SHOIQ	coNP	CONEXP	coNP-hard ¹	coN2Exp-hard ¹

¹ decidability open