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Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 33

mailto:alessandra.dipierro@univr.it
mailto:herbert@doc.ic.ac.uk


Notions of Approximation

In order theoretic structures we are looking for
Safe Approximations

s∗ v s or s v s∗

In quantitative, vector space structures we want
Close Approximations

‖s − s∗‖ = min
x
‖s − x‖
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Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).

Solution: find abstract descriptions on which computations
are easier, then relate the concrete and abstract solutions.
Basic idea: analyse the program using an abstract
semantics which only registers those aspects of the
program that are relevant for the specific analysis.
Example: for the parity analysis of the factorial program
(see previous lecture), we used as an abstract domain the
lattice

⊥ ≤ even,odd ≤ >

which captures the abstract property we were interested in.
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Abstract Interpretation

The standard theory of Abstract Interpretation was introduced
by Cousot& Cousot in 1977.
It states that the correctness of an abstract semantics is
guaranteed by establishing a categorical adjunction between
the concrete and abstract properties (lattices).

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.
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Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition

Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α

(ii) γ ◦ α ◦ γ = γ
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General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.
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Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

The notion of norm is essential for our treatment; we will
consider normed vector spaces.
In the finite setting we can identify V(S) with the Hilbert space
`2(S).
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Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a topology on a vector
space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.
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Generalised Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.
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Least Squares Solutions

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.
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Extraction Functions

An extraction function η : C 7→ D is a mapping from a set of
values to their descriptions in D.

Proposition
Given an extraction function η : C 7→ D, the quadruple
(P(C), αη, γη,P(D)) is a Galois connection with αη and γη
defined by:

αη(C′) = {η(c) | c ∈ C′} and γη(D′) = {v | η(v) ∈ D′}
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Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}
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Relation with Classical Abstractions

Lemma
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).

Analogously we can show that ~α ◦ ~γ is reductive. Therefore,

Proposition

(~α,~γ) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.
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Examples of Lifted Abstractions

Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A†p =

( 2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n
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Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)
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Example: Abstraction Matrices

A8 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
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Example: Abstraction Matrices

G8 =



1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2


Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.
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Approximation Estimates

Compute the least square error as

‖f − fAG‖.

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444
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Concrete Semantics (LOS)

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .
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Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

(A1 ⊗ A2 ⊗ . . .⊗ An)
† = A†1 ⊗ A†2 ⊗ . . .⊗ A†n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T#(`i , `j)

with local abstraction of individual variables:

T#(`i , `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†v Niv Av )⊗Mij
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Argument

T# = A†TA
= A†(

∑
i,j

pijT(i , j))A

=
∑
i,j

A†pijT(i , j)A

=
∑
i,j

pij(
⊗

k

Ak )
†T(i , j)(

⊗
k

Ak )

=
∑
i,j

pij(
⊗

k

A†k )(
⊗

k

Nik )(
⊗

k

Ak )

=
∑
i,j

pij
⊗

k

(A†kNikAk )
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Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A† =

( 2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)
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Example

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

T = U(m← 1)⊗ E(1,2)
+ P(n > 1)⊗ E(2,3)
+ P(n ≤ 1)⊗ E(2,5)
+ U(m← m × n)⊗ E(3,4)
+ U(n← n − 1)⊗ E(4,2)
+ I⊗ E(5,5)

T# = U#(m← 1)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)
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Abstract Semantics

Abstraction: A = Apm ⊗ In ⊗ Il , i.e. m abstract (parity) but n and
the labels are not abstracted.

T# = U#(m← 1)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 33

Abstract Semantics

U#(m← 1) =

=

(
0 1
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1
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Abstract Semantics

U#(n← n − 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0
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Abstract Semantics

P#(n > 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
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Abstract Semantics

P#(n ≤ 1) =

=

(
1 0
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0
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Abstract Semantics

U#(m← m × n) =
(

1 0
0 0

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


+

+

(
0 0
1 0

)
⊗



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


+

(
0 0
0 1

)
⊗



0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .
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Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1, . . . ,d} and m ∈ {1, . . . ,d !}.

d dim(T(F )) dim(T#(F ))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.
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Scalablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various d values are:

d even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998
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