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research trends in omqa



efficient omqa

Lots of work on developing and implementing efficient OMQA
algorithms

Focus mostly on DL-Lite (and related dialects):

∙ First algorithm PerfectRef proposed in mid-2000’s
∙ Rewrites into UCQs, implemented in Quonto
∙ Improved versions proposed in Requiem, Presto, Rapid, …
∙ Some algorithms rewrite into positive existential queries or
Datalog programs instead of UCQs

∙ Resulting queries are smaller, can be easier to evaluate
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optimizations and omqa beyond dl-lite

Tractable classes, fragments of lower complexity

Rewriting engines for other Horn DLs also developed, e.g.,

∙ Requiem and the related Kyrie cover several EL dialects

∙ Clipper, and recently Rapid cover Horn-SHIQ

They usually rewrite into Datalog programs
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understanding rewritability

Much attention devoted to understanding the limits of rewritability
and size of rewritings

When are polynomial rewritings possible?

Can we give bounds on the size of rewritings?

Which non-DL-Lite ontologies can be rewritten into FO-queries?

⇝ related to non-uniform complexity:

∙ study specific pairs (q, T ), called ontology-mediated queries
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combined approaches

Saturate the ABox using the TBox axioms
⇝ a finite version of the canonical model

and then evaluate the query over the saturated ABox

Two approaches:
∙ modify the query before evaluation to ensure soundness, or
∙ evaluate and then filter unsound answers

First proposed for EL, then also for DL-Lite

Extended to other dialects, richer DLs
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querying existing relational data using mappings

This course: assume data given as ABox assertions (unary + binary)

Problem: how to query existing relational data (arbitrary arity)?

Solution: use mapping that specifies relationship between the
database relations and the concepts / roles in DL vocabulary

Formally: mapping assertions of the form φ→ ψ where:
∙ φ is an query formulated using DB relations
∙ ψ is a query in the DL vocabulary

Global-as-view (GAV) mappings: φ CQ, ψ atom (no quantifiers)

Handling mappings:
∙ apply mappings to generate ABox, proceed as usual
∙ virtual ABox: unfolding step to get rewriting over DB relations
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other research topics (non-exhaustive)

Beyond classical OMQA  
∙ inconsistency-tolerant query answering
∙ probabilistic query answering
∙ privacy-aware query answering
∙ temporal query answering

Support for building and maintaining OMQA systems
∙ module extraction
∙ ontology evolution
∙ query inseparability and emptiness

Improving the usability of OMQA systems
∙ interfaces and support for query formulation
∙ explaining query (non-)answers
∙ combining complete and incomplete information
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zoom: inconsistency-tolerant
query answering



handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox

Standard semantics: all tuples are returned - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies
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example: which answers to return?

Consider the following TBox T :

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

the ABox

A = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

and the query q(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Which individuals should be returned (or not returned as answers)?

11/28



example: which answers to return?

Consider the following TBox T :

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

the ABox

A = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

and the query q(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Which individuals should be returned (or not returned as answers)?

11/28



plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Repair:      maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics: 

consistent query answering (CQA) semantics 

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables), 
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable 
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (T = {A ⊑ ¬B})
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example: ar semantics

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

A = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Two repairs of A w.r.t. T :

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)} drop Fellow(tom)

Under AR semantics:
∙ anna and tom are both answers to q
∙ cs101 is not an answer
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tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies
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back to the example

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
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towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime (data)

∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers

∙ three categories of answers : possible, likely, (almost) sure

Interaction with user:

∙ explaining query results
∙ why a possible answer? why not a sure answer?

∙ query-driven repairing
∙ exploit user feedback to improve data quality
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zoom: combining complete and
incomplete information



complete vs. incomplete information - usual setting

We have seen the classical certain answer semantics:

T = {BScStud ⊑ Student
Student ⊑ ∃attends.Course
BScStud ⊑ ∀attends.¬GradCourse}

q = attends(x, y)

Consider the following ABox:

A = {BScStud(Ann)
Course(c1)
Course(c2)
GradCourse(c2)}

Query Answer: ∅
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complete vs. incomplete information - partial completeness

Suppose we have complete knowledge about existing courses:

T = {BScStud ⊑ Student
Student ⊑ ∃attends.Course
BScStud ⊑ ∀attends.¬GradCourse}

q = attends(x, y)
Σ = {Course}

Recall the previous ABox:

A = {BScStud(Ann)
Course(c1)
Course(c2)
GradCourse(c2)}

Query Answer: {(Ann, c1)}
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open-world view in dls

DLs adopt an open-world view
∙ Standard FOL-semantics
∙ expresses incomplete knowledge, many models

A partial closed-world view is desirable
∙ use partial completeness to infer more answers
∙ meaningful when data comes from complete DB tables
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adding closed predicates

Closed Predicates in DLs
∙ We can enrich a KB with a set Σ of concept/role names
∙ We assume those predicates are complete
∙ Models of (T ,A,Σ) are models of (T ,A)

∙ Additionally, the extensions of closed predicates must be
exactly as given in A
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complexity of reasoning with closed predicates

Observation: we need reasoning by cases

∙ Even for instance checking in lightweight DLs

Closed predicates make reasoning harder

∙ but how much harder?

What do we know?

∙ Expressible if the DL is expressive enough
∙ We can use a construct called nominals

Course⊑ {c1} ⊔ {c2}
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expressing closed predicates with nominals (cont.)

We need a DL called ALCO

L + closed predicates ⊆ L ∪ALCO

This allows us to infer upper bounds in combined complexity
but they are not so good:

∙ Standard reasoning: consistency, fact entailment in Exp
∙ Conjunctive query answering: in 2Exp

Optimal?
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complexity of standard reasoning

Without closed predicates With closed predicates

DL-Lite NLogSpace NP

DL-LiteR NLogSpace NP

EL P Exp

ALCO Exp Exp

SHOQ,
SHOI

Exp Exp

all are completeness results
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complexity of conjunctive query answering

Without closed predicates With closed predicates

DL-Lite NP coNExp-hard

DL-LiteR NP 2Exp

EL NP 2Exp

ALCO 2Exp 2Exp

SHOQ,
SHOI

2Exp 2Exp

all but red are completeness results
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ontology mediated queries with closed predicates

(q, T ,Σ) a query q,
a TBox T ,
set of closed predicates Σ

Viewed as a query language, it is non-monotonic

For OMQs with closed predicates, there are
polynomial rewritings into

disjunctive Datalog with stratified negation
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Questions ?
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