QUERY ANSWERING WITH DESCRIPTION LOGIC ONTOLOGIES

Meghyn Bienvenu (CNRS & Université de Montpellier) Magdalena Ortiz (Vienna University of Technology)

NAVIGATIONAL QUERIES

Some very natural queries are **not expressible** as CQs:

- find dishes that contain something spicy
- is a a relative of b?
- is there a bus connection from x to y?

Some very natural queries are **not expressible** as CQs:

- find dishes that contain something spicy
- is a a relative of b?
- is there a bus connection from x to y?

We need navigational queries that can flexibly explore our data

(node- & edge-) labeled graphs = ABoxes = relational databases with unary and binary predicates only

We are dealing with graph-structured data

- \cdot important in the database community
- · can capture highly connected data with no fixed schema
- $\cdot\,$ social, biological, chemical networks, pointer structures ...

Regular Path Queries (RPQs): find pairs of objects that are connected by a chain of roles that comply with a given regular language

(hasCourse \cup courseOf⁻) · (hasIngred \cup ingredOf⁻)* · Spicy?(x, y)

NAVIGATIONAL QUERIES

Regular Path Queries (RPQs): find pairs of objects that are connected by a chain of roles that comply with a given regular language

(hasCourse \cup courseOf⁻) · (hasIngred \cup ingredOf⁻)* · Spicy?(x, y)

Conjunctive RPQs: allow to join RPQs conjunctively

- $\cdot\,$ similar to CQs, but each atom is an RPQ
- $\cdot\,$ extend CQs with the navigational power of RPQs

 $\begin{aligned} \mathsf{q}(\mathsf{x},\mathsf{x}') &= \exists \mathsf{y},\mathsf{z}. & \text{serves} \cdot \mathsf{Menu}? \cdot (\mathsf{hasMain} \cup \mathsf{hasStarter})(\mathsf{x},\mathsf{y}) \land \\ & \text{serves} \cdot \mathsf{Menu}? \cdot (\mathsf{hasCourse} \cup \mathsf{courseOf}^{-})(\mathsf{x}',\mathsf{y}) \land \\ & (\mathsf{hasIngred} \cup \mathsf{ingredOf}^{-})^* \cdot \mathsf{Spicy}?(\mathsf{y},\mathsf{z}) \end{aligned}$

Both languages have 1-way and 2-way variants

Recall: N_{R}^{\pm} contains all role names and their inverses.

A conjunctive two-way regular path query (C2RPQ) has the form

$$q(\vec{x}) = \exists \vec{y}. \bigwedge L(t, t') \land \bigwedge A(t)$$

where A is a concept name t, t' are variables or individuals (in $N_1 \cup \vec{x} \cup \vec{y}$) L is regular language over $N_R^{\pm} \cup \{A? \mid A \in N_C\}$ Recall: N_{R}^{\pm} contains all role names and their inverses.

A conjunctive two-way regular path query (C2RPQ) has the form

$$q(\vec{x}) = \exists \vec{y}. \bigwedge L(t, t') \land \bigwedge A(t)$$

where A is a concept name t, t' are variables or individuals (in $N_I \cup \vec{x} \cup \vec{y}$) L is regular language over $N_R^{\pm} \cup \{A? \mid A \in N_C\}$

Regular languages can be given as:

- $\cdot \text{ regular expressions } \mathcal{E} \to \mathsf{r} \in \mathsf{N}^{\pm}_{\mathsf{R}} \ | \ \mathsf{A}? \ | \ \mathcal{E} \cdot \mathcal{E} \ | \ \mathcal{E} \cup \mathcal{E} \ | \ \mathcal{E}^*$
- non-deterministic finite automata NFA

Note: RegExps and NFAs are equivalent, but NFAs are more succinct

OTHER NAVIGATIONAL QUERY LANGUAGES

Conjunctive (one-way) regular path queries (CRPQs) disallow inverses \rightsquigarrow regular expressions use only (direct) role names

$$\begin{array}{ll} q(x,x') = & \exists y,z.serves \cdot Menu?hasCourse(x,y) \land \\ & serves \cdot Menu? \cdot hasCourse(x',y) \land hasIngred^* \cdot Spicy?(y,z) \\ q(x) = & \exists y.hasIngred^* \cdot Spicy?(x,y) \end{array}$$

OTHER NAVIGATIONAL QUERY LANGUAGES

Q

Conjunctive (one-way) regular path queries (CRPQs) disallow inverses ~ regular expressions use only (direct) role names

$$\begin{array}{ll} (x,x') = & \exists y,z.serves \cdot \mathsf{Menu?hasCourse}(x,y) \land \\ & serves \cdot \mathsf{Menu? hasCourse}(x',y) \land \mathsf{hasIngred^* \cdot Spicy?}(y,z) \\ q(x) = & \exists y.\mathsf{hasIngred^* \cdot Spicy?}(x,y) \end{array}$$

Two-way regular path queries (2RPQs) have only one atom and no existential variables \rightsquigarrow both variables are answer variables

$$\begin{array}{l} \mathsf{q}(\mathsf{x},\mathsf{y}) &= (\mathsf{hasIngred} \cup \mathsf{ingredOf}^-)^* \cdot \mathsf{Spicy}?(\mathsf{x},\mathsf{y}) \\ \mathsf{q}(\mathsf{x},\mathsf{y}) &= (\mathsf{hasIngred} \cup \mathsf{ingredOf}^-)^* \cdot \mathsf{Spicy}? \cdot \Sigma^*(\mathsf{x},\mathsf{y}) \end{array}$$

OTHER NAVIGATIONAL QUERY LANGUAGES

Q

Conjunctive (one-way) regular path queries (CRPQs) disallow inverses ~ regular expressions use only (direct) role names

$$\begin{array}{ll} (x,x') = & \exists y,z.serves \cdot \mathsf{Menu?hasCourse}(x,y) \land \\ & serves \cdot \mathsf{Menu? hasCourse}(x',y) \land \mathsf{hasIngred^* \cdot Spicy?}(y,z) \\ q(x) = & \exists y.\mathsf{hasIngred^* \cdot Spicy?}(x,y) \end{array}$$

Two-way regular path queries (2RPQs) have only one atom and no existential variables \rightsquigarrow both variables are answer variables

q(x,y)	$=$ (hasIngred \cup ingredOf ⁻)* \cdot Spicy?(x,y)
q(x,y)	= (hasIngred \cup ingredOf ⁻) [*] · Spicy? · $\Sigma^*(x, y)$

$$\begin{array}{l} q(x,y) &= hasIngred^* \cdot Spicy?(x,y) \\ q(x,y) &= hasCourse \cdot hasIngred^* \cdot Spicy?(x,y) \end{array}$$

Satisfaction of atoms L(t, t'):

 $(d, d') \in L^{\mathcal{I}}$ if there is an L-path from d to d', i.e.,

- · a sequence $e_0e_1 \dots e_n$ objects from $\Delta^{\mathcal{I}}$ with $e_0 = d$ and $e_n = d'$
- \cdot a word $u_1u_2\ldots u_n\in L$ over $N_R^\pm\cup\{A?\mid A\in N_C\}$

such that, for every $1 \le i \le n$:

- \cdot if $u_i = A$?, then $e_{i-1} = e_i \in A^{\mathcal{I}}$
- $\cdot \, \text{ if } u_i = R \in N_R^\pm \text{, then } (e_{i-1}, e_i) \in R^\mathcal{I}$

Satisfaction of atoms L(t, t'):

 $(d, d') \in L^{\mathcal{I}}$ if there is an L-path from d to d', i.e.,

- \cdot a sequence $e_0e_1\ldots e_n$ objects from $\Delta^{\mathcal{I}}$ with $e_0=d$ and $e_n=d'$
- · a word $u_1u_2...u_n \in L$ over $N_R^{\pm} \cup \{A? \mid A \in N_C\}$

such that, for every $1 \le i \le n$:

- \cdot if $u_i = A$?, then $e_{i-1} = e_i \in A^{\mathcal{I}}$
- $\cdot \mbox{ if } u_i = R \in N_R^{\pm} \mbox{, then } (e_{i-1}, e_i) \in R^{\mathcal{I}}$

Match: mapping π from terms to elements that satisfies all atoms As before: $\mathcal{I} \models_{\pi} q(\vec{a})$ if match π maps answer variables to \vec{a} Satisfaction of atoms L(t, t'):

 $(d, d') \in L^{\mathcal{I}}$ if there is an L-path from d to d', i.e.,

- \cdot a sequence $e_0e_1\ldots e_n$ objects from $\Delta^{\mathcal{I}}$ with $e_0=d$ and $e_n=d'$
- · a word $u_1u_2...u_n \in L$ over $N_R^{\pm} \cup \{A? \mid A \in N_C\}$

such that, for every $1 \le i \le n$:

- \cdot if $u_i = A$?, then $e_{i-1} = e_i \in A^{\mathcal{I}}$
- $\cdot \mbox{ if } u_i = R \in N_R^{\pm} \mbox{, then } (e_{i-1}, e_i) \in R^{\mathcal{I}}$

Match: mapping π from terms to elements that satisfies all atoms As before: $\mathcal{I} \models_{\pi} q(\vec{a})$ if match π maps answer variables to \vec{a}

Certain answers defined as for CQs

Again suffices to find match in universal model

We focus on answering 2RPQs: one atom, no existential variables

We focus on answering 2RPQs: one atom, no existential variables Bound on matches ranging over individuals only We focus on answering 2RPQs: one atom, no existential variables Bound on matches ranging over individuals only

Challenge: paths may need to go deep into the universal model

 $q(x, y) = serves \cdot (hasIngred \cup ingredOf^)^* \cdot Spicy? \cdot \Sigma^*(x, y)$

Goal: compact representation of **all ways** in which **paths through the anonymous part** can participate in **matches**

Goal: compact representation of all ways in which paths through the anonymous part can participate in matches

We use NFA representation

ingredOf⁻

We write $M \in \text{Loop}_{\alpha}[s, s']$ iff $a \in M^{\mathcal{I}_{\mathcal{K}}}$ implies the existence of **a path p below** a that takes the NFA α from s to s', e.g.,

Goal: compact representation of all ways in which paths through the anonymous part can participate in matches

We use NFA representation

ingredOf⁻

We write $M \in \text{Loop}_{\alpha}[s, s']$ iff $a \in M^{\mathcal{I}_{\mathcal{K}}}$ implies the existence of a path p below a that takes the NFA α from s to s', e.g.,

PenneArrab
$$\in$$
 Loop _{α} [s₁, s_f]

because of

PenneArrab $\sqsubseteq \exists hasIngred.ArrabSauce$ ArrabSauce $\sqsubseteq \exists hasIngred.(Peperonc \sqcap Spicy)$

We can explicitly compute the full $Loop_{\alpha}$ table inductively:

We can explicitly compute the full $Loop_{\alpha}$ table inductively:

```
if s is a state, and A \in N_C

if M_1 \in Loop_{\alpha}[s_1, s_2] and

M_2 \in Loop_{\alpha}[s_2, s_3]

if \mathcal{T} \models C_1 \sqcap \cdots \sqcap C_n \sqsubseteq A and

(s_1, A^2, s_2) \in \delta

if \mathcal{T} \models C_1 \sqcap \cdots \sqcap C_n \sqsubseteq \exists R.D,

\mathcal{T} \models R \sqsubseteq R', \mathcal{T} \models R \sqsubseteq R'',

(s_1, R', s_2) \in \delta,

D \in Loop_{\alpha}[s_2, s_3], and

(s_3, R''^-, s_4) \in \delta
```

then $A \in Loop_{\alpha}[s, s]$ then $M_1 \sqcap M_2 \in Loop_{\alpha}[s_1, s_3]$

then $C_1 \sqcap \cdots \sqcap C_n \in Loop_{\alpha}[s_1, s_2]$

then $C_1 \sqcap \cdots \sqcap C_n \in Loop_{\alpha}[s_1, s_4]$

12/23

· Peperonc \in Loop_{α}[s₁, s_f] because (s₁, Spicy?, s_f) $\in \delta$ and

 $Peperonc \sqsubseteq Spicy$

· ArrabSauce \in Loop_{α}[s₁, s_f] because (s₁, hasIngred, s₁), (s_f, hasIngred⁻, s_f) $\in \delta$ and

 $\begin{array}{l} \text{ArrabSauce}\sqsubseteq\exists\text{hasIngred.Peperonc}\\ \text{Peperonc}\in\text{Loop}_{\alpha}[s_1,s_f] \end{array}$

· Peperonc \in Loop_{α}[s₁, s_f] because (s₁, Spicy?, s_f) $\in \delta$ and

 $\mathsf{Peperonc}\sqsubseteq\mathsf{Spicy}$

• ArrabSauce $\in \text{Loop}_{\alpha}[s_1, s_f]$ because (s₁, hasIngred, s₁), (s_f, hasIngred⁻, s_f) $\in \delta$ and

> ArrabSauce $\sqsubseteq \exists$ hasIngred.Peperonc Peperonc \in Loop_{α}[s₁, s_f]

• PenneArrab \in Loop_{α}[s₁, s_f] because (s₁, hasIngred, s₁), (s_f, hasIngred⁻, s_f) $\in \delta$ and

 $\begin{aligned} & \mathsf{PenneArrab} \sqsubseteq \exists \mathsf{hasIngred}.\mathsf{ArrabSauce} \\ & \mathsf{ArrabSauce} \in \mathsf{Loop}_{\alpha}[\mathsf{s}_1,\mathsf{s}_{\mathsf{f}}] \end{aligned}$

Non-deterministic algorithm to decide $(a, b) \in cert(\alpha(x, y), \mathcal{K})$ Input: NFA $\alpha = (S, \Sigma, \delta, s_0, F)$, KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, (a, b) from \mathcal{A} **Non-deterministic algorithm** to decide $(a, b) \in cert(\alpha(x, y), \mathcal{K})$ Input: NFA $\alpha = (S, \Sigma, \delta, s_0, F)$, KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, (a, b) from \mathcal{A}

- \cdot After checking consistency, we start from (a, s_0)
- · At pair (c, s), guess new pair (d, s') together with one of:
 - · transition (s, σ, s') \rightsquigarrow check if $(c, d) \in \sigma^{\mathcal{I}}$
 - · concepts M in Loop_α[s, s'] → check if $c = d \in M^{\mathcal{I}}$

take a $\sigma\text{-step}$ from c to d in ABox

stay at same individual, jump to \boldsymbol{s}'

- \cdot Exit when we get pair (b, s_f)
- · Use counter to ensure termination (only need to consider each pair once)

Algorithm EvalAtom

INPUT: NFA $\alpha = (S, \Sigma, \delta, s_0, F)$ with $\Sigma \subseteq N_R^{\pm} \cup \{A? \mid A \in N_C\}$, \mathcal{ELHI}_{\perp} KB $(\mathcal{T}, \mathcal{A})$, $(a, b) \in Ind(\mathcal{A}) \times Ind(\mathcal{A})$

- 1. Test whether $(\mathcal{T}, \mathcal{A})$ is satisfiable, output **yes** if not.
- 2. Initialize current = (a, s₀) and count = 0. Set max = $|A| \cdot |S| + 1$.
- 3. While count < max and current $\notin \{(b, s_f) \mid s_f \in F\}$
 - 3.1 Let current = (c, s).
 - 3.2 Guess a pair $(d, s') \in Ind(\mathcal{A}) \times S$ and either $(s, \sigma, s') \in \delta$ or $M \in Loop_{\sim}[s, s']$.
 - 3.3 If (s, σ, s') was guessed
 - · If $\sigma \in N_{R}^{\pm}$, then verify that $\mathcal{T}, \mathcal{A} \models \sigma(c, d)$, and return **no** if not.
 - · If $\sigma = A$?, then verify that c = d and $T, A \models A(c)$, and return **no** if not.
 - 3.4 If M was guessed, then verify that c = d and that $T, A \models B(c)$ for every concept name $B \in M$, and return **no** if not.
 - 3.5 Set current = (d, s') and increment count.
- 4. If current = (b, s_f) for some $s_f \in F$, return **yes**. Else return **no**.

 $q(x, y) = serves \cdot (hasIngred \cup ingredOf^{-})^* \cdot Spicy? \cdot \Sigma^*(x, y)$

serves(r,b)	serves(r,p)	PenneArrab(b)	PizzaCalab(p)
	PenneArrab	⊑ PastaDish ⊓ ∃has	Ingred.ArrabSauce
	PastaDish	⊑ Dish ⊓ ∃hasIngree	d.Pasta
	ArrabSauce	⊑∃hasIngred.Pepe	ronc
Peperonc ⊔ ∃has	sIngred.Spicy	⊑ Spicy	
	Spicy ⊓ Dish	⊑ SpicyDish	

serves(r, b) serves(r, p) PenneArrab(b) PizzaCalab(p)

 $q(x, y) = \text{serves} \cdot (\text{hasIngred} \cup \text{ingredOf}^-)^* \cdot \text{Spicy}? \cdot \Sigma^*(x, y)$

$$\begin{split} & \mathsf{Peperonc} \in \mathsf{Loop}_{\alpha}[\mathsf{s}_1,\mathsf{s}_f] \\ & \mathsf{ArrabSauce} \in \mathsf{Loop}_{\alpha}[\mathsf{s}_1,\mathsf{s}_f] \\ & \mathsf{PenneArrab} \in \mathsf{Loop}_{\alpha}[\mathsf{s}_1,\mathsf{s}_f] \end{split}$$

 $serves(r,b) \qquad serves(r,p) \qquad PenneArrab(b) \qquad PizzaCalab(p)$

 $q(x, y) = \text{serves} \cdot (\text{hasIngred} \cup \text{ingredOf}^-)^* \cdot \text{Spicy}? \cdot \Sigma^*(x, y)$

$$\begin{split} & \mathsf{Peperonc} \in \mathsf{Loop}_{\alpha}[\mathsf{S}_1,\mathsf{S}_f] \\ & \mathsf{ArrabSauce} \in \mathsf{Loop}_{\alpha}[\mathsf{S}_1,\mathsf{S}_f] \\ & \mathsf{PenneArrab} \in \mathsf{Loop}_{\alpha}[\mathsf{S}_1,\mathsf{S}_f] \end{split}$$

count:	0	1	2
Guess	(r, s_0)	(b, s ₁)	(b, s _f)
		$(s_0, serves, s_1) \in \delta$	$PenneArrab \in Loop_{\alpha}[s_1,s_{f}]$
Test		$(r, b) \in serves^{\mathcal{I}}$	$b \in PenneArrab^\mathcal{I}$
			return yes

Theorem $(a, b) \in cert(q, \mathcal{K})$ iff there is some execution of EvalAtom $(\alpha, \mathcal{K}, (a, b))$ that returns yes.

Theorem $(a, b) \in cert(q, \mathcal{K})$ iff there is some execution of EvalAtom $(\alpha, \mathcal{K}, (a, b))$ that returns yes.

- · Iterations bounded by counter (poly. counter $\rightsquigarrow \log \text{space}$)
- We need calls to procedures for: satisfiability instance checking

membership in $Loop_{\alpha}$ table

• These calls are in EXP for \mathcal{ELHI}_{\perp} Loop_{α} computation: exponentially many iterations

each one tests entailment

(poly. in # states + # conjunctions)
Theorem $(a, b) \in cert(q, \mathcal{K})$ iff there is some execution of EvalAtom $(\alpha, \mathcal{K}, (a, b))$ that returns yes.

- · Iterations bounded by counter (poly. counter $\rightsquigarrow \log \text{space}$)
- We need calls to procedures for: satisfiability instance checking men
- These calls are in EXP for \mathcal{ELHI}_{\perp} Loop_a computation:

exponentially many iterations each one tests entailment membership in $Loop_{\alpha}$ table

(poly. in # states + # conjunctions)

EXP upper bound for \mathcal{ELHI}_{\perp} (combined complexity)

Theorem $(a, b) \in cert(q, \mathcal{K})$ iff there is some execution of EvalAtom $(\alpha, \mathcal{K}, (a, b))$ that returns yes.

- · Iterations bounded by counter (poly. counter $\rightsquigarrow \log$ space)
- We need calls to procedures for: satisfiability instance checking memb
- \cdot These calls are in Exp for \mathcal{ELHI}_{\perp}

Loop $_{\alpha}$ computation:

exponentially many iterations each one tests entailment

membership in $Loop_{\alpha}$ table

(poly. in # states + # conjunctions)

EXP upper bound for \mathcal{ELHI}_{\perp} (combined complexity)

For *ELH* and DL-Lite, we can obtain P upper bound (combined)

- \cdot modified Loop_{lpha} uses only **basic concepts** A \in N_C / A, \exists R
- · necessary tests (satisfiability, entailment, ...) polynomial

- · Loop_{α} computation in constant time (ABox independent)
- \cdot called procedures in P for \mathcal{ELH} and AC_0 for $\mathsf{DL-Lite}_\mathcal{R}$
- · EvalAtom needs NLOGSPACE (non-deterministic with poly counter)

- · $Loop_{\alpha}$ computation in constant time (ABox independent)
- \cdot called procedures in P for \mathcal{ELH} and AC_0 for $\mathsf{DL-Lite}_\mathcal{R}$
- · EvalAtom needs NLOGSPACE (non-deterministic with poly counter)

Theorem

- For *ELHI*, 2RPQ answering is Exp-complete in combined complexity and P-complete in data complexity
- \cdot For DL-Lite $_{\mathcal{R}}$ and $\mathcal{ELH},$ the combined complexity drops to P-complete
- In data complexity, the problem is NLogSpace-complete for DL-Lite_R, and P-complete for \mathcal{ELH}

- · $Loop_{\alpha}$ computation in constant time (ABox independent)
- \cdot called procedures in P for \mathcal{ELH} and AC_0 for $\mathsf{DL-Lite}_\mathcal{R}$
- · EvalAtom needs NLOGSPACE (non-deterministic with poly counter)

Theorem

- For *ELHI*, 2RPQ answering is Exp-complete in combined complexity and P-complete in data complexity
- \cdot For DL-Lite $_{\mathcal{R}}$ and $\mathcal{ELH},$ the combined complexity drops to P-complete
- In data complexity, the problem is NLogSpace-complete for DL-Lite_R, and P-complete for \mathcal{ELH}

Most matching **lower bounds** from simpler problems:

- · $Loop_{\alpha}$ computation in constant time (ABox independent)
- \cdot called procedures in P for \mathcal{ELH} and AC_0 for $\mathsf{DL-Lite}_\mathcal{R}$
- · EvalAtom needs NLOGSPACE (non-deterministic with poly counter)

Theorem

- For *ELHI*, 2RPQ answering is Exp-complete in combined complexity and P-complete in data complexity
- \cdot For DL-Lite $_{\mathcal{R}}$ and $\mathcal{ELH},$ the combined complexity drops to P-complete
- In data complexity, the problem is NLogSpace-complete for DL-Lite_R, and P-complete for \mathcal{ELH}

Most matching **lower bounds** from simpler problems: instance checking graph reachability = RPQ over plain ABox

- · $Loop_{\alpha}$ computation in constant time (ABox independent)
- \cdot called procedures in P for \mathcal{ELH} and AC_0 for $\mathsf{DL-Lite}_\mathcal{R}$
- · EvalAtom needs NLOGSPACE (non-deterministic with poly counter)

Theorem

- For *ELHI*, 2RPQ answering is Exp-complete in combined complexity and P-complete in data complexity
- \cdot For DL-Lite $_{\mathcal{R}}$ and $\mathcal{ELH},$ the combined complexity drops to P-complete
- In data complexity, the problem is NLogSpace-complete for DL-Lite_R, and P-complete for \mathcal{ELH}

Most matching lower bounds from simpler problems:instance checkinggraph reachability = RPQ over plain ABox

 $\textbf{P-hardness for } \textbf{DL-Lite}_{\mathcal{R}} \text{ non-trivial}$

For **answering C2RPQs**, we combine the earlier ideas:

- · rewrite the query so that matches ranging over individuals suffice
- \cdot in each step, consider **possibly deeper paths** with Loop_{α}**table**

After rewriting, guess **matches using individuals only** and check them using EvalAtom **on each atom**

For **answering C2RPQs**, we combine the earlier ideas:

- · rewrite the query so that matches ranging over individuals suffice
- \cdot in each step, consider **possibly deeper paths** with Loop_{α}**table**

After rewriting, guess **matches using individuals only** and check them using EvalAtom **on each atom**

Works for all DLs discussed and gives optimal complexity bounds

For **answering C2RPQs**, we combine the earlier ideas:

- · rewrite the query so that matches ranging over individuals suffice
- \cdot in each step, consider **possibly deeper paths** with Loop_{α}**table**

After rewriting, guess **matches using individuals only** and check them using EvalAtom **on each atom**

Works for all DLs discussed and gives optimal complexity bounds Answering C2RPQs is not much harder:

- \cdot combined complexity increases to PSPACE for DL-Lite_{\mathcal{R}} and \mathcal{ELH}
- · but most other bounds are the same as for RPQs and CQs
- \cdot even for very expressive DLs that are not Horn

Navigational queries provide more querying power at moderate computational cost

Good alternative to CQs, gaining increasing attention

Property paths in SPARQL

- · included in the SPARQL 1.1 standard
- \cdot add **regular paths** as in C2RPQs

Ongoing quest for more flexible navigational languages

Expressible in Datalog, but computationally better behaved

COMPLEXITY OF ANSWERING (C)(2)RPQS

	2RPQs		C2RPQs	
	data complexity	combined complexity	data complexity	combined complexity
DL-Lite DL-Lite _R	NLOGSPACE	Ρ	NLOGSPACE	PSpace
$\mathcal{EL},\mathcal{ELH}$	Р	Р	Р	PSpace
ELI, ELHI⊥, Horn-SHOIQ	Ρ	Ехр	Р	Exp
ALC, ALCHQ	coNP	Ехр	coNP-hard	2Exp
ALCI, SH, SHIQ	coNP	Ехр	coNP-hard	2Exp
SHOIQ	coNP	CONEXP	coNP-hard ¹	coN2Exp-hard ¹

¹ decidability open

We can reduce **emptiness of the intersection of regular languages** to CRPQ answering in \mathcal{EL} (or DL-Lite).

Given regular languages $L_1 \dots L_n$ over alphabet Σ

We use a TBox to generate all words in Σ^* ,

 $\mathcal{T} = \{\top \sqsubseteq \exists r_{\sigma}. \top \mid \sigma \in \Sigma\}$

Then

 $\mathcal{L}(L_1) \cap \dots \cap \mathcal{L}(L_n) \neq \emptyset \quad \text{iff} \quad \mathcal{T}, \{A(c)\} \models \exists x. L_1(c, x) \land \dots \land L_n(c, x)$

COMPARISON: COMPLEXITY OF ANSWERING (U)CQS

	IQs		CQs	
	data complexity	combined complexity	data complexity	combined complexity
DL-Lite DL-Lite _R	in AC ₀	NLOGSPACE	in AC_0	NP
$\mathcal{EL},\mathcal{ELH}$	Р	Р	Р	NP
ELI, ELHI⊥, Horn-SHOIQ	Р	Ехр	Ρ	Ехр
ALC, ALCHQ	coNP	Ехр	coNP	Exp
ALCI, SH, SHIQ	coNP	Ехр	coNP	2Exp
SHOIQ	coNP	CONEXP	coNP-hard ¹	coN2Exp-hard ¹

¹ decidability open