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instance queries

Instance queries (IQs): find instances of a given concept or role

A(x) where A ∈ NC concept instance query

r(x, y) where r ∈ NR role instance query

To query for a complex concept C, take AC(x) for fresh AC ∈ NC and
add C ⊑ AC to the TBox

Remarks:
∙ Instance query answering is often called instance checking
∙ Focus of OMQA until mid-2000s
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instance checking in dl-lite via query rewriting

Input = instance query q + DL-LiteR TBox T

We construct an FO-rewriting of q w.r.t. T

More specifically, we construct:

∙ an FO-rewriting of q relative to consistent ABoxes, and
∙ an FO-rewriting of unsatisfiability

(these can be easily combined into FO-rewriting of q for all ABoxes)
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rewriting relative to consistent aboxes

We first define two procedures:

ComputeSubsumees all reasons for an individual to be in B

input concept B, TBox T
output set of C such that T |= C⊑ B ⇝ subsumees of B w.r.t. T

ComputeSubroles all reasons for a pair to be in R

input role R, TBox T
output set of S such that T |= S⊑ R ⇝ subroles of R w.r.t. T
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computing subsumees

Algorithm ComputeSubsumees
Input: DL-LiteR TBox T , concept B ∈ NC ∪ {∃R | R ∈ N±

R }

1. Initialize Subsumees = {B} and Examined = ∅.
2. While Subsumees \ Examined ̸= ∅
2.1 Select D ∈ Subsumees \ Examined and add D to Examined.
2.2 For every concept inclusion C⊑ D ∈ T

∙ If C ̸∈ Subsumees, add C to Subsumees
2.3 For every role inclusion R⊑ S ∈ T such that D = ∃S.

∙ If ∃R ̸∈ Subsumees, add ∃R to Subsumees
2.4 For every role inclusion R⊑ S ∈ T such that D = ∃inv(S).

∙ If ∃inv(R) ̸∈ Subsumees, add ∃inv(R) to Subsumees.

3. Return Subsumees.
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computing subsumees: an example (1/3)

ComputeSubsumees on (T ,Dish), where T : ItalDish⊑Dish
VegDish⊑Dish

Dish⊑∃hasIngred
∃hasCourse−⊑Dish

hasMain⊑hasCourse
hasDessert⊑hasCourse

Examined = ∅
Subsumees = {Dish}

Choose: Dish Examined = {Dish}
Subsumees = {Dish, ItalDish, VegDish, ∃hasCourse−}

Choose: ItalDish Examined = {Dish, ItalDish}
Subsumees = {Dish, ItalDish, VegDish, ∃hasCourse−}
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computing subsumees: an example (2/3)
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VegDish⊑Dish
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Choose: VegDish Examined = {Dish, ItalDish, VegDish}
Subsumees = {Dish, ItalDish, VegDish,∃hasCourse−}

Choose: ∃hasCourse− Examined = {Dish, ItalDish, VegDish,∃hasCourse−}
Subsumees = {Dish, ItalDish, VegDish,∃hasCourse−,

∃hasMain−, ∃hasDessert−}
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computing subsumees: an example (3/3)
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computing subroles

Algorithm ComputeSubroles
Input: DL-LiteR TBox T , role R ∈ N±

R

1. Initialize Subroles = {R} and Examined = ∅.
2. While Subroles \ Examined ̸= ∅
2.1 Select S ∈ Subroles \ Examined and add S to Examined.
2.2 For every role inclusion U⊑ S or inv(U)⊑ inv(S) in T

∙ If U ̸∈ Subsumees, add U to Subsumees

3. Return Subroles.

ItalDish⊑Dish
VegDish⊑Dish

Dish⊑∃hasIngred
∃hasCourse−⊑Dish

hasMain⊑hasCourse
hasDessert⊑hasCourse

Run on hasCourse:

Subroles = {hasCourse,hasMain,
hasDessert}
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from concepts and roles to queries (1)

For a concept C and variable x, define C(x) as follows:

∙ if C = A ∈ NC, then C(x) = A(x)
∙ if C = ∃r, then C(x) = ∃z r(x, z)
∙ if C = ∃r−, then C(x) = ∃z r(z, x)

For a role R and variables x, y, define R(x, y) as follows:

∙ if R = r ∈ NR, then R(x, y) = r(x, y)
∙ if R = r−, then R(x, y) = r(y, x)

11/30



from concepts and roles to queries (2)

Let SC = ComputeSubsumees(A, T ), SR = ComputeSubroles(r, T ).

Rewriting of A(x) w.r.t. T (and consistent ABoxes):

RewriteIQ(A, T ) =
∨
C∈SC

C(x)

Rewriting of r(x, y) w.r.t. T (and consistent ABoxes):

RewriteIQ(r, T ) =
∨
R∈SR

R(x, y)

The rewriting is ABox-independent and polysize in |T | and |q|.
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example of query rewriting (1/2)

We have already computed:

ComputeSubsumees(Dish, T ) ={Dish, ItalDish, VegDish,
∃hasCourse−, ∃hasMain−,∃hasDessert−}

Get following rewriting of Dish(x) w.r.t. T (for consistent ABoxes):

RewriteIQ(Dish, T ) =Dish(x) ∨ ItalDish(x) ∨ VegDish(x)
∨ ∃y.hasCourse(y, x) ∨ ∃y.hasMain(y, x)
∨ ∃y.hasDessert(y, x)
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example of query rewriting (2/2)

ItalDish⊑Dish
VegDish⊑Dish

Dish⊑∃hasIngred
∃hasCourse−⊑Dish

hasMain⊑hasCourse
hasDessert⊑hasCourse

ABox A:

hasMain(m,d1)
hasDessert(m,d2)
VegDish(d3)

RewriteIQ(Dish, T ) =Dish(x) ∨ ItalDish(x) ∨ VegDish(x) ∨ ∃y.hasCourse(y, x)
∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

Certain answers:

d1, because of the disjunct ∃y.hasMain(y, x)
d2, because of the disjunct ∃y.hasDessert(y, x)
d3, because of the disjunct VegDish(x)
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checking unsatisfiability

We have an FO-rewriting of q w.r.t. T relative to consistent ABoxes

To obtain a rewriting of q that works for all ABoxes,
we need a rewriting of unsatisfiability

Main ideas:
∙ only negative inclusions are relevant for detecting contradictions
∙ create one subquery for each negation inclusion G⊑ ¬H
∙ consider all possible ways of violating G⊑ ¬H: combinations of a
subsumee (subrole) of G and a subsumee (subrole) of H
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rewriting of unsatisfiability

For a negative concept inclusion A⊑ ¬B:

RewriteNeg(A,B, T ) =
∨

C∈ComputeSubsumees(A,T )
D∈ComputeSubsumees(B,T )

∃x.(C(x) ∧ D(x))

For a negative role inclusion R⊑ ¬S:

RewriteNeg(R, S, T ) =
∨

U∈ComputeSubroles(R,T )
V∈ComputeSubroles(S,T )

∃x, y.(U(x, y) ∧ V(x, y))

For a TBox, following Boolean query checks for unsatisfiability:

RewriteUnsat(T ) =
∨

G⊑¬H∈T

RewriteNeg(G,H, T )
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example: rewriting of unsatisfiability

Let T be the following TBox: ∃hasCourse−⊑Dish
hasMain⊑hasCourse

hasDessert⊑hasCourse
hasMain⊑¬hasDessert

Dish⊑¬∃hasCourse

Queries testing violation of two negative inclusions:

RewriteNeg(hasMain,hasDessert, T ) =

∃x, y hasMain(x, y) ∧ hasDessert(x, y)

RewriteNeg(Dish,∃hasCourse, T ) =

∃x
∨

r∈{hC,hM,hD}

(Dish(x) ∧ ∃y r(x, y))

∨
∨

r1,r2∈{hC,hM,hD}

(∃y r1(y, x) ∧ ∃z r2(x, z))
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combining the rewritings

Recall: KB unsat⇒ return all tuples of ABox individuals as answers

Σ: finite set of concept / role names that can be used in the ABox

Define unary query that retrieves all individuals in Σ-ABox:

qΣind(x) =
∨

A∈Σ∩NC

A(x) ∨
∨

r∈Σ∩NR

∃y.(r(x, y) ∨ r(y, x))

Rewriting of IQ B(x) w.r.t. T for arbitrary Σ-ABoxes:

RewriteIQ(B, T ) ∨ (RewriteUnsat(T ) ∧ qΣind)
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complexity of instance checking in dl-lite

In data complexity
∙ rewriting takes constant time, yields FO query
∙ upper bound from FO query evaluation: AC0

In combined complexity:
∙ P membership: rewriting and evaluation both in polynomial time
∙ NLogSpace upper bound: ‘guess’ relevant part of rewriting

Theorem In DL-LiteR, satisfiability and instance checking are
1. in AC0 for data complexity
2. NLogSpace-complete for combined complexity.

Note: Same bounds hold for several other DL-Lite dialects
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instance checking in el

Next consider instance checking in EL.

Assume EL TBoxes given in normal form: axioms of the forms

A1 ⊓ . . . ⊓ An ⊑ B A⊑ ∃r.B ∃r.A⊑ B

Normalization in polytime, can introduce new concept names

A ⊑ ∃r.∃s.D ⇝ A ⊑ ∃r.N,N ⊑ ∃s.D,∃s.D ⊑ N

Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We present a saturation-based approach.
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Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We present a saturation-based approach.
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saturation rules for el

TBox rules

A⊑ Bi (1 ≤ i ≤ n) B1 ⊓ . . . ⊓ Bn ⊑ D
A⊑ D

T1 A⊑ B B⊑ ∃r.D
A⊑ ∃r.D

T2

A⊑ ∃r.B B⊑ D ∃r.D⊑ E
A⊑ E

T3

ABox rules

A1 ⊓ . . . ⊓ An ⊑ B Ai(a) (1 ≤ i ≤ n)
B(a)

A1
∃r.B⊑ A r(a,b) B(b)

A(a)
A2

Algorithm: apply rules exhaustively, check if A(a) (r(a,b)) is present
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example: saturation in el

ArrabSauce⊑ Spicy T3 : (5), (6), (7) (10)
PenneArrab⊑ Spicy T3 : (1), (10), (7) (11)
PenneArrab⊑ Dish T1 : (2), (3) (12)
PenneArrab⊑ ∃hasIngred.Pasta T2 : (2), (4) (13)
PenneArrab⊑ SpicyDish T1 : (11), (12), (8) (14)
Spicy(p) A1 : (11), (9) (15)
Dish(p) A1 : (12), (9) (16)
SpicyDish(p) A1 : (16), (15) (17)
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complexity of instance checking in el

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an EL knowledge base, and let K′ be the result
of saturating K. For every ABox assertion α, we have:

K |= α iff α ∈ K′

Note: does not make all consequences explicit

∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

Theorem Instance checking in EL is P-complete for both data and
combined complexity.
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p-hardness in data complexity

Reduction from P-complete Boolean circuit evaluation problem

∙ Circuit is given as an ABox
∙ one individual name per circuit gate
∙ concept names And and Or indicate type of gate
∙ concept name True marks input gates with value 1
∙ role names leftInput and rightInput are used to link gates

∙ Same TBox for all circuits to propagate values:

Or ⊓ ∃leftInput.True⊑ True Or ⊓ ∃rightInput.True⊑ True

And ⊓ ∃leftInput.True ⊓ ∃rightInput.True⊑ True

Can show: circuit outputs 1⇔ output gate is answer to True(x)
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extending the saturation approach

Saturation approach can be extended to ELHI⊥

Additional rules required

Key difference: new conjunctions of concepts can occur

A⊑ ∃R.D ∃R−.B⊑ E

A ⊓ B⊑ ∃R.(D ⊓ E)
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extended set of saturation rules

TBox rules M,N,N′ conjunctions of concept names

{A⊑ Bi}ni=1 B1 ⊓ . . . ⊓ Bn ⊑ D
A⊑ D

T1 R⊑ S S⊑ T
R⊑ T

T4
M⊑ ∃R.(N ⊓ ⊥)

M⊑⊥
T5

M⊑ ∃R.(N ⊓ N′) N⊑ A
M⊑ ∃R.(N ⊓ N′ ⊓ A)

T6 M⊑ ∃R.(N ⊓ A) ∃S.A⊑ B R⊑ S
M⊑ B

T7

M⊑ ∃R.N ∃inv(S).A⊑ B R⊑ S
M ⊓ A⊑ ∃R.(N ⊓ B)

T8

ABox rules

A1 ⊓ . . . ⊓ An ⊑ B Ai(a) (1 ≤ i ≤ n)
B(a)

A1
∃r.B⊑ A r(a,b) B(b)

A(a)
A2

∃r−.B⊑ A r(b,a) B(b)
A(a)

A3
r⊑ s r(a,b)

s(a,b)
A4

r⊑ s− r(a,b)
s(b,a)

A5
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extending the saturation approach

Saturation approach can be extended to ELHI⊥

Additional rules required

Key difference: new conjunctions of concepts can occur

A⊑ ∃R.D ∃R−.B⊑ E
A ⊓ B⊑ ∃R.(D ⊓ E)

New set of rules⇝ exponentially many different new axioms

Theorem Instance checking in ELHI⊥ is P-complete for data and
Exp-complete for combined complexity.
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saturation as a datalog program

Let sat(T ) be result of applying TBox saturation rules to T .

For each ELHI⊥ TBox T and ABox signature Σ define following
Datalog program Π(T ,Σ):

Π(T ,Σ) ={B(x)← A1(x), . . . , An(x) | A1 ⊓ . . . ⊓ An ⊑ B ∈ sat(T )}∪
{B(x)← A(y), r(x, y) | ∃r.A⊑ B ∈ T }∪
{B(y)← A(x), r(x, y) | ∃r−.A⊑ B ∈ T }∪
{s(x, y)← r(x, y) | r⊑ s ∈ sat(T ), s ∈ NR}∪
{s(y, x)← r(x, y) | r⊑ s− ∈ sat(T ), s ∈ NR}∪
{⊤(x)← A(x) | A ∈ NC ∩ Σ}∪

{⊤(x)← r(x, y) | r ∈ NR ∩ Σ}∪

{⊤(x)← r(y, x) | r ∈ NR ∩ Σ}
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saturation as a datalog program (continued)

Theorem For every finite signature Σ and ELHI⊥ KB K = (T ,A)

with sig(A) ⊆ Σ:

1. K is unsatisfiable iff ans((Π(T ,Σ),⊥), IA) ̸= ∅;
2. If K is satisfiable, then for all A ∈ NC, r ∈ NR, and a,b ∈ Ind(A):

∙ K |= A(a) iff a ∈ ans((Π(T ,Σ), A), IA);
∙ K |= r(a,b) iff (a, b) ∈ ans((Π(T ,Σ), r), IA).

This means:

∙ get Datalog rewriting of instance queries in ELHI⊥

∙ can use Datalog program to create saturated ABox
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saturation as a datalog program: an example

The Datalog program associated with our example:

PastaDish(x)← PenneArrab(x) PenneArrab⊑ PastaDish
Dish(x)← PastaDish(x) PastaDish⊑ Dish
Spicy(x)← Peperonc(x) Peperonc⊑ Spicy
Spicy(x)← hasIngred(x, y), Spicy(y) ∃hasIngred.Spicy⊑ Spicy
SpicyDish(x)← Spicy(x),Dish(x) Dish ⊓ Spicy⊑ SpicyDish
Spicy(x)← ArrabSauce(x) ArrabSauce⊑ Spicy
Spicy(x)← PenneArrab(x) PenneArrab⊑ Spicy
Dish(x)← PenneArrab(x) PenneArrab⊑ Dish
SpicyDish(x)← PenneArrab PenneArrab⊑ SpicyDish

(technically, also have T -independent rules for ⊤...)
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