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INSTANCE QUERIES

Instance queries (1Qs): find instances of a given concept or role

A(x) where A e Nc concept instance query

r(x,y) wherer e Ng role instance query
To query for a , take for fresh Ac € N¢c and
add to the TBox
Remarks:

- Instance query answering is often called instance checking
- Focus of OMQA until mid-2000s
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INSTANCE CHECKING IN DL-LITE VIA QUERY REWRITING

Input = + DL-Liteg TBox T

We construct an FO-rewriting of q w.rt. 7

More specifically, we construct:

- an FO-rewriting of g relative to consistent ABoxes, and

- an FO-rewriting of unsatisfiability

(these can be easily combined into FO-rewriting of g for all ABoxes)
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REWRITING RELATIVE TO CONSISTENT ABOXES

We first define two procedures:

ComputeSubsumees all reasons for an individual to be in B

input  concept B, TBox T
output setof Csuchthat7 =CCB ~» subsumees of Bw.rt. 7

ComputeSubroles all reasons for a pair to be in R

input role R, TBox T~
output setofSsuchthat7 =SCR ~- subroles of Rw.rt. T
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COMPUTING SUBSUMEES

Algorithm ComputeSubsumees
INPUT: DL-Liteg TBox T, concept B € Nc U{3R | R € NI}

1. Initialize Subsumees = {B} and Examined = (.

2. While Subsumees \ Examined # ()
21 and add D to Examined.
2.2 For every concept inclusion CC D € T
- If C & Subsumees, add C to Subsumees
2.3 For every role inclusion RC S € 7 such that D = JS.
- If 3R ¢ Subsumees, add 3R to Subsumees
2.4 For every role inclusion RC S € T such that D = Jinv(S).
- If Jinv(R) & Subsumees, add Jinv(R) to Subsumees.

3. Return Subsumees.
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COMPUTING SUBSUMEES: AN EXAMPLE (1/3)

ComputeSubsumees on (7, Dish), where T ItalDish C Dish
VegDish C Dish

Dish C 3haslingred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse
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ComputeSubsumees on (7, Dish), where T ItalDish C Dish
VegDish C Dish

Dish C 3haslingred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse

Examined = 0
Subsumees = {Dish}

Choose: Dish Examined = {Dish}
Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™ }

Choose: ItalDish  Examined = {Dish, ItalDish}
Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™ }
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COMPUTING SUBSUMEES: AN EXAMPLE (2/3)

ComputeSubsumees on (7, Dish), where T~ ltalDish C Dish
VegDish C Dish

Dish C 3haslngred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse

Choose: VegDish Examined = {Dish, ItalDish, VegDish}
Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™ }
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COMPUTING SUBSUMEES: AN EXAMPLE (2/3)

ComputeSubsumees on (7, Dish), where T~ ltalDish C Dish

Choose: VegDish

Choose: JhasCourse™

VegDish C Dish
Dish C 3haslngred
JhasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse

Examined = {Dish, ItalDish, VegDish}

Subsumees

Examined
Subsumees

{Dish, ItalDish, VegDish, 3hasCourse™ }

{Dish, ItalDish, VegDish, 3hasCourse™ }
{Dish, ItalDish, VegDish, 3hasCourse ™,
JhasMain~, 3hasDessert™ }
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COMPUTING SUBSUMEES: AN EXAMPLE (3/3)

ComputeSubsumees on (7, Dish), where T ItalDish C Dish
VegDish C Dish

Dish C Fhaslngred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse

Choose: dhasMain™ Examined = {Dish, ItalDish, VegDish, 3hasCourse ™,
JhasMain™ }
Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™,
JhasMain—, 3hasDessert™ }
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COMPUTING SUBSUMEES: AN EXAMPLE (3/3)

ComputeSubsumees on (7, Dish), where T ItalDish C Dish
VegDish C Dish

Dish C Fhaslngred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse

Choose: dhasMain™ Examined = {Dish, ItalDish, VegDish, 3hasCourse ™,
JhasMain™ }
Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™,
JhasMain—, 3hasDessert™ }

Choose: JhasDessert™ Examined = {Dish, ItalDish, VegDish, 3hasCourse™,
JhasMain—, 3hasDessert™ }

Subsumees = {Dish, ItalDish, VegDish, 3hasCourse™,
JhasMain—, 3hasDessert™ }
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COMPUTING SUBROLES

Algorithm ComputeSubroles
Input: DL-Liteg TBox 7T, role R € N

1. Initialize Subroles = {R} and Examined = (.
2. While Subroles \ Examined #

21 Select S € Subroles \ Examined and add S to Examined.
2.2 For every role inclusion UC S or inv(U) Cinv(S) in T
- If U & Subsumees, add U to Subsumees

3. Return Subroles.
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COMPUTING SUBROLES

Algorithm ComputeSubroles
Input: DL-Liteg TBox 7T, role R € N

1. Initialize Subroles = {R} and Examined = (.
2. While Subroles \ Examined #

21 Select S € Subroles \ Examined and add S to Examined.
2.2 For every role inclusion UC S or inv(U) Cinv(S) in T
- If U & Subsumees, add U to Subsumees

3. Return Subroles.

[talDish C Dish Runon hasCourse:
VegDish C Dish

Dish C Jhaslngred
JhasCourse™ C Dish

hasMain C hasCourse

hasDessert C hasCourse

Subroles = {hasCourse, hasMain,
hasDessert}
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FROM CONCEPTS AND ROLES TO QUERIES (1)

For a concept C and variable x, define C(x) as follows:

- if C=A € N¢, then C(x) = A(x)
- if , then
- if , then

For a role R and variables x,y, define R(x, y) as follows:

- if R =r € Ng, then R(x,y) = r(x,y)
< ifR=r", then R(x,y) = r(y, x)
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FROM CONCEPTS AND ROLES TO QUERIES (2)

Let SC = ComputeSubsumees(A, T), SR = ComputeSubroles(r, 7).

Rewriting of A(x) w.r.t. 7 (and consistent ABoxes):

RewritelQ(A, T) = \/ C(x

Cesc
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FROM CONCEPTS AND ROLES TO QUERIES (2)

Let SC = ComputeSubsumees(A, T), SR = ComputeSubroles(r, T).

Rewriting of A(x) w.r.t. 7 (and consistent ABoxes):

RewritelQ(A, T) = \/ C(x

Cesc
Rewriting of r(x,y) w.r.t. 7 (and consistent ABoxes):

RewritelQ(r, 7) = \/ R(x,y)

RESR

The rewriting is and polysize in [T| and |q|.
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EXAMPLE OF QUERY REWRITING (1/2)

We have already computed:

ComputeSubsumees(Dish, 7) ={Dish, ItalDish, ,

JhasCourse™, 3hasMain~, 3hasDessert™ }

Get following rewriting of Dish(x) w.r.t. 7 (for consistent ABoxes):

RewritelQ(Dish, T) = Dish(x) Vv ItalDish(x) v
v Jy.hasCourse(y, x) v dy.hasMain(y, x)
Vv Jy.hasDessert(y, x)
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EXAMPLE OF QUERY REWRITING (2/2)

[talDish C Dish ABox A:
VegDish C Dish
Dish = 3hasingred  NasMain(m, dy)
JhasCourse™ C Dish hasDessert(m, da)
hasMain C hasCourse VegDish(ds)
hasDessert C hasCourse

RewritelQ(Dish, T) = Dish(x) Vv ItalDish(x) Vv Vv Jy.hasCourse(y, x)
V Jy.hasMain(y, x) Vv Jy.hasDessert(y, x)

Certain answers:
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EXAMPLE OF QUERY REWRITING (2/2)

[talDish C Dish ABox A:
VegDish C Dish
Dish = 3hasingred  NasMain(m, dy)
JhasCourse™ C Dish hasDessert(m, da)
hasMain C hasCourse VegDish(ds)
hasDessert C hasCourse

RewritelQ(Dish, T) = Dish(x) Vv ItalDish(x) Vv Vv Jy.hasCourse(y, x)
V Jy.hasMain(y, x) Vv Jy.hasDessert(y, x)
Certain answers: d,, because of the disjunct Jy.hasMain(y, x)
d,, because of the disjunct Jy.hasDessert(y, x)
d3, because of the disjunct VegDish(x)
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CHECKING UNSATISFIABILITY

We have an of gw.rt. T

To obtain a rewriting of g that works for all ABoxes,
we need a rewriting of unsatisfiability
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CHECKING UNSATISFIABILITY

We have an of gw.rt. T

To obtain a rewriting of g that works for all ABoxes,
we need a rewriting of unsatisfiability

Main ideas:
- only negative inclusions are relevant for detecting contradictions
- create one subquery for each negation inclusion G E —H

- consider all possible ways of violating G C —H: combinations of a
subsumee (subrole) of G and a subsumee (subrole) of H
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REWRITING OF UNSATISFIABILITY

For a negative concept inclusion A C —B:

RewriteNeg(A, B, T) = \/ 3x.(C(x) A D(x))

CeComputeSubsumees(A,T)
DeComputeSubsumees(B,7T)

16/30
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For a negative concept inclusion A C —B:

RewriteNeg(A, B, T) = \/ 3x.(C(x) A D(x))

CeComputeSubsumees(A,T)
DeComputeSubsumees(B,7T)

For a negative role inclusion R C —S:

RewriteNeg(R, S, T) = \/ X, y.(U(X, y) A V(X,Y))

)
)

=

UeComputeSubroles(R,
VeComputeSubroles(S,

=
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REWRITING OF UNSATISFIABILITY

For a negative concept inclusion A C —B:

RewriteNeg(A, B, T) = \/ 3x.(C(x) A D(x))

CeComputeSubsumees(A,T)
DeComputeSubsumees(B,7T)

For a negative role inclusion R C —S:

RewriteNeg(R, S, T) = \/ X, y.(U(X, y) A V(X,Y))

)
)

=

UeComputeSubroles(R,
VeComputeSubroles(S,

=

For a TBox, following Boolean query checks for unsatisfiability:

RewriteUnsat(7) = \/ RewriteNeg(G, H, T)
GC—-HeT
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EXAMPLE: REWRITING OF UNSATISFIABILITY

Let 7 be the following TBox: ~ 3hasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse
hasMain C —hasDessert
Dish C —3hasCourse
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EXAMPLE: REWRITING OF UNSATISFIABILITY

Let 7 be the following TBox: ~ 3hasCourse™ C Dish
hasMain C hasCourse
hasDessert C hasCourse
hasMain C —hasDessert
Dish C —3hasCourse

Queries testing violation of two negative inclusions:

RewriteNeg(hasMain, hasDessert, T) = 3x,y hasMain(x, y) A hasDessert(x, y)

RewriteNeg(Dish, )= \/ (Dish(x)A )
re{hC,hM,hD}
Vv \/ By r(y, x) A )

ri,r,€{hC,hM,hD}
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COMBINING THE REWRITINGS

Recall: KB unsat = return all tuples of ABox individuals as answers
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COMBINING THE REWRITINGS

Recall: KB unsat = return all tuples of ABox individuals as answers
- finite set of

Define unary query that retrieves all individuals in X-ABox:

)=\ AV '\ .(rxy) vy, x)

AEXNNc reXNNg

Rewriting of 1Q B(x) w.r.t. 7 for arbitrary ¥-ABoxes:

RewritelQ(B, T) V (RewriteUnsat(7) A g&4)

18/30



COMPLEXITY OF INSTANCE CHECKING IN DL-LITE

In
- rewriting takes ,yields FO query
- upper bound from FO query evaluation:
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COMPLEXITY OF INSTANCE CHECKING IN DL-LITE

In
- rewriting takes ,yields FO query
- upper bound from FO query evaluation:

In combined complexity:
- P membership: rewriting and evaluation both in polynomial time
- NLOGSPACE upper bound: ‘guess’ relevant part of rewriting

Theorem In DL-Liteg, satisfiability and instance checking are
1. in AC, for data complexity

2. NLOGSPACE-complete for combined complexity.
Note: Same bounds hold for several other DL-Lite dialects
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INSTANCE CHECKING IN EL

Next consider instance checking in £L.

Assume EL TBoxes given in : axioms of the forms
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INSTANCE CHECKING IN EL

Next consider instance checking in £L.

Assume EL TBoxes given in : axioms of the forms

Normalization in polytime, can introduce new concept names

ACdrdsD ~~ ACJdrN.NC ds.D,ds.DC N

Cannot use FO query rewriting approach for ££:

no FO-rewriting of A(x) w.r.t. 7 = {3rAC A}

We present a saturation-based approach.
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SATURATION RULES FOR EL

TBox rules

ACB (I<i<n) BM...MBED_~ ACB BLC3rD
ACD AC3r.D

AEdrB BCD 3JrDCE
ACE

ABox rules

AnN...NACB Ai(a) (1<i<n) n JBEA r(a,b) B(b)
B(a) Aa)

A2

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present
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EXAMPLE: SATURATION IN EL

PenneArrabiata C Jhasingred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2) Jhaslngred.Spicy C Spicy (7)

PastaDish C Dish (3)  spicy r Dish C SpicyDish (8)

PastaDish C Jhasingred.Pasta (4)

) ) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)
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EXAMPLE: SATURATION IN EL

PenneArrabiata C JhasIngred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2)  3hasingred.Spicy C Spicy (7)

PastaDish C Dish (3)  spicy r Dish C SpicyDish (8)

PastaDish C 3haslngred.Pasta (&)

) ) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)

ArrabSauce C Spicy T3: (5),(6),(7) (10)
PenneArrab C Spicy T3 : (1),(10), (7) (11
PenneArrab C Dish T1:(2),(3) (12)
PenneArrab C Jhaslngred.Pasta T2:(2),(4) (13)
PenneArrab C SpicyDish T1:(11),(12), (8) (14)
Spicy(p) A1:(11),(9) (15)
Dish(p) A1 (12), (9) (16)
SpicyDish(p) A1:(16),(15) (17)
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COMPLEXITY OF INSTANCE CHECKING IN EL

Saturation approach is sound: everything derived is entailed
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COMPLEXITY OF INSTANCE CHECKING IN EL

Saturation approach is sound: everything derived is entailed

Also complete for instance checking:

Theorem Let K be an ££ knowledge base, and let K’ be the result
of saturating K. For every ABox assertion «, we have:

KEa iff aek’

Note: does not make all consequences explicit

- can have infinitely many implied axioms ~» would not terminate!
- s0: only complete for some reasoning tasks

Runs in polynomial time in |K|. This is optimal:

Theorem Instance checkingin £L is
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P-HARDNESS IN DATA COMPLEXITY

Reduction from P-complete Boolean circuit evaluation problem

- Circuit is given as an ABox
- one individual name per circuit gate

- concept names and Or indicate
- concept name True marks input gates with value 1
- role names and are used to

- Same TBox for all circuits to propagate values:

Or M 3leftinput.True C True  Or M 3rightinput.True C True

And 1 dleftinput.True M Jrightinput.True C True

Can show: circuit outputs 1 < output gate is answer to True(x)
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EXTENDING THE SATURATION APPROACH

Saturation approach can be extended to ELHT |

Additional rules required

Key difference: new conjunctions of concepts can occur

ACJRD JR™.BCE
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EXTENDED SET OF SATURATION RULES

TBox rules M, N, N’ conjunctions of concept names

{AC B}, BiM...MBED ~ RCS SCcT.  ME3IR(NML)

ACD RCT MC L
MC3R(NON) NCA - MC3IR(NMA) 3SACB RCS
M 3R (NN TTA) MC B

MCZ3RN 3Jinv(S)ACB RLCS
MM AC 3R.(N M B)

T8

ABox rules

An...MALEB Aj(a) (1<i<n) o JBEA r(a,b) B(b)

Ir—BCA r(b,a) B(b) rcs r(a,b) w TEST r(a, b)

A(a) s(a,b) s(b,a)




EXTENDING THE SATURATION APPROACH

Saturation approach can be extended to ELHT |
Additional rules required
Key difference: new conjunctions of concepts can occur

AC3RD 3R .BLCE
AT BC 3R.(DME)

New set of rules ~ different new axioms

Theorem Instance checking in ELHT, is P-complete for data and
Exp-complete for combined complexity.
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SATURATION AS A DATALOG PROGRAM

Let sat(7) be result of applying TBox saturation rules to 7.

For each ELHT, TBox 7 and ABox signature ¥ define following

N(7T,X) ={B(x) + Ai(x),..., A, An(x) |AM...MA, EBesat(T)}u
{B(x) + A(y), r(x, y) | IrACBeT}U
{B(y) + A(x),r(x,y) | Ir ACBeT}U
{s(x,y) < r(x,y) | rCs € sat(T),s € Nr} U
{s(y,x) < r(x,y) | rEs~ e€sat(T),s € Ng}U
{T(X) < AX)|A€NcNX}U
{T(X) < r(x,y) | re NgNnX}IU
{T(X) < r(y,x) | re NenXx}
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SATURATION AS A DATALOG PROGRAM (CONTINUED)

Theorem For every finite signature X and ELHZ, KB K = (T, .A)
with sig(A) C

1. K is unsatisfiable iff ans((M(7,X), L),Z4) # 0;
2. If ,then for all A € N¢, r € Ng, and a, b € Ind(A):

- K EA(a) iffa € ans((M(T,X),A),Za);
- K E r(a,b) iff (a,b) € ans((N(T,X),r),Za).

This means:

- get Datalog rewriting of instance queries in ELHT |
- can use Datalog program to create saturated ABox
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SATURATION AS A DATALOG PROGRAM: AN EXAMPLE

The Datalog program associated with our example:

PastaDish(x) < PenneArrab(x) PenneArrab C PastaDish
Dish(x) < PastaDish(x) PastaDish C Dish
Spicy(x) < Peperonc(x) Peperonc C Spicy
Spicy(x) « haslngred(x,y), Spicy(y) Jhaslngred.Spicy C Spicy
SpicyDish(x) + Spicy(x), Dish(x) Dish M Spicy C SpicyDish
Spicy(x) < ArrabSauce(x) ArrabSauce C Spicy
Spicy(x) < PenneArrab(x) PenneArrab C Spicy
Dish(x) < PenneArrab(x) PenneArrab C Dish
SpicyDish(x) « PenneArrab PenneArrab C SpicyDish

(technically, also have T-independent rules for T...)

30/30



	Instance Queries

