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navigational queries



limitations of (u)cqs

Some very natural queries are not expressible as CQs:

- find dishes that contain something spicy
- is a a relative of b?
- is there a bus connection from x to y?

We need navigational queries that can flexibly explore our data
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aboxes and gsd

(node- & edge-) labeled graphs
=

ABoxes
=

relational databases with unary and binary predicates only

We are dealing with graph-structured data
∙ important in the database community
∙ can capture highly connected data with no fixed schema
∙ social, biological, chemical networks, pointer structures …
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navigational queries

Regular Path Queries (RPQs): find pairs of objects that are connected
by a chain of roles that comply with a given regular language

(hasCourse ∪ courseOf−) · (hasIngred ∪ ingredOf−)∗ · Spicy?(x, y)

Conjunctive RPQs: allow to join RPQs conjunctively

∙ similar to CQs, but each atom is an RPQ
∙ extend CQs with the navigational power of RPQs

q(x, x′) = ∃y, z. serves ·Menu? · (hasMain ∪ hasStarter)(x, y) ∧
serves ·Menu? · (hasCourse ∪ courseOf−)(x′, y) ∧
(hasIngred ∪ ingredOf−)∗ · Spicy?(y, z)

Both languages have 1-way and 2-way variants
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our most expressive navigational queries: c2rpqs

Recall: N±
R contains all role names and their inverses.

A conjunctive two-way regular path query (C2RPQ) has the form

q(~x) = ∃~y.
∧
L(t, t′) ∧

∧
A(t)

where A is a concept name
t, t′ are variables or individuals (in NI ∪~x ∪~y)
L is regular language over N±

R ∪ {A? | A ∈ NC}

Regular languages can be given as:
∙ regular expressions E → r ∈ N±

R | A? | E · E | E ∪ E | E∗

∙ non-deterministic finite automata NFA

Note: RegExps and NFAs are equivalent, but NFAs are more succinct
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other navigational query languages
Conjunctive (one-way) regular path queries (CRPQs) disallow inverses
 regular expressions use only (direct) role names

q(x, x′) = ∃y, z.serves ·Menu?hasCourse(x, y) ∧
serves ·Menu? · hasCourse(x′, y) ∧ hasIngred∗ · Spicy?(y, z)

q(x) = ∃y.hasIngred∗ · Spicy?(x, y)

Two-way regular path queries (2RPQs) have only one atom and no
existential variables both variables are answer variables

q(x, y) = (hasIngred ∪ ingredOf−)∗ · Spicy?(x, y)
q(x, y) = (hasIngred ∪ ingredOf−)∗ · Spicy? · Σ∗(x, y)

(One-way) Regular path queries (RPQs) are 2RPQs with no inverses
 all of the restrictions above

q(x, y) = hasIngred∗ · Spicy?(x, y)
q(x, y) = hasCourse · hasIngred∗ · Spicy?(x, y)
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semantics of c2rpqs

Satisfaction of atoms L(t, t′):
(d,d′) ∈ LI if there is an L-path from d to d′, i.e.,
∙ a sequence e0e1 . . . en objects from ∆I with e0 = d and en = d′

∙ a word u1u2 . . .un ∈ L over N±
R ∪ {A? | A ∈ NC}

such that, for every 1 ≤ i ≤ n:
∙ if ui = A?, then ei−1 = ei ∈ AI

∙ if ui = R ∈ N±
R , then (ei−1, ei) ∈ RI

Match: mapping π from terms to elements that satisfies all atoms

As before: I |=π q(~a) if match π maps answer variables to ~a

Certain answers defined as for CQs

Again suffices to find match in universal model
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answering 2rpqs

We focus on answering 2RPQs: one atom, no existential variables

Bound on matches ranging over individuals only

Challenge: paths may need to go deep into the universal model

q(x, y) = serves · (hasIngred ∪ ingredOf−)∗ · Spicy? · Σ∗(x, y)

r
π(x)

p
PizzaCalab

b
PenneArrabπ(y)

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauce

e4
Peperonc, Spicy

serves serves

hasIngred hasIngred hasIngred

hasIngred
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loops through the anonymous part

Goal: compact representation of all ways in which paths through
the anonymous part can participate in matches

s0 s1 sf
serves

hasIngred

ingredOf−

Spicy?

Σ∗

We use NFA representation

We write M ∈ Loopα[s, s′] iff a ∈ MIK implies the existence of a path
p below a that takes the NFA α from s to s′, e.g.,

PenneArrab ∈ Loopα[s1, sf]

because of

PenneArrab v ∃hasIngred.ArrabSauce
ArrabSauce v ∃hasIngred.(Peperonc u Spicy)
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computing the loop table

We can explicitly compute the full Loopαtable inductively:

if s is a state, and A ∈ NC then A ∈ Loopα[s, s]
if M1 ∈ Loopα[s1, s2] and
M2 ∈ Loopα[s2, s3]

then M1 uM2 ∈ Loopα[s1, s3]

if T |= C1 u · · · u Cn v A and
(s1,A?, s2) ∈ δ

then C1 u · · · u Cn ∈ Loopα[s1, s2]

if T |= C1 u · · · u Cn v ∃R.D,
T |= R v R′, T |= R v R′′,
(s1,R′, s2) ∈ δ,
D ∈ Loopα[s2, s3], and
(s3,R′′−, s4) ∈ δ

then C1 u · · · u Cn ∈ Loopα[s1, s4]
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computing loops: an example

s0 s1 sf
serves

hasIngred

ingredOf−

Spicy?

Σ∗ rp
PizzaCalab

b
PenneArrab

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauce

e4
Peperonc, Spicy

serves serves

hasIngred hasIngred hasIngred

hasIngred

∙ Peperonc ∈ Loopα[s1, sf] because (s1, Spicy?, sf) ∈ δ and

Peperoncv Spicy

∙ ArrabSauce ∈ Loopα[s1, sf] because
(s1,hasIngred, s1), (sf,hasIngred−, sf) ∈ δ and

ArrabSaucev ∃hasIngred.Peperonc
Peperonc ∈ Loopα[s1, sf]

∙ PenneArrab ∈ Loopα[s1, sf] because
(s1,hasIngred, s1), (sf,hasIngred−, sf) ∈ δ and

PenneArrabv ∃hasIngred.ArrabSauce
ArrabSauce ∈ Loopα[s1, sf]
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evaluation 2rpqs using the loop table

Non-deterministic algorithm to decide (a,b) ∈ cert(α(x, y),K)

Input: NFA α = (S,Σ, δ, s0, F), KB K = (T ,A), (a,b) from A

∙ After checking consistency, we start from (a, s0)
∙ At pair (c, s), guess new pair (d, s′) together with one of:
∙ transition (s, σ, s′) take a σ-step from c to d in ABox

 check if (c,d) ∈ σI

∙ concepts M in Loopα[s, s′] stay at same individual, jump to s′

 check if c = d ∈ MI

∙ Exit when we get pair (b, sf)
∙ Use counter to ensure termination (only need to consider each pair once)

13/23
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evaluation algorithm

Algorithm EvalAtom
Input: NFA α = (S,Σ, δ, s0, F) with Σ ⊆ N±

R ∪ {A? | A ∈ NC}, ELHI⊥ KB
(T , A), (a,b) ∈ Ind(A)× Ind(A)

1. Test whether (T , A) is satisfiable, output yes if not.
2. Initialize current = (a, s0) and count = 0. Set max = |A| · |S|+ 1.
3. While count < max and current 6∈ {(b, sf) | sf ∈ F}
3.1 Let current = (c, s).
3.2 Guess a pair (d, s′) ∈ Ind(A)× S and either (s, σ, s′) ∈ δ or

M ∈ Loopα[s, s
′].

3.3 If (s, σ, s′) was guessed
∙ If σ ∈ N±

R , then verify that T ,A |= σ(c, d), and return no if not.
∙ If σ = A?, then verify that c = d and T ,A |= A(c), and return no if not.

3.4 If M was guessed, then verify that c = d and that T ,A |= B(c) for every
concept name B ∈ M, and return no if not.

3.5 Set current = (d, s′) and increment count.
4. If current = (b, sf) for some sf ∈ F, return yes. Else return no.
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evaluation algorithm: example (1/2)

q(x, y) = serves · (hasIngred ∪ ingredOf−)∗ · Spicy? · Σ∗(x, y)

serves(r,b) serves(r,p) PenneArrab(b) PizzaCalab(p)

PenneArrab v PastaDish u ∃hasIngred.ArrabSauce
PastaDish v Dish u ∃hasIngred.Pasta

ArrabSauce v ∃hasIngred.Peperonc
Peperonc t ∃hasIngred.Spicy v Spicy

Spicy u Dish v SpicyDish

r
π(x)

p
PizzaCalab

b
PenneArrabπ(y)

e1
Nduja, Spicy

e2
Penne, Pasta

e3 ArrabSauce

e4
Peperonc, Spicy

serves serves

hasIngred hasIngred hasIngred

hasIngred
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evaluation algorithm: example (2/2)

serves(r,b) serves(r,p) PenneArrab(b) PizzaCalab(p)

q(x, y) = serves · (hasIngred ∪ ingredOf−)∗ · Spicy? · Σ∗(x, y)

s0 s1 sf
serves

hasIngred

ingredOf−

Spicy?

Σ∗Peperonc ∈ Loopα[s1, sf]
ArrabSauce ∈ Loopα[s1, sf]
PenneArrab ∈ Loopα[s1, sf]

count: 0 1 2
Guess (r, s0) (b, s1) (b, sf)

(s0, serves, s1) ∈ δ PenneArrab ∈ Loopα[s1, sf]
Test (r,b) ∈ servesI b ∈ PenneArrabI

return yes
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complexity of the algorithm

Theorem (a,b) ∈ cert(q,K) iff there is some execution of
EvalAtom(α,K, (a,b)) that returns yes.

∙ Iterations bounded by counter (poly. counter log space)
∙ We need calls to procedures for:
satisfiability instance checking membership in Loopα table

∙ These calls are in Exp for ELHI⊥

Loopα computation:
exponentially many iterations (poly. in # states + # conjunctions)
each one tests entailment

Exp upper bound for ELHI⊥ (combined complexity)

For ELH and DL-Lite, we can obtain P upper bound (combined)
∙ modified Loopα uses only basic concepts A ∈ NC / A, ∃R
∙ necessary tests (satisfiability, entailment, …) polynomial
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Exp upper bound for ELHI⊥ (combined complexity)

For ELH and DL-Lite, we can obtain P upper bound (combined)
∙ modified Loopα uses only basic concepts A ∈ NC / A, ∃R
∙ necessary tests (satisfiability, entailment, …) polynomial
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complexity bounds

Data complexity:
∙ Loopα computation in constant time (ABox independent)
∙ called procedures in P for ELH and AC0 for DL-LiteR
∙ EvalAtom needs NLogSpace (non-deterministic with poly counter)

Theorem

∙ For ELHI⊥, 2RPQ answering is Exp-complete in combined
complexity and P-complete in data complexity

∙ For DL-LiteR and ELH, the combined complexity drops to
P-complete

∙ In data complexity, the problem is NLogSpace-complete for
DL-LiteR, and P-complete for ELH

Most matching lower bounds from simpler problems:
instance checking graph reachability = RPQ over plain ABox

P-hardness for DL-LiteR non-trivial
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answering c2rpqs

For answering C2RPQs, we combine the earlier ideas:

∙ rewrite the query so that matches ranging over individuals suffice
∙ in each step, consider possibly deeper paths with Loopαtable

After rewriting, guess matches using individuals only and check
them using EvalAtom on each atom

Works for all DLs discussed and gives optimal complexity bounds

Answering C2RPQs is not much harder:
∙ combined complexity increases to PSpace for DL-LiteR and ELH
∙ but most other bounds are the same as for RPQs and CQs
∙ even for very expressive DLs that are not Horn
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final remarks on navigational queries

Navigational queries provide more querying power at moderate
computational cost

Good alternative to CQs, gaining increasing attention

Property paths in SPARQL
∙ included in the SPARQL 1.1 standard
∙ add regular paths as in C2RPQs

Ongoing quest for more flexible navigational languages

Expressible in Datalog, but computationally better behaved
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complexity of answering (c)(2)rpqs

2RPQs C2RPQs

data
complexity

combined
complexity

data
complexity

combined
complexity

DL-Lite
DL-LiteR

NLogSpace P NLogSpace PSpace

EL, ELH P P P PSpace

ELI , ELHI⊥,
Horn-SHOIQ

P Exp P Exp

ALC,
ALCHQ

coNP Exp coNP-hard 2Exp

ALCI , SH,
SHIQ

coNP Exp coNP-hard 2Exp

SHOIQ coNP coNExp coNP-hard1 coN2Exp-hard1

1 decidability open 21/23



pspace-hardness of crpqs for lightweight dls

We can reduce emptiness of the intersection of regular languages
to CRPQ answering in EL (or DL-Lite).

Given regular languages L1 . . . Ln over alphabet Σ

We use a TBox to generate all words in Σ∗,

T = {> v ∃rσ.> | σ ∈ Σ}

Then

L(L1) ∩ · · · ∩ L(Ln) 6= ∅ iff T , {A(c)} |= ∃x.L1(c, x) ∧ · · · ∧ Ln(c, x)
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comparison: complexity of answering (u)cqs

IQs CQs

data
complexity

combined
complexity

data
complexity

combined
complexity

DL-Lite
DL-LiteR

in AC0 NLogSpace in AC0 NP

EL, ELH P P P NP

ELI , ELHI⊥,
Horn-SHOIQ

P Exp P Exp

ALC,
ALCHQ

coNP Exp coNP Exp

ALCI , SH,
SHIQ

coNP Exp coNP 2Exp

SHOIQ coNP coNExp coNP-hard1 coN2Exp-hard1

1 decidability open
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