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Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

@ construct simplified (computable) abstract semantics
@ construct approximate solutions

@ obtain the correctness of the approximate solution by
construction.
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Notions of Approximation

In order theoretic structures we are looking for
Safe Approximations

s*Cs or sCs*

In quantitative, vector space structures we want
Close Approximations

Is = s"| = min{ls — x|
X
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Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).

@ Solution: find abstract descriptions on which computations
are easier, then relate the concrete and abstract solutions.

@ Basic idea: analyse the program using an abstract
semantics which only registers those aspects of the
program that are relevant for the specific analysis.

@ Example: for the parity analysis of the factorial program
(see previous lecture), we used as an abstract domain the
lattice

1 <even,odd < T

which captures the abstract property we were interested in.
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Abstract Interpretation

The standard theory of Abstract Interpretation was introduced
by Cousot& Cousot in 1977.

It states that the correctness of an abstract semantics is
guaranteed by establishing a categorical adjunction between
the concrete and abstract properties (lattices).

Definition

Let C = (C,<) and D = (D, C) be two partially ordered set. If
there are two functions o : C — D and v : D — C such that for
alceCandall d e D:

¢ <c¢ v(d) iff a(c) C d,

then (C, a, v, D) form a Galois connection.
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Galois Connections

Definition

Let C = (C,<¢) and D = (D, <p) be two partially ordered sets
with two order-preserving functions o : C — D and v : D — C.
Then (C, a, v, D) form a Galois connection iff

() awo~yisreductivei.e.Vd € D, ao~v(d) <p d,
(i) v o« is extensive i.e. Vc € C, ¢ <¢ v o a(c).

Proposition

Let (C,«,, D) be a Galois connection. Then o« and ~ are
quasi-inverse, I.e.

() aoyoa=a«

(i) yoaoy=r

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 6 of 33



General Construction

A A#
Y

fl lf#

B = B#
,7/

Correct approximation:

o of <y # o a.

Induced semantics:

f* =aofonr.
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Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (Vs)ses | Vs € R}.
The notion of norm is essential for our treatment; we will
consider normed vector spaces.

In the finite setting we can identify V(S) with the Hilbert space
2(S).
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Norm and Operator Norm

A norm on a vector space Visamap |.|| : V — R such that for
allv,weVYandceC:

° [v|=0,

@ ||lv|=0<v=o0,

o [lev|| = [cllv]],

o [[v+wl| < |lv]+|lwl,
with o € V the zero vector.

We can always use a norm to define a topology on a vector
space via the distance function d(v, w) = ||v — w]||.

M(v
vey lv]|=1
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Generalised Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C — D alinear map. Then the linearmap AT =G : D — C is
the Moore-Penrose pseudo-inverse of A iff

() Ao G =Py,

(i) Go A =Pg,
where P, and Pg denote orthogonal projections onto the
ranges of A and G.
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Least Squares Solutions

Let A e R™"and b € R™. Thenu € R" is called a least
squares solution to Ax = b if

|Au — b|| < ||Av — b||, for all v € R".

Theorem

Let A € R™" andb € R™. Then A'b is the minimal least
squares solution to Ax = b.
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Extraction Functions

An extraction function n : C — D is a mapping from a set of
values to their descriptions in D.

Proposition

Given an extraction functionn : C — D, the quadruple
(P(C), oy, vy, P(D)) is a Galois connection with o, and ;,
defined by:

ay(C') = {n(c) | ¢ € C'} and (D) = {v [ n(v) € D'}
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Vector Space Lifting

Free vector space construction on a set S:
S)={> xss|xs€R,s€ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: a : V(C) — V(D)

A(p1-Cr+p2-Co+...)=p;-n(c1)+p2-n(ca)...

Support Set: supp : V(C) — P(C)

supp(X) = {¢i | (ci,p;) € X and p; # 0}
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Relation with Classical Abstractions

Lemma

Let & be a probabilistic abstraction function and let 5 be its
Moore-Penrose pseudo-inverse.

Then 7 o a is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. VX € V(C),

supp(X) C supp(7 o (X)).

Analogously we can show that @ o v is reductive. Therefore,

Proposition

(a,¥) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.
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Examples of Lifted Abstractions

Parity Abstraction operator on V({1,...,n}) (with n even):
10
(07
10 2 0 2 0 0
A, — Al :( n n )
ot PlosoE
\o 1)

Sign Abstraction operator on V({—n,...,0,...,n}):

( 10 0\
100 1 100 0
As=| 010 Al=1| 0 010 0
0 0 f 0 00 1 L
Lo a1
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Example: Function Approximation (ctd.)
Concrete and abstract domain are step-functions on [a, b].

The set of (real-valued) step-function 7, is based on the
sub-division of the interval into n sub-intervals.

14

Each step function in 7, corresponds to a vector in R", e.g.

(556 7843286679 81387)
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Example: Abstraction Matrices

(10000000\

10 0 0 00 O O

0O 1 00 0 0 0O

O 1 00 0 0 0 O

O 01 0 0O OO

O 01 0 0O OO

0O 0 o1 00O OO

A 0O 0 o1 00 OO

8~1 00001000

0O 0 001 0 OO

0O 0 0001 0O

0O 0 0001 0O

O 0 00 0 0 1 O0

O 0 00 0 0 1 O0

O 0 00 0 0 0 1

\00000O0O0T1)
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Example: Abstraction Matrices

(22 0000000000000 0)
004, 50000O0O0O0OOOO0TU 0O
000O0GZ %5 00O0O0O0O0OOO0GO OO
G 000O0O0O0OGS43000O0O0O0UO0DO
*“loooooo0oo00lloo0oo0000
000O0O0O0O0OOO0GZ4 %0000
000O0O0OOO0OOOOOOS S+ 00
\oooooooooooooo%%)

Compute the abstractions of f as fA,.

In a similar way we can also compute the over- and
under-approximation of f in 7; based on the pointwise ordering
and its reverse.
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Approximation Estimates

Compute the least square error as

|f — FAG|.

|f — fAgGg| = 3.5355

[f — fA4Gy4| = 5.3151

|f — fAG2f| = 5.9896

If —fA1Gq[| = 7.6444
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Concrete Semantics (LOS)

T(P) = Z pij - T(4i, ¢;),
(i,pj.j) e flow(P)

where

T(Zlagj) =N ® E(glagj)a

with N an operator representing a state update while the
second factor realises the transfer of control from label ¢; to

label /;.
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Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

A oAe... oA) =AlogAle.. oA]

Via linearity we can construct T# in the same way as T, i.e

T*P)= > pj-TH(. 1)
(i,pji) € F(P)

with local abstraction of individual variables:

T#(¢;,¢) = (AIN;A)) © (AJNRAL) @ ... @ (AINyA,) @ M;
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Argument
T# = AlTA
= AT pyT(i)A
i
= ) AlpT(i, HA

i
= > P QAT Ax)
,j k k
— ZPIJ’(®AL)(®NM)(®AK)
I,J k k Kk
= > pi Q(ANKAL)

Ij

k
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Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, ..., n}) (with n even):

1 0
(19
1 0 2.0 2 0 0
— T — n n
fo=lor] A (6262 2)
\o 1)
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Example
1: [m <+ 1]1;
2: while [n > 1]? do
3 [m < m x n]3;
4:  [nen—-1]*
5: end while
6: [stop]®
T = Un«<1)®E1,2) T = U¥(n+ 1)®E(1,2)

P(n>1)®E(2,3)
P(n<1)®E(2,5)
U(m <+ m x n) ® E(3,4)
Un«+n-1)®E4,2)
| @ E(5,5)

P#(n<1)® E(2,5)

U# (m < m x n) ® E(3,4)
U#(n+ n—-1)®E(4,2)
I ® E(5,5)

(

P#(n>1)® E(2,3)
(
(

+ 4+ + +
+ 4+ + +
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Abstract Semantics

Abstraction: A = Ap, ® I, ® 1}, i.e. m abstract (parity) but n and
the labels are not abstracted.

T# = U?*(m+ 1)®E(1,2)
+ P#(n>1)®E(2,3)
+ P#(n<1)®E(2,5)
+ U#(m+« mxn)®E(3,4)
+ U#(n<n—-1)®E4,2)
+ I¥ ®E(5,5)
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Abstract Semantics
U#(m —1)=
(1 000 0\
0100 0
0 1 O 01O 0
= (0 1>® 0 0 0 1 0
\ 0 0 0 'y,
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Abstract Semantics

U#(n—n—-1)=
(0 0O 0O 0\
1 0 0O 0
1 0 0100 0
= (0 1>® 0010 0
\oo0oo0o0 ..0)
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Abstract Semantics
P#(n>1)=
(0 0O 0O 0\
O 00O 0
1 0 0 01O 0
= (0 1>® 00 0 f 0
\0 00 0 'y,
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Abstract Semantics
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ESSLLI'16

Abstract Semantics

U#(memxn):<

00
+(70)e
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(1000...
0100...
10 0010...
0o0/®|0001...
\000O0 ...
[1000... 0
0000... 0
0010... 0
00
0000... 0 +<01
\0000... ./
ESSLLI'16

oo =
- OO =+ 0O
- O O OO

o O oo

- O O OO

Probabilistic Program Analysis

- O O OO

(OOOO...
0100...
0000...
0001...

\0000..."

Probabilistic Program Analysis
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Implementation

Implementation of concrete and abstract semantics of Factorial

using octave. Ranges: n€ {1,...,d}and me {1,...,d!}.
d || dim(T(F)) | dim(T#(F))
2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8| 1814445 90
9 || 18144050 100

Using uniform initial distributions dg for n and m.

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 31 of 33

Scalablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various d values are:

d| even odd
10 || 0.81818 | 0.18182
100 || 0.98019 | 0.019802
1000 || 0.99800 | 0.0019980
10000 || 0.99980 | 0.00019998
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