QUERY ANSWERING WITH DESCRIPTION LOGIC ONTOLOGIES

Meghyn Bienvenu (CNRS & Université de Montpellier) Magdalena Ortiz (Vienna University of Technology)

INSTANCE QUERIES

Instance queries (IQs): find instances of a given concept or role

$A(x) \text{where } A \in N_C$	concept instance query
$r(x, y)$ where $r \in N_R$	role instance query

Instance queries (IQs): find instances of a given concept or role

$A(x) \text{where } A \in N_C$	concept instance query
$r(\mathbf{x}, \mathbf{y})$ where $r \in N_R$	role instance query

To query for a **complex concept** *C*, take $A_C(x)$ for fresh $A_C \in N_C$ and add $C \sqsubseteq A_C$ to the TBox

Instance queries (IQs): find instances of a given concept or role

$A(x) \text{where } A \in N_C$	concept instance query
$r(\mathbf{x}, \mathbf{y})$ where $r \in N_R$	role instance query

To query for a **complex concept** *C*, take $A_C(x)$ for fresh $A_C \in N_C$ and add $C \sqsubseteq A_C$ to the TBox

Remarks:

- · Instance query answering is often called *instance checking*
- · Focus of OMQA until mid-2000s

Input = instance query q + DL-Lite_R TBox T

We construct an FO-rewriting of q w.r.t. ${\cal T}$

More specifically, we construct:

- an FO-rewriting of *q* relative to consistent ABoxes, and
- an FO-rewriting of unsatisfiability

(these can be easily combined into FO-rewriting of q for all ABoxes)

We first define two procedures:

ComputeSubsumeesall reasons for an individual to be in Binputconcept B, TBox \mathcal{T} outputset of C such that $\mathcal{T} \models C \sqsubseteq B \quad \rightsquigarrow$ subsumees of B w.r.t. \mathcal{T}

ComputeSubrolesall reasons for a pair to be in Rinputrole R, TBox \mathcal{T} outputset of S such that $\mathcal{T} \models S \sqsubseteq R \implies$ subroles of R w.r.t. \mathcal{T}

Algorithm ComputeSubsumees

INPUT: DL-Lite_R TBox \mathcal{T} , concept $B \in N_{C} \cup \{\exists R \mid R \in N_{R}^{\pm}\}$

- 1. Initialize Subsumees = $\{B\}$ and Examined = \emptyset .
- 2. While Subsumees \backslash Examined $\neq \emptyset$
 - 2.1 Select $D \in$ Subsumees \ Examined and add D to Examined.
 - 2.2 For every concept inclusion $C \sqsubseteq D \in \mathcal{T}$
 - · If $C \notin$ Subsumees, add C to Subsumees
 - 2.3 For every role inclusion $R \sqsubseteq S \in \mathcal{T}$ such that $D = \exists S$.
 - · If $\exists R \notin$ Subsumees, add $\exists R$ to Subsumees
 - 2.4 For every role inclusion $R \sqsubseteq S \in \mathcal{T}$ such that $D = \exists inv(S)$.
 - · If $\exists inv(R) \notin$ Subsumees, add $\exists inv(R)$ to Subsumees.
- 3. Return Subsumees.

ComputeSubsumees on (\mathcal{T} , Dish), where \mathcal{T} :

ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

Examined = \emptyset Subsumees = {Dish}

	Examined $= \emptyset$
	Subsumees = $\{Dish\}$
Choose: Dish	Examined = {Dish}
	Subsumees = $\{Dish, ItalDish, VegDish, \exists hasCourse^-\}$

	Examined	=	Ø
	Subsumees	=	{Dish}
Choose: Dish	Examined	=	{Dish}
	Subsumees	=	$\{Dish, ItalDish, VegDish, \exists hasCourse^-\}$
Choose: ItalDish	Examined	=	{Dish, ItalDish}
	Subsumees	=	$\{ {\tt Dish}, {\tt ItalDish}, {\tt VegDish}, {\tt \exists} {\tt hasCourse}^- \}$

ComputeSubsumees	on ($\mathcal{T},$ Dish), where \mathcal{T} :	ItalDish ⊑ Dish
		VegDish ⊑ Dish
		Dish⊑∃hasIngred
		∃hasCourse [–] ⊑ Dish
		hasMain ⊑ hasCourse
		hasDessert ⊑ hasCourse
choose: vegDish	Examined = {Dish, It	aluisn, veguisn {

Examined = {Dish, ItalDish, VegDish} Subsumees = {Dish, ItalDish, VegDish, ∃hasCourse⁻}

ComputeSubsumees on ($\mathcal{T},$ Dish), where \mathcal{T} :	ItalDish ⊑ Dish
	VegDish ⊑ Dish
	Dish ⊑ ∃hasIngred
	∃hasCourse [–] ⊑ Dish
	hasMain ⊑ hasCourse
	hasDessert ⊑ hasCourse

Choose: VegDish	Examined = {Dish, ItalDish, VegDish}
	$Subsumees = \{Dish, ItalDish, VegDish, \exists hasCourse^-\}$
Choose: ∃hasCourse ⁻	Examined = {Dish, ItalDish, VegDish, ∃hasCourse ⁻ }
	Subsumees = {Dish, ItalDish, VegDish, ∃hasCourse ⁻ ,
	∃hasMain [−] ,∃hasDessert [−] }

ComputeSubsumees on (\mathcal{T} , Dish), where \mathcal{T} : ItalDish \sqsubseteq Dish VegDish \sqsubseteq Dish Dish \sqsubseteq \exists hasIngred \exists hasCourse⁻ \sqsubseteq Dish hasMain \sqsubseteq hasCourse hasDessert \sqsubseteq hasCourse

Choose: ∃hasMain ⁻	Examined = {Dish, ItalDish, VegDish, ∃hasCours	se-,
	∃hasMain ⁻ }	
	Subsumees = {Dish, ItalDish, VegDish, ∃hasCours	se ⁻ ,
	∃hasMain [−] ,∃hasDessert [−] }	

ComputeSubsumees on (\mathcal{T} , Dish), where \mathcal{T} : ItalDish \sqsubseteq Dish VegDish \sqsubseteq Dish Dish \sqsubseteq \exists hasIngred \exists hasCourse⁻ \sqsubseteq Dish hasMain \sqsubseteq hasCourse hasDessert \sqsubseteq hasCourse

Choose: ∃hasMain ⁻	Examined =	$\{Dish, ItalDish, VegDish, \exists hasCourse^-, \}$
		∃hasMain ⁻ }
	Subsumees $=$	$\{ {\tt Dish}, {\tt Ital Dish}, {\tt Veg Dish}, {\tt \exists has Course}^-,$
		∃hasMain ⁻ ,∃hasDessert ⁻ }
Choose: \exists hasDessert ⁻	Examined =	$\{Dish, ItalDish, VegDish, \exists hasCourse^-, \}$
		∃hasMain [−] ,∃hasDessert [−] }
	Subsumees =	{Dish, ItalDish, VegDish, ∃hasCourse ⁻ ,
		∃hasMain ⁻ ,∃hasDessert ⁻ }

Algorithm ComputeSubroles

Input: DL-Lite_{*R*} TBox \mathcal{T} , role $R \in N_R^{\pm}$

- 1. Initialize Subroles = $\{R\}$ and Examined = \emptyset .
- 2. While Subroles \ Examined $\neq \emptyset$
 - 2.1 Select $S \in$ Subroles \ Examined and add S to Examined.
 - 2.2 For every role inclusion $U \sqsubseteq S$ or $inv(U) \sqsubseteq inv(S)$ in \mathcal{T}
 - · If $U \notin$ Subsumees, add U to Subsumees
- 3. Return Subroles.

Algorithm ComputeSubroles

Input: DL-Lite_{*R*} TBox \mathcal{T} , role $R \in N_R^{\pm}$

- 1. Initialize Subroles = $\{R\}$ and Examined = \emptyset .
- 2. While Subroles \ Examined $\neq \emptyset$
 - 2.1 Select $S \in$ Subroles \ Examined and add S to Examined.
 - 2.2 For every role inclusion $U \sqsubseteq S$ or $inv(U) \sqsubseteq inv(S)$ in \mathcal{T}
 - · If $U \notin$ Subsumees, add U to Subsumees
- 3. Return Subroles.

ItalDish 드 Dish
VegDish ⊑ Dish
Dish ⊑ ∃hasIngred
∃hasCourse [–] ⊑ Dish
hasMain ⊑ hasCourse
hasDessert ⊑ hasCourse

Run on	hasCourse:
Subroles	= {hasCourse, hasMain,
	hasDessert}

For a concept C and variable x, define C(x) as follows:

- if $C = A \in N_C$, then C(x) = A(x)
- if $C = \exists r$, then $C(x) = \exists z r(x, z)$
- if $C = \exists r^-$, then $C(x) = \exists z r(z, x)$

For a role R and variables x, y, define R(x, y) as follows:

- if $R = r \in N_R$, then R(x, y) = r(x, y)
- if $R = r^-$, then R(x, y) = r(y, x)

Let SC = ComputeSubsumees(A, T), SR = ComputeSubroles(r, T).

Rewriting of A(x) **w.r.t.** T (and consistent ABoxes):

RewriteIQ(A,
$$\mathcal{T}$$
) = $\bigvee_{C \in SC} C(x)$

Let SC = ComputeSubsumees(A, T), SR = ComputeSubroles(r, T).

Rewriting of A(x) **w.r.t.** T (and consistent ABoxes):

RewriteIQ(A,
$$\mathcal{T}$$
) = $\bigvee_{C \in SC} C(x)$

Rewriting of r(x, y) **w.r.t.** T (and consistent ABoxes):

$$\operatorname{RewriteIQ}(r,\mathcal{T}) = \bigvee_{R \in SR} R(x,y)$$

Let SC = ComputeSubsumees(A, T), SR = ComputeSubroles(r, T).

Rewriting of A(x) w.r.t. T (and consistent ABoxes):

RewriteIQ(A,
$$\mathcal{T}$$
) = $\bigvee_{C \in SC} C(x)$

Rewriting of r(x, y) w.r.t. T (and consistent ABoxes):

$$\operatorname{RewritelQ}(r,\mathcal{T}) = \bigvee_{R \in SR} R(x,y)$$

The rewriting is ABox-independent and polysize in $|\mathcal{T}|$ and |q|.

We have already computed:

ComputeSubsumees(Dish, T) ={Dish, ItalDish, VegDish, = $hasCourse^-, \exists hasMain^-, \exists hasDessert^-$ }

Get following rewriting of Dish(x) w.r.t. T (for consistent ABoxes):

RewriteIQ(Dish, \mathcal{T}) = Dish(x) \lor ItalDish(x) \lor VegDish(x) \lor \exists y.hasCourse(y,x) \lor \exists y.hasMain(y,x) \lor \exists y.hasDessert(y,x) ItalDish ⊑ Dish VegDish ⊑ Dish Dish ⊑ ∃hasIngred ∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse

ABox \mathcal{A} :

hasMain(m, d₁) hasDessert(m, d₂) VegDish(d₃)

RewriteIQ(Dish, \mathcal{T}) = Dish(x) \lor ItalDish(x) \lor VegDish(x) \lor $\exists y$.hasCourse(y, x) \lor $\exists y$.hasMain(y, x) \lor $\exists y$.hasDessert(y, x)

Certain answers:

ItalDish⊑Dish	
VegDish ⊑ Dish	
Dish⊑∃hasIngred	
∃hasCourse [–] ⊑ Dish	
hasMain⊑hasCourse	
hasDessert ⊑ hasCourse	

ABox \mathcal{A} :

hasMain(m, d₁) hasDessert(m, d₂) VegDish(d₃)

RewriteIQ(Dish, \mathcal{T}) = Dish(x) \lor ItalDish(x) \lor VegDish(x) \lor $\exists y$.hasCourse(y, x) \lor $\exists y$.hasMain(y, x) \lor $\exists y$.hasDessert(y, x)

Certain answers: d_1 , because of the disjunct $\exists y.hasMain(y, x)$ d_2 , because of the disjunct $\exists y.hasDessert(y, x)$ d_3 , because of the disjunct VegDish(x) We have an FO-rewriting of q w.r.t. T relative to consistent ABoxes

To obtain a rewriting of *q* that works for all ABoxes, we need a **rewriting of unsatisfiability**

We have an FO-rewriting of q w.r.t. T relative to consistent ABoxes

To obtain a rewriting of *q* that works for all ABoxes, we need a **rewriting of unsatisfiability**

Main ideas:

- $\cdot\,$ only negative inclusions are relevant for detecting contradictions
- · create one subquery for each negation inclusion $G \sqsubseteq \neg H$
- consider all possible ways of violating $G \sqsubseteq \neg H$: combinations of a subsumee (subrole) of *G* and a subsumee (subrole) of *H*

For a **negative concept inclusion** $A \sqsubseteq \neg B$:

RewriteNeg(A, B, T) =

$$\vee$$

 $\exists x.(C(x) \wedge D(x))$

 $C \in ComputeSubsumees(A, T)$ $D \in ComputeSubsumees(B, T)$ For a **negative concept inclusion** $A \sqsubseteq \neg B$:

 $RewriteNeg(A, B, \mathcal{T}) = \bigvee_{\substack{C \in ComputeSubsumees(A, \mathcal{T}) \\ D \in ComputeSubsumees(B, \mathcal{T})}} \exists x. (C(x) \land D(x))$

For a **negative role inclusion** $R \sqsubseteq \neg S$:

$$\mathsf{RewriteNeg}(R, S, \mathcal{T}) = \bigvee_{\substack{U \in \mathsf{ComputeSubroles}(R, \mathcal{T}) \\ V \in \mathsf{ComputeSubroles}(S, \mathcal{T})}} \exists x, y. (\mathsf{U}(x, y) \land \mathsf{V}(x, y))$$

For a **negative concept inclusion** $A \sqsubseteq \neg B$:

 $RewriteNeg(A, B, \mathcal{T}) = \bigvee_{\substack{C \in ComputeSubsumees(A, \mathcal{T}) \\ D \in ComputeSubsumees(B, \mathcal{T})}} \exists x. (C(x) \land D(x))$

For a negative role inclusion $R \sqsubseteq \neg S$:

$$\mathsf{RewriteNeg}(R, S, \mathcal{T}) = \bigvee_{\substack{U \in \mathsf{ComputeSubroles}(R, \mathcal{T}) \\ V \in \mathsf{ComputeSubroles}(S, \mathcal{T})}} \exists x, y. (\mathsf{U}(x, y) \land \mathsf{V}(x, y))$$

For a **TBox**, following Boolean query checks for unsatisfiability:

$$\operatorname{RewriteUnsat}(\mathcal{T}) = \bigvee_{\mathsf{G} \sqsubseteq \neg \mathsf{H} \in \mathcal{T}} \operatorname{RewriteNeg}(\mathsf{G}, \mathsf{H}, \mathcal{T})$$

∃hasCourse[−] ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse hasMain ⊑ ¬hasDessert Dish ⊑ ¬∃hasCourse

∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse hasMain ⊑ ¬hasDessert Dish ⊑ ¬∃hasCourse

Queries testing violation of two negative inclusions:

```
RewriteNeg(hasMain, hasDessert, T) =
```

RewriteNeg(Dish, \exists hasCourse, T) =

∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse hasMain ⊑ ¬hasDessert Dish ⊑ ¬∃hasCourse

Queries testing violation of two negative inclusions:

RewriteNeg(hasMain, hasDessert, T) = $\exists x, y$ hasMain(x, y) \land hasDessert(x, y)

RewriteNeg(Dish, \exists hasCourse, T) =

∃hasCourse⁻ ⊑ Dish hasMain ⊑ hasCourse hasDessert ⊑ hasCourse hasMain ⊑ ¬hasDessert Dish ⊑ ¬∃hasCourse

Queries testing violation of two negative inclusions:

RewriteNeg(hasMain, hasDessert, T) = $\exists x, y$ hasMain(x, y) \land hasDessert(x, y)

 $\begin{aligned} \text{RewriteNeg(Dish, \exists hasCourse, }\mathcal{T}) &= \exists x \bigvee_{r \in \{hC, hM, hD\}} (\text{Dish}(x) \land \exists y \ r(x, y)) \\ & \lor \bigvee_{r_1, r_2 \in \{hC, hM, hD\}} (\exists y \ r_1(y, x) \land \exists z \ r_2(x, z)) \end{aligned}$

Recall: KB unsat \Rightarrow return all tuples of ABox individuals as answers

Recall: **KB unsat** \Rightarrow return all tuples of ABox individuals as answers

 Σ : finite set of concept / role names that can be used in the ABox

Define unary query that retrieves all individuals in Σ -ABox:

$$q_{\text{ind}}^{\Sigma}(x) = \bigvee_{A \in \Sigma \cap N_{C}} A(x) \lor \bigvee_{r \in \Sigma \cap N_{R}} \exists y.(r(x,y) \lor r(y,x))$$

Recall: **KB unsat** \Rightarrow return all tuples of ABox individuals as answers

 Σ : finite set of concept / role names that can be used in the ABox

Define unary query that retrieves all individuals in Σ -ABox:

$$q_{\text{ind}}^{\Sigma}(x) = \bigvee_{A \in \Sigma \cap N_{C}} A(x) \lor \bigvee_{r \in \Sigma \cap N_{R}} \exists y.(r(x,y) \lor r(y,x))$$

Rewriting of IQ B(x) w.r.t. T for arbitrary Σ -ABoxes:

RewriteIQ(B, T) \lor (RewriteUnsat(T) $\land q_{ind}^{\Sigma}$)

In data complexity

- rewriting takes constant time, yields FO query
- $\cdot\,$ upper bound from FO query evaluation: AC_0

In data complexity

- rewriting takes constant time, yields FO query
- $\cdot\,$ upper bound from FO query evaluation: AC_0

In combined complexity:

- $\cdot\,$ P membership: rewriting and evaluation both in polynomial time
- NLOGSPACE upper bound: 'guess' relevant part of rewriting

In data complexity

- rewriting takes constant time, yields FO query
- $\cdot\,$ upper bound from FO query evaluation: AC_0

In combined complexity:

- P membership: rewriting and evaluation both in polynomial time
- NLOGSPACE upper bound: 'guess' relevant part of rewriting

Theorem In DL-Lite_R, satisfiability and instance checking are

- 1. in AC₀ for data complexity
- 2. NLOGSPACE-complete for combined complexity.

Note: Same bounds hold for several other DL-Lite dialects

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

```
A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B A \sqsubseteq \exists r.B \exists r.A \sqsubseteq B
```

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

Normalization in polytime, can introduce new concept names $A \sqsubseteq \exists r. \exists s. D \quad \rightsquigarrow \quad A \sqsubseteq \exists r. N, N \sqsubseteq \exists s. D, \exists s. D \sqsubseteq N$

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

 $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

Normalization in polytime, can introduce new concept names

 $\mathsf{A} \sqsubseteq \exists r. \exists s. \mathsf{D} \quad \rightsquigarrow \quad \mathsf{A} \sqsubseteq \exists r. \mathsf{N}, \mathsf{N} \sqsubseteq \exists s. \mathsf{D}, \exists s. \mathsf{D} \sqsubseteq \mathsf{N}$

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{\exists r.A \sqsubseteq A\}$

Assume \mathcal{EL} TBoxes given in normal form: axioms of the forms

 $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

Normalization in polytime, can introduce new concept names

 $\mathsf{A} \sqsubseteq \exists r. \exists s. \mathsf{D} \quad \rightsquigarrow \quad \mathsf{A} \sqsubseteq \exists r. \mathsf{N}, \mathsf{N} \sqsubseteq \exists s. \mathsf{D}, \exists s. \mathsf{D} \sqsubseteq \mathsf{N}$

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{\exists r.A \sqsubseteq A\}$

We present a saturation-based approach.

TBox rules

$$\frac{A \sqsubseteq B_i \ (1 \le i \le n) \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \ T1 \qquad \frac{A \sqsubseteq B \quad B \sqsubseteq \exists r.D}{A \sqsubseteq \exists r.D} \ T2$$
$$\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq E}{A \sqsubseteq E} \ T3$$

ABox rules

$$\frac{A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A_i(a) \ (1 \le i \le n)}{B(a)} A_1 \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} A_2$$

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present

EXAMPLE: SATURATION IN EL

- Peperoncino \sqsubseteq Spicy (6)
- \exists hasIngred.Spicy \sqsubseteq Spicy (7)
- Spicy \sqcap Dish \sqsubseteq SpicyDish (8)
 - PenneArrabiata(p). (9)

- PenneArrabiata $\sqsubseteq \exists has Ingred. Arrabiata Sauce$ (1)
 - PenneArrabiata \sqsubseteq PastaDish (2)
 - PastaDish⊑Dish (3)
 - PastaDish $\sqsubseteq \exists$ hasIngred.Pasta (4)
 - ArrabiataSauce $\sqsubseteq \exists hasIngred.Peperoncino$ (5)

EXAMPLE: SATURATION IN EL

PenneArrabiata ⊑ ∃hasIngred.ArrabiataSauce PenneArrabiata ⊑ PastaDish PastaDish ⊑ Dish PastaDish ⊑ ∃hasIngred.Pasta		 (1) (2) (3) (4) 	Peperoncino ⊑ ∃hasIngred.Spicy ⊑ Spicy □ Dish ⊑ Spic	Spicy (6) Spicy (7) tyDish (8)
	ArrabiataSauce $\sqsubseteq \exists hasIngred.Peperoncino$	(5)	PenneArrabia	ta(<i>p</i>). (9)
	ArrabSauce ⊑ Spicy		T3 : (5), (6), (7)	(10)
	PenneArrab ⊑ Spicy		T3 : (1) , (10), (7)	(11)
	PenneArrab ⊑ Dish		T1 : (2), (3)	(12)
	PenneArrab ⊑ ∃hasIngred.Pasta		T2 : (2), (4)	(13)
	PenneArrab ⊑ SpicyDish		T1 : (11), (12), (8)	(14)
	Spicy(p)		A1 : (11), (9)	(15)
	Dish (p)		A1 : (12), (9)	(16)
	SpicyDish (p)		A1 : (16), (15)	(17)

Saturation approach is sound: everything derived is entailed

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathcal{K}'$

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathcal{K}'$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms ~> would not terminate!
- \cdot so: only complete for some reasoning tasks

Saturation approach is **sound**: everything derived is entailed Also **complete for instance checking**:

Theorem Let \mathcal{K} be an \mathcal{EL} knowledge base, and let \mathcal{K}' be the result of saturating \mathcal{K} . For every ABox assertion α , we have:

 $\mathcal{K} \models \alpha \quad \text{iff} \quad \alpha \in \mathcal{K}'$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms ~> would not terminate!
- \cdot so: only complete for some reasoning tasks

Runs in **polynomial time** in $|\mathcal{K}|$. This is **optimal**:

Theorem Instance checking in \mathcal{EL} is P-complete for both data and combined complexity.

Reduction from P-complete Boolean circuit evaluation problem

- · Circuit is given as an ABox
 - · one individual name per circuit gate
 - · concept names And and Or indicate type of gate
 - · concept name True marks input gates with value 1
 - $\cdot\,$ role names leftInput and rightInput are used to link gates
- · Same TBox for all circuits to propagate values:

 $Or \sqcap \exists leftInput.True \sqsubseteq True \quad Or \sqcap \exists rightInput.True \sqsubseteq True$

And □ ∃leftInput.True □ ∃rightInput.True ⊑ True

Can show: circuit outputs 1 \Leftrightarrow output gate is answer to True(x)

Saturation approach can be extended to \mathcal{ELHI}_{\perp}

Additional rules required

Key difference: new conjunctions of concepts can occur

 $A \sqsubseteq \exists R.D \quad \exists R^-.B \sqsubseteq E$

Saturation approach can be extended to \mathcal{ELHI}_{\perp}

Additional rules required

Key difference: new conjunctions of concepts can occur

 $\frac{A \sqsubseteq \exists R.D \quad \exists R^-.B \sqsubseteq E}{A \sqcap B \sqsubseteq \exists R.(D \sqcap E)}$

TBox rules

M, N, N' conjunctions of concept names

30

$$\frac{\{A \sqsubseteq B_i\}_{i=1}^n \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \text{ T1} \quad \frac{R \sqsubseteq S \quad S \sqsubseteq T}{R \sqsubseteq T} \text{ T4} \quad \frac{M \sqsubseteq \exists R.(N \sqcap \bot)}{M \sqsubseteq \bot} \text{ T5}$$

$$\frac{M \sqsubseteq \exists R.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists R.(N \sqcap N' \sqcap A)} \text{ T6} \quad \frac{M \sqsubseteq \exists R.(N \sqcap A) \quad \exists S.A \sqsubseteq B \quad R \sqsubseteq S}{M \sqsubseteq B} \text{ T7}$$

$$\frac{M \sqsubseteq \exists R.N \quad \exists inv(S).A \sqsubseteq B \quad R \sqsubseteq S}{M \sqcap A \sqsubseteq \exists R.(N \sqcap B)} \text{ T8}$$

ABox rules

$$\frac{A_{1} \sqcap \ldots \sqcap A_{n} \sqsubseteq B \quad A_{i}(a) \ (1 \le i \le n)}{B(a)} A_{1} \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} A_{2}$$

$$\frac{\exists r^{-}.B \sqsubseteq A \quad r(b,a) \quad B(b)}{A(a)} A_{3} \qquad \frac{r \sqsubseteq s \quad r(a,b)}{s(a,b)} A_{4} \qquad \frac{r \sqsubseteq s^{-} \quad r(a,b)}{s(b,a)} A_{5}$$

Saturation approach can be extended to \mathcal{ELHI}_{\perp}

Additional rules required

Key difference: new conjunctions of concepts can occur

 $\frac{A \sqsubseteq \exists R.D \quad \exists R^-.B \sqsubseteq E}{A \sqcap B \sqsubseteq \exists R.(D \sqcap E)}$

New set of rules ~ exponentially many different new axioms

Theorem Instance checking in \mathcal{ELHI}_{\perp} is **P-complete for data** and **Exp-complete for combined complexity**.

Let sat(\mathcal{T}) be result of applying TBox saturation rules to \mathcal{T} .

For each \mathcal{ELHI}_{\perp} TBox \mathcal{T} and ABox signature Σ define following Datalog program $\Pi(\mathcal{T}, \Sigma)$:

$$\Pi(\mathcal{T}, \Sigma) = \{B(x) \leftarrow A_1(x), \dots, A_n(x) \mid A_1 \sqcap \dots \sqcap A_n \sqsubseteq B \in \mathsf{sat}(\mathcal{T})\} \cup$$

$$\{B(x) \leftarrow A(y), r(x, y) \mid \exists r.A \sqsubseteq B \in \mathcal{T}\} \cup$$

$$\{B(y) \leftarrow A(x), r(x, y) \mid \exists r^-.A \sqsubseteq B \in \mathcal{T}\} \cup$$

$$\{s(x, y) \leftarrow r(x, y) \mid r \sqsubseteq s \in \mathsf{sat}(\mathcal{T}), s \in \mathsf{N}_{\mathsf{R}}\} \cup$$

$$\{s(y, x) \leftarrow r(x, y) \mid r \sqsubseteq s^- \in \mathsf{sat}(\mathcal{T}), s \in \mathsf{N}_{\mathsf{R}}\} \cup$$

$$\{\top(x) \leftarrow A(x) \mid A \in \mathsf{N}_{\mathsf{C}} \cap \Sigma\} \cup$$

$$\{\top(x) \leftarrow r(x, y) \mid r \in \mathsf{N}_{\mathsf{R}} \cap \Sigma\} \cup$$

$$\{\top(x) \leftarrow r(y, x) \mid r \in \mathsf{N}_{\mathsf{R}} \cap \Sigma\}$$

Theorem For every finite signature Σ and \mathcal{ELHI}_{\perp} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with sig $(\mathcal{A}) \subseteq \Sigma$:

- 1. \mathcal{K} is unsatisfiable iff ans $((\Pi(\mathcal{T}, \Sigma), \bot), \mathcal{I}_{\mathcal{A}}) \neq \emptyset$;
- 2. If \mathcal{K} is satisfiable, then for all $A \in N_{C}$, $r \in N_{R}$, and $a, b \in Ind(\mathcal{A})$:
 - · $\mathcal{K} \models A(a)$ iff $a \in ans((\Pi(\mathcal{T}, \Sigma), A), \mathcal{I}_{\mathcal{A}});$
 - $\cdot \mathcal{K} \models r(a, b) \text{ iff } (a, b) \in \operatorname{ans}((\Pi(\mathcal{T}, \Sigma), r), \mathcal{I}_{\mathcal{A}}).$

This means:

- $\cdot\,$ get Datalog rewriting of instance queries in \mathcal{ELHI}_{\perp}
- can use Datalog program to create saturated ABox

The Datalog program associated with our example:

PastaDish(x) \leftarrow PenneArrab(x) Dish(x) \leftarrow PastaDish(x) Spicy(x) \leftarrow Peperonc(x) Spicy(x) \leftarrow hasIngred(x, y), Spicy(y) SpicyDish(x) \leftarrow Spicy(x), Dish(x) Spicy(x) \leftarrow ArrabSauce(x) Spicy(x) \leftarrow PenneArrab(x) Dish(x) \leftarrow PenneArrab(x) SpicyDish(x) \leftarrow PenneArrab

PenneArrab ⊑ PastaDish PastaDish ⊂ Dish Peperonc \Box Spicy \exists hasIngred.Spicy \sqsubseteq Spicy $Dish \sqcap Spicy \sqsubseteq Spicy Dish$ ArrabSauce \sqsubseteq Spicy PenneArrab \Box Spicy PenneArrab □ Dish

(technically, also have \mathcal{T} -independent rules for \top ...)