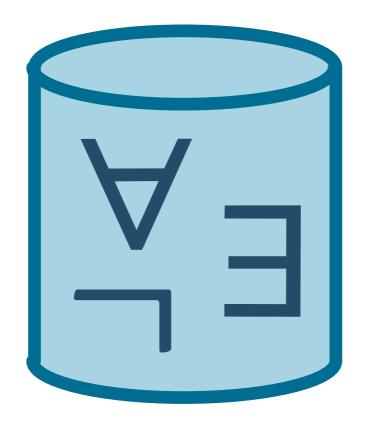
day 2



Logical foundations of databases

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Recap

- Relational model (tables)
- Relational Algebra (union, product, difference, selection, projection)
- SQL (SELECT ... FROM ... WHERE ...)
- $RA \approx basic SQL$
- First-order logic (syntax, semantics)
- Expressiveness: FO =* RA

FO can serve as a **declarative** query language on relational databases : we express the properties of the answer

```
Tables = Relations
```

Rows = Tuples

Queries = Formulas

[E.F. Codd 1972]

FO can serve as a **declarative** query language on relational databases : we express the properties of the answer

```
Tables = Relations
```

$$RA = *FO$$

$$How = What$$

[E.F. Codd 1972]

FO can serve as a **declarative** query language on relational databases : we express the properties of the answer

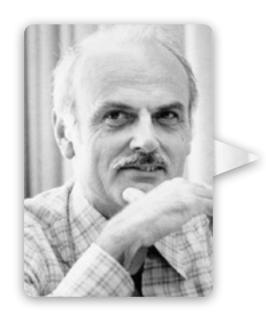
Tables = Relations

Rows = Tuples

Queries = Formulas

$$RA = *FO$$

$$How = What$$



RA and FO logic have roughly* the same expressive power!

[E.F. Codd 1972]

*FO without functions, with equality, on finite domains, ...

$$RA \subseteq FO$$

•
$$R_1 \times R_2$$
 \longrightarrow $R_1(x_1, ..., x_n) \wedge R_2(x_{n+1}, ..., x_m)$

•
$$R_1 \cup R_2$$
 \rightarrow $R_1(x_1, ..., x_n) \vee R_2(x_1, ..., x_n)$

$$\bullet \; \sigma_{\{i_1=j_1,...,i_n=j_n\}}(R) \; \leadsto \; \; R(x_1,\,...,\,x_m) \; \land \; (x_{i_1}=x_{j_1}) \land \cdots \; \land \; (x_{i_n}=x_{j_n})$$

•
$$\pi_{\{i_1,...,i_n\}}(R)$$
 $\longrightarrow \exists (\{x_1,...,x_m\} \setminus \{x_{i_1},...,x_{i_n}\}). R(x_1,...,x_m)$

•
$$R_1 \setminus R_2$$
 \longrightarrow $R_1(x_1, ..., x_n) \land \neg R_2(x_1, ..., x_n)$

• ...

FO ⊆ RA does not hold in general!

FO ⊆ RA does not hold in general!

```
"the complement of R" \notin RA

\in FO: \neg R(x)
```

FO ⊈ RA

"the complement of R" $\notin RA$ $\in FO: \neg R(x)$

FO ⊈ RA

"the complement of R"
$$\notin RA$$

 $\in FO: \neg R(x)$

www We restrict variables to range over active domain

FO ⊈ RA

"the complement of R"
$$\notin RA$$

 $\in FO: \neg R(x)$

→ We restrict variables to range over active domain

· • elements in the relations

FOact

=

FO restricted to active domain

FO ⊈ RA

"the complement of R"
$$\notin RA$$

 $\in FO: \neg R(x)$

www We restrict variables to range over active domain

FOact

=

FO restricted to active domain

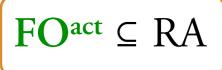
$$\phi_{1}(x) = \forall y E(y,x)
\phi_{1}(G) = \{v_{2}\}
G =
\phi_{2}(x,y) = \neg E(x,y)
\phi_{2}(G) = \{(v_{1},v_{1}),(v_{3},v_{1}),(v_{2},v_{3})\}$$

elements in the relations

Formal Semantics of FOact

```
G \models_{\alpha} \exists x \ \phi iff for some v \in ACT(G) and \alpha' = \alpha \cup \{x \mapsto v\} we have G \models_{\alpha'} \phi
G \models_{\alpha} \forall x \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ we have } G \models_{\alpha'} \Leftrightarrow iff \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ for every } v \in ACT(G) \text{ and } \alpha' = \alpha \cup \{x \mapsto v\} \text{ for every } v \in ACT(G) \text{ for
G \models_{\alpha} \phi \land \psi iff G \models_{\alpha} \phi and G \models_{\alpha} \psi
G \models_{\alpha} \neg \phi iff it is not true that G \models_{\alpha} \phi
G \models_{\alpha} x = y iff \alpha(x) = \alpha(y)
G \models_{\alpha} E(x,y) iff (\alpha(x),\alpha(y)) \in E
```

 $ACT(G) = \{v \mid \text{for some } v': (v,v') \in E \text{ or } (v',v) \in E\}$



$$FO^{act} \subseteq RA$$

Assume:

- 1. ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- 2. ϕ has \mathbf{n} variables

$$\exists x_1 \exists x_2 \neg \exists x_3 \exists x_4 . (E(x_1,x_3) \land \neg E(x_4,x_2)) \lor (x_1=x_3)$$

$$FO^{act} \subseteq RA$$

- 1. ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- 2. ϕ has n variables

$$\exists x_1 \, \exists x_2 \, \neg \exists x_3 \, \exists x_4 \, . \, (E(x_1,x_3) \land \neg E(x_4,x_2)) \lor (x_1=x_3)$$

Adom = RA expression for active domain = " $\pi_1(E) \cup \pi_2(E)$ "

•
$$(R(x_{i_1},...,x_{i_t})) + \sim R$$

•
$$(R(x_{i_1},...,x_{i_t}))$$
 $\rightarrow R$

• $(x_i = x_j)$ $\rightarrow \sigma_{\{i=j\}}(Adom \times \cdots \times Adom)$

• $(\psi_1 \wedge \psi_2)$ $\rightarrow \psi_1$ $\rightarrow \psi_2$ $\rightarrow \psi_1$ $\rightarrow Adom \times \cdots \times Adom \setminus \psi$ $\rightarrow (\exists x_i \phi(x_{i_1},...,x_{i_t}))$ $\rightarrow \pi_{\{i_1,...,i_t\}\setminus \{i\}}(\phi^+)$

•
$$(\psi_1 \wedge \psi_2)$$
 $\rightarrow \psi_1$ $\uparrow \cap \psi_2$

•
$$(\neg \psi)^+ \rightarrow Adom \times \cdots \times Adom \setminus \psi^+$$

•
$$(\exists x_i \phi(x_{i_1},...,x_{i_t})) \rightarrow \pi_{\{i_1,...,i_t\}\setminus\{i\}}(\phi)$$

$$FO^{act} \subseteq RA$$

Assume:

- ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- 2. ϕ has n variables

$$\pi_{\{1,...,n\}}(\sigma_{\{i_1=n+1,...,i_t=n+t\}}(Adom^n \times R))$$

$$\exists x_1 \exists x_2 \neg \exists x_3 \exists x_4 . (E(x_1))$$

Adom = RA expression for activ

•
$$(R(x_{i_1},...,x_{i_t}))$$
 $\rightarrow R$

• $(x_i = x_j)$ $\rightarrow \sigma_{\{i=j\}}(Adom \times \cdots \times Adom)$

• $(\psi_1 \wedge \psi_2)$ $\rightarrow \psi_1$ $\rightarrow \psi_2$ $\rightarrow (\neg \psi)$ $\rightarrow Adom \times \cdots \times Adom \setminus \psi$ $\rightarrow (\exists x_i \phi(x_{i_1},...,x_{i_t}))$ $\rightarrow \pi_{\{i_1,...,i_t\}\setminus \{i\}}(\phi^*)$

•
$$(\psi_1 \wedge \psi_2)^+ \rightarrow \psi_1^+ \cap \psi_2^+$$

•
$$(\neg \psi)$$
 • Adom × · · · × Adom \ ψ •

•
$$(\exists x_i \phi(x_{i_1},...,x_{i_t})) \rightarrow \pi_{\{i_1,...,i_t\}\setminus\{i\}}(\phi)$$

$$FO^{act} \subseteq RA$$

Assume:

- ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- has n variables

$$\exists x_1 \, \exists x_2 \, \neg \exists x_3 \, \exists x_4 \, . \, (E(x_1,x_3) \land \neg E(x_4,x_2)) \lor (x_1=x_3)$$

Adom = RA expression for active domain = " τ "

Adomn

•
$$(R(x_{i_1},...,x_{i_t}))$$
 \rightarrow R

• $(x_i = x_j)$ \rightarrow $\sigma_{\{i=j\}}(Adom \times \cdots \times Adom)$

• $(\psi_1 \wedge \psi_2)$ \rightarrow ψ_1 \rightarrow ψ_2 \rightarrow

• $(\neg \psi)$ \rightarrow $Adom \times \cdots \times Adom \setminus \psi$ \rightarrow

• $(\exists x_i \phi(x_{i_1},...,x_{i_t}))$ \rightarrow $\pi_{\{i_1,...,i_t\}\setminus \{i\}}(\phi$ \rightarrow

•
$$(\psi_1 \wedge \psi_2)$$
 $\rightarrow \psi_1$ $\uparrow \cap \psi_2$

•
$$(\neg \psi)$$
 \rightarrow Adom $\times \cdots \times$ Adom $\setminus \psi$

•
$$(\exists x_i \phi(x_{i_1},...,x_{i_t})) \rightarrow \pi_{\{i_1,...,i_t\}\setminus\{i\}}(\phi)$$

$$FO^{act} \subseteq RA$$

Assume:

- 1. ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- has n variables

$$\exists x_1 \, \exists x_2 \, \neg \exists x_3 \, \exists x_4 \, . \, (E(x_1,x_3) \, \land \, \neg E(x_4,x_2)) \lor (x_1=x_3)$$

Adom = RA expression for active domain = " $\pi_1(E) \cup \pi_2(E)$ "

•
$$(R(x_{i_1},...,x_{i_t})) + \longrightarrow R$$

•
$$(x_i = x_j) + \rightarrow \sigma_{\{i=j\}}(Adom \times a)$$

$$A \cap B = ((A \cup B) \setminus (A \setminus B))$$
$$\setminus (B \setminus A)$$

•
$$(\psi_1 \wedge \psi_2)$$
 $\rightarrow \psi_1$ $\uparrow \cap \psi_2$

•
$$(\neg \psi)$$
 \rightarrow Adom $\times \cdots \times$ Adom $\setminus \psi$

•
$$(R(x_{i_1},...,x_{i_t}))$$
 \rightarrow R

• $(x_i = x_j)$ \rightarrow $\sigma_{\{i=j\}}(Adom \times (\psi_1 \land \psi_2)$ \rightarrow ψ_1 \rightarrow ψ_2 \rightarrow

• $(\neg \psi)$ \rightarrow $(\neg \psi)$ $(\neg \psi)$ \rightarrow $(\neg \psi)$ $(\neg \psi)$ \rightarrow $(\neg \psi)$ $(\neg \psi)$ \rightarrow $(\neg \psi)$ $(\neg \psi)$

$$FO^{act} \subseteq RA$$

Assume:

- 1. ϕ in normal form: $(\exists^* (\neg \exists)^*)^* + \text{quantifier-free } \psi(x_1,...,x_n)$
- has n variables

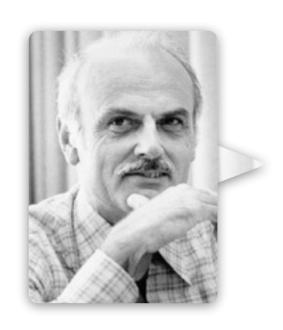
$$\exists x_1 \, \exists x_2 \, \neg \exists x_3 \, \exists x_4 \, . \, (E(x_1,x_3) \land \neg E(x_4,x_2)) \lor (x_1=x_3)$$

Adom = RA expression for active domain = " $\pi_1(E) \cup \pi_2(E)$ "

$$\bullet \; (R(x_{i_1},...,x_{i_t})) + {\hspace{-0.02in} \sim} \; R$$

- $(R(x_{i_1},...,x_{i_t}))$ $(x_i = x_j)$ $\sigma_{\{i=j\}}(Adom \times \cdots \times Ador)$ Adom the if the isotherapy of ψ $(\psi_1 \wedge \psi_2)$ ψ_1 ψ_2 $(\neg \psi)$ $(\neg \psi)$

Corollary



FOact is equivalent to RA

Question 1: How is $\pi_2(\sigma_{1=3}(R_1 \times R_2))$ expressed in FO?

Remember: R₁,R₂ are binary

Question 2: How is $\exists y,z$. $(R_1(x,y) \land R_1(y,z) \land x \neq z)$ expressed in RA? Remember: The signature is the same as before $(R_1,R_2 \text{ binary})$

- \bullet R₁ \cup R₂
- \bullet $R_1 \times R_2$
- $R_1 \setminus R_2$
- $\sigma_{\{i_1 = j_1, ..., i_n = j_n\}}(R) := \{(x_1, ..., x_m) \in R \mid (x_{i_1} = x_{j_1}) \land \cdots \land (x_{i_n} = x_{j_n})\}$
- $\pi_{\{i_1,...,i_n\}}(R) \coloneqq \{(x_{i_1},...,x_{i_n}) \mid (x_1,...,x_m) \in R\}$

Question 1: How is $\pi_2(\sigma_{1=3}(R_1 \times R_2))$ expressed in FO?

Remember: R₁,R₂ are binary

Answer: $\exists x_1, x_3, x_4 \ (R_1(x_1, x_2) \land R_2(x_3, x_4) \land x_1 = x_3)$

Question 2: How is $\exists y,z$. $(R_1(x,y) \land R_1(y,z) \land x \neq z)$ expressed in RA? Remember: The signature is the same as before $(R_1,R_2 \text{ binary})$

- $R_1 \cup R_2$
- $\bullet R_1 \times R_2$
- $R_1 \setminus R_2$
- $\sigma_{\{i_1 = j_1, ..., i_n = j_n\}}(R) := \{(x_1, ..., x_m) \in R \mid (x_{i_1} = x_{j_1}) \land \cdots \land (x_{i_n} = x_{j_n})\}$
- $\pi_{\{i_1,...,i_n\}}(R) \coloneqq \{(x_{i_1},...,x_{i_n}) \mid (x_1,...,x_m) \in R\}$

Question 1: How is $\pi_2(\sigma_{1=3}(R_1 \times R_2))$ expressed in FO?

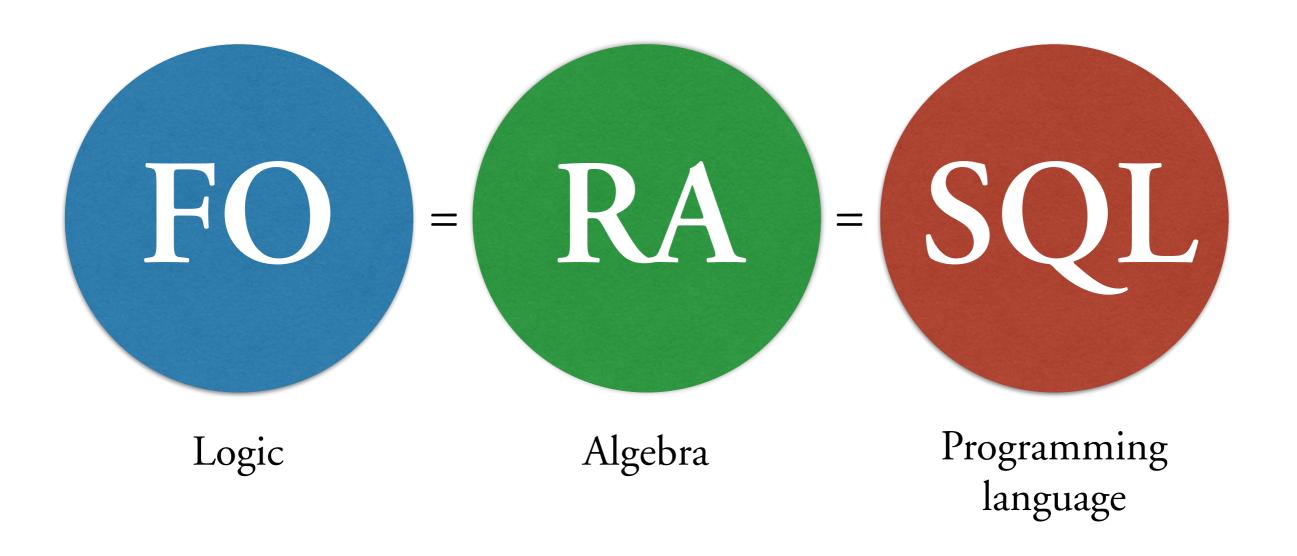
Remember: R₁,R₂ are binary

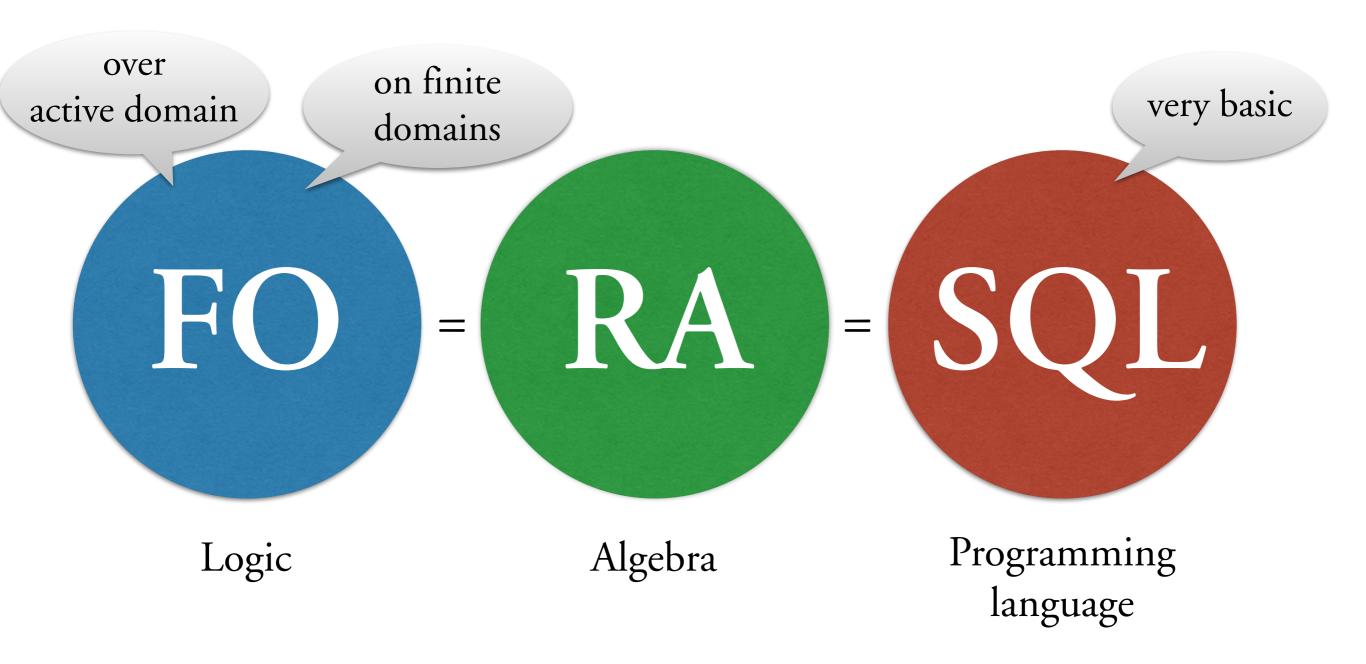
Answer: $\exists x_1, x_3, x_4 \ (R_1(x_1, x_2) \land R_2(x_3, x_4) \land x_1 = x_3)$

Question 2: How is $\exists y,z$. $(R_1(x,y) \land R_1(y,z) \land x \neq z)$ expressed in RA? Remember: The signature is the same as before $(R_1,R_2 \text{ binary})$

- $R_1 \cup R_2$
- $\bullet R_1 \times R_2$
- \bullet R₁ \ R₂
- $\sigma_{\{i_1 = j_1, ..., i_n = j_n\}}(R) := \{(x_1, ..., x_m) \in R \mid (x_{i_1} = x_{j_1}) \land \cdots \land (x_{i_n} = x_{j_n})\}$
- $\pi_{\{i_1,...,i_n\}}(R) \coloneqq \{(x_{i_1},...,x_{i_n}) \mid (x_1,...,x_m) \in R\}$

Answer: $\pi_1(\sigma_{\{2=3,1\neq 4\}}(R_1 \times R_1))$





Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

---> How hard is it to retrieve data?

Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

---> How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db so that $Q(db) \neq \emptyset$?

→ Does Q make sense? Is it a contradiction? (Query optimization)

Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

---> How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db so that $Q(db) \neq \emptyset$?

→ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q_1 , Q_2 , is $Q_1(db) = Q_2(db)$ for all database instances db?

→ Can we safely replace a query with another? (Query optimization)

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

Domino H's 10th PCP

What can be **mechanized**? → decidable/undecidable

How hard is it to mechanise? → complexity classes

Domino H's 10th PCP

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

- time
 - memory

Domino H's 10th PCP

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

- time
 - memory

Algorithm Alg is TIME-bounded

by a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ if

Alg(input) uses less than f(|input|) units of TIME.

H's 10th Domino

What can be mechanized? \rightarrow decidable/undecidable

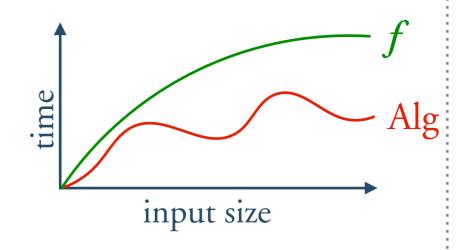
How hard is it to mechanise? → complexity classes

• usage of resources: • time

- memory

Algorithm Alg is TIME-bounded by a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ if

Alg(input) uses less than f(|input|) units of TIME.



H's 10th Domino

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

- ···· usage of resources: time

 - memory

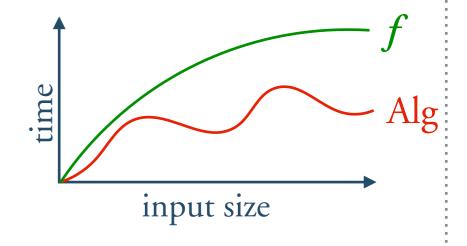
SPACE

Algorithm Alg is TIME-bounded

by a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ if

SPACE.

Alg(input) uses less than f(|input|) units of THME.



H's 10th Domino

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

- time

 - memory

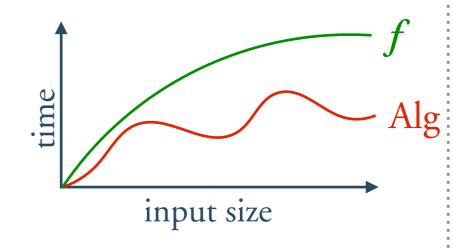
SPACE

Algorithm Alg is TIME-bounded

by a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ if

SPACE.

Alg(input) uses less than f(|input|) units of THME.



 $LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPTIME \subseteq \cdots$

Complexity theory

Domino

What can be mechanized? \rightarrow decidable/undecidable

How hard is it to mechanise? → complexity classes

- time

 - memory

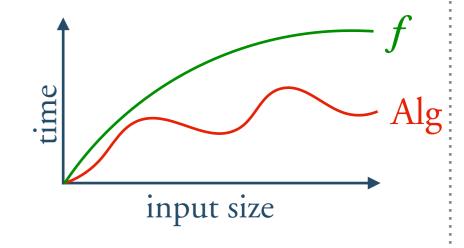
SPACE

Algorithm Alg is TIME-bounded

by a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ if

SPACE.

Alg(input) uses less than f(input) units of THME.



TIME-bounded by a polynomial

 $LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPTIME \subseteq \cdots$

➤ SPACE-bounded by a polynomial

SPACE-bounded by log(n)

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

Satisfiability problem: Given a FO formula φ , is there a graph G and binding α , such that $G \models_{\alpha} \varphi$?

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

DECIDABLE --- foundations of the database industry

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

DECIDABLE --- foundations of the database industry

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

• UNDECIDABLE → both for \= and \= finite

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

DECIDABLE --- foundations of the database industry

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

• UNDECIDABLE → both for \= and \= finite

Equivalence problem: Given FO formulae ϕ, ψ , is $G \models_{\alpha} \phi$ iff $G \models_{\alpha} \psi$ for all graphs G and bindings α ?

• UNDECIDABLE --> by reduction to the satisfiability problem

Satisfiability problem: Given a FO formula φ , is there a graph G and binding α , such that $G \models_{\alpha} \varphi$?

UNDECIDABLE → both for \(\) and \(\) \(\) [Trakhtenbrot '50]

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

UNDECIDABLE → both for \(\) and \(\) \(\) [Trakhtenbrot '50]

Proof: By reduction from the Domino (aka Tiling) problem.

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

UNDECIDABLE → both for \(\) and \(\) \(\) [Trakhtenbrot '50]

Proof: By reduction from the Domino (aka Tiling) problem.

Reduction from P to P': Algorithm that solves P using a O(1) procedure "P'(x)" that returns the truth value of P'(x).

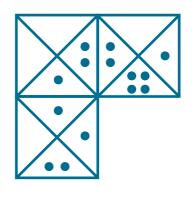
Domino -

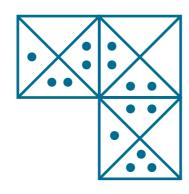
Input: 4-sided dominos:

Domino

Input: 4-sided dominos:

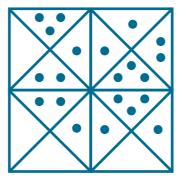
Output: Is it possible to form a white-bordered rectangle? (of any size)



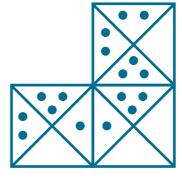


•

•



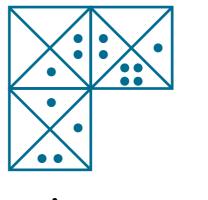
. .

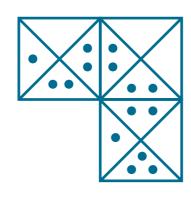


Domino

Input: 4-sided dominos:

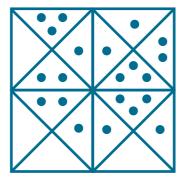
Output: Is it possible to form a white-bordered rectangle? (of any size)



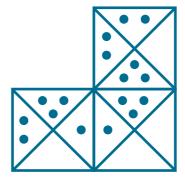


•

•



• •

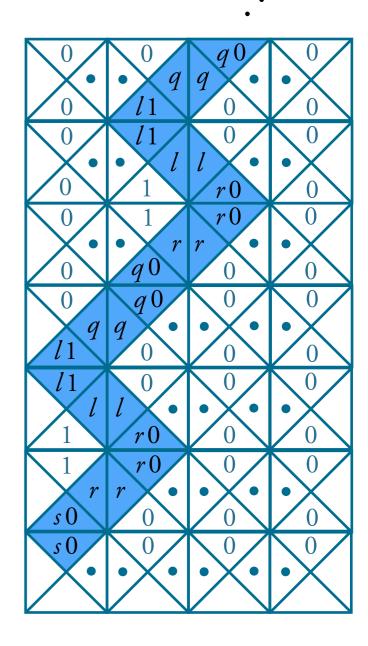


Rules: sides must match,

you can't rotate the dominos, but you can 'clone' them.

Domino - Why is it undecidable? -

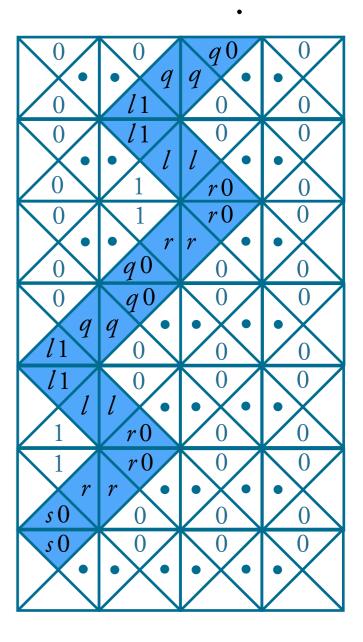
It can easily encode *halting* computations of Turing machines:



Domino - Why is it undecidable? -

It can easily encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

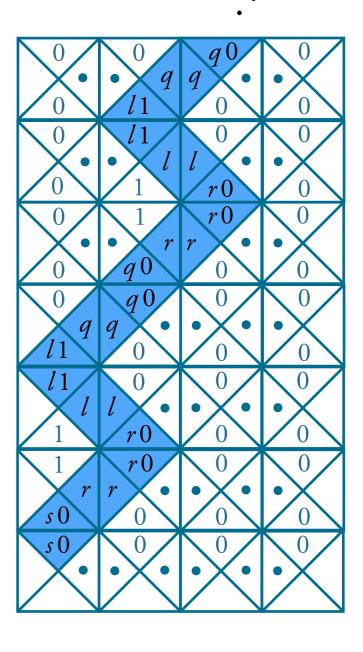


Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)



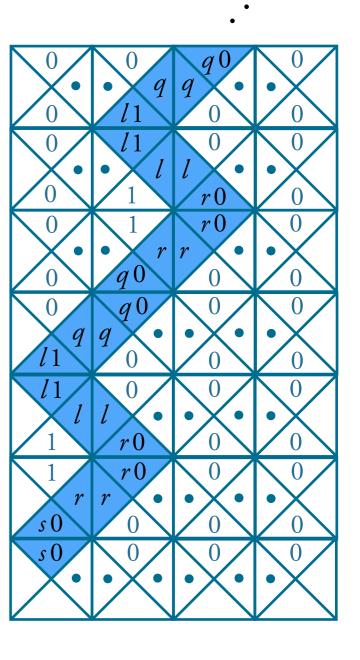
Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)



Domino - Why is it undecidable?

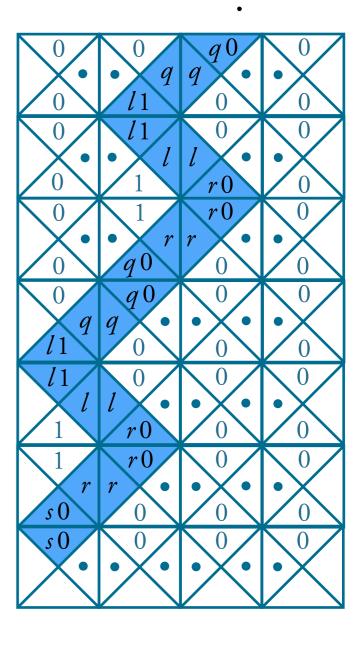
It can easily encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)

(initial configuration)



Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

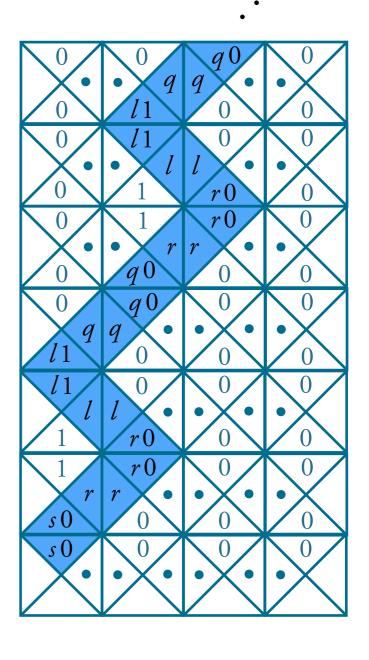
(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

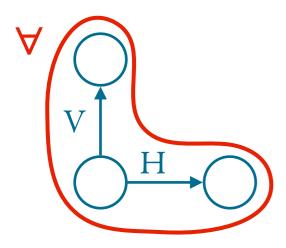
(head is here, symbol is rewritten, head moves left)

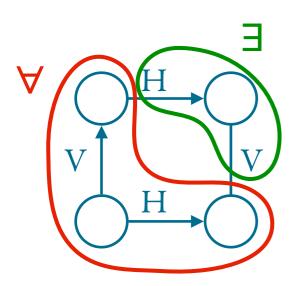
(initial configuration)

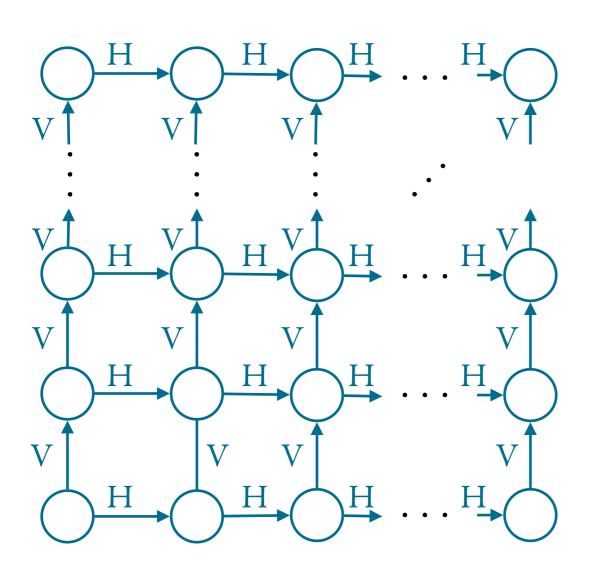
(halting configuration)



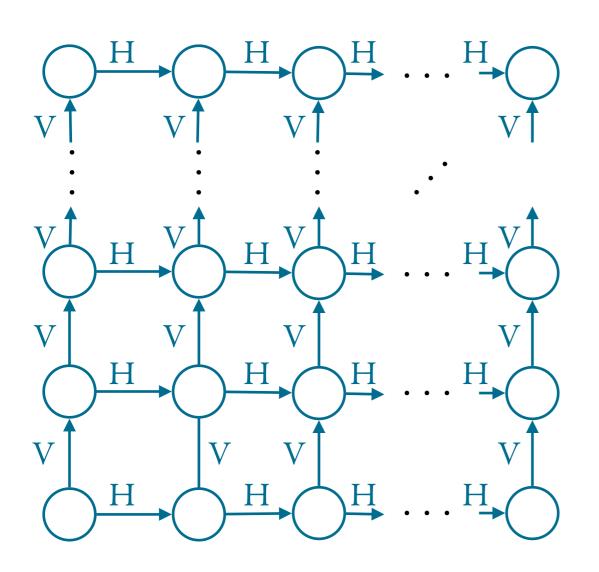
. . .



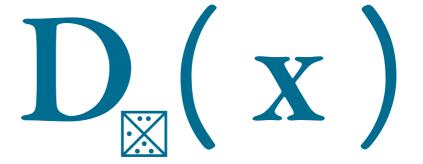




1. There is a grid: H(,) and V(,) are relations representing bijections such that...



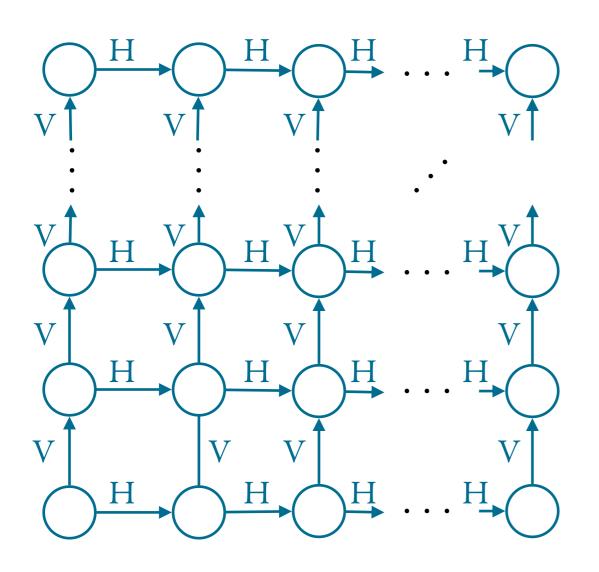
2. Assign one domino to each node: a unary relation



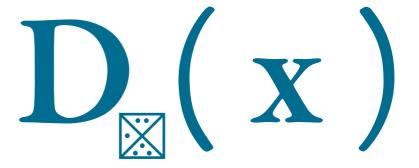
for each domino

Domino ^{γγ} Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that...



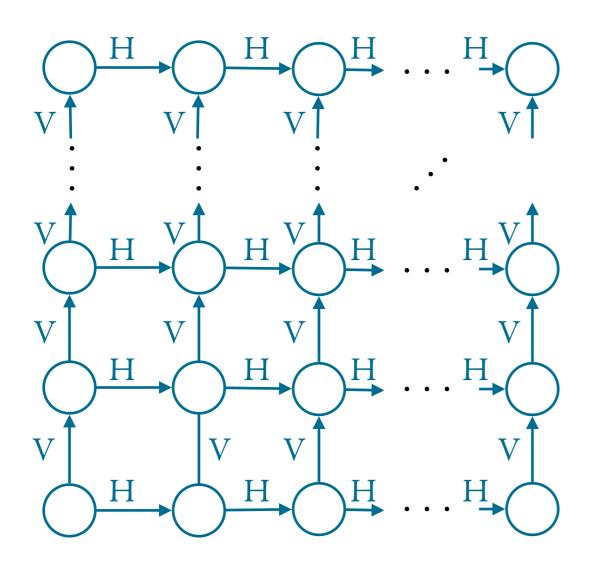
2. Assign one domino to each node: a unary relation



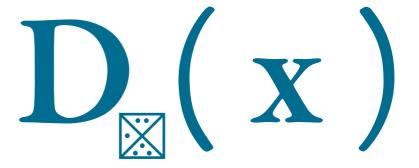
for each domino

3. Match the sides $\forall x,y$ if H(x,y), then $D_a(x) \land D_b(y)$ for some dominos a,b that 'match' horizontally (Idem vertically)

1. There is a grid: H(,) and V(,) are relations representing bijections such that...



2. Assign one domino to each node: a unary relation



for each domino

3. Match the sides $\forall x,y$ if H(x,y), then $D_a(x) \land D_b(y)$ for some dominos a,b that 'match' horizontally (Idem vertically)

4. Borders are white.

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

DECIDABLE --- foundations of the database industry

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

• UNDECIDABLE → both for \= and \= finite

Equivalence problem: Given FO formulae ϕ, ψ , is $G \models_{\alpha} \phi$ iff $G \models_{\alpha} \psi$ for all graphs G and bindings α ?

■ UNDECIDABLE → by reduction to the satisfiability problem

Equivalence problem: Given FO formulae ϕ, ψ , is $G \models_{\alpha} \phi$ iff $G \models_{\alpha} \psi$ for all graphs G and bindings α ?

• UNDECIDABLE --> by reduction from the satisfiability problem

 ϕ is satisfiable iff ϕ is not equivalent to \bot

Satisfiability problem undecidable --> Equivalence problem undecidable

 ϕ is satisfiable iff ϕ is not equivalent to \bot

Satisfiability problem undecidable --> Equivalence problem undecidable

Actually, there are reductions in both senses:

 $\phi(x_1,...,x_n)$ and $\psi(y_1,...,y_m)$ are equivalent iff

- n=m
- $(x_1=y_1) \land \cdots \land (x_n=y_n) \land \varphi(x_1,...,x_n) \land \neg \psi(y_1,...,y_n)$ is unsatisfiable
- $(x_1=y_1) \land \dots \land (x_n=y_n) \land \psi(x_1,\dots,x_n) \land \neg \varphi(y_1,\dots,y_n)$ is unsatisfiable

Equivalence problem: Given FO formulae ϕ, ψ , is $G \models_{\alpha} \phi$ iff $G \models_{\alpha} \psi$

for all graphs G and bindings α ?

• UNDECIDABLE --> by reduction from the satisfiability problem

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α , does $G \models_{\alpha} \phi$?

DECIDABLE --- foundations of the database industry

Satisfiability problem: Given a FO formula ϕ , is there a graph G and binding α , such that $G \models_{\alpha} \phi$?

• UNDECIDABLE → both for \= and \= finite

Equivalence problem: Given FO formulae ϕ, ψ , is $G \models_{\alpha} \phi$ iff $G \models_{\alpha} \psi$ for all graphs G and bindings α ?

• UNDECIDABLE --> by reduction to the satisfiability problem

Input:
$$\begin{pmatrix} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V$$
 Output: $G \models_{\alpha} \phi$?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$
 Output: $G \models_{\alpha} \phi$?

Encoding of G = (V, E)

- each node is coded with a bit string of size log(|V|),
- edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: $||G|| = |E| \cdot 2 \cdot \log(|V|) \approx |V| \pmod{a \text{ polynomial}}$

Input:
$$\begin{cases} \varphi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$
 Output: $G \models_{\alpha} \varphi$?

Encoding of G = (V, E)

- each node is coded with a bit string of size log(|V|),
- edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding:
$$||G|| = |E| \cdot 2 \cdot \log(|V|) \approx |V| \pmod{a \text{ polynomial}}$$

Encoding of
$$\alpha = \{x_1,...,x_n\} \longrightarrow V$$

each node is coded with a bit string of size log(|V|),

Cost of coding:
$$||\alpha|| = n \cdot \log(|V|)$$

Input:
$$\begin{cases} \varphi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$
 Output: $G \models_{\alpha} \varphi$?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

- If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$
- If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$
- If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$
- If $\phi(x_1,...,x_n)=\exists y. \psi(x_1,...,x_n,y)$: answer YES iff for some $v\in V$ and $\alpha'=\alpha\cup\{y\mapsto v\}$ we have $G\models_{\alpha'}\psi$.

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

- If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$
- If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$
- If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$
- If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

Question:

How much space does it take?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

- If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$
- If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$
- If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$
- If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

Output: $G \models_{\alpha} \varphi$?

use 4 pointers → LOGSPACE

Question:

How much space does it take?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

• If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$

use 4 pointers - LOGSPACE

• If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$

 \rightsquigarrow MAX(SPACE($G \models_{\alpha} \psi$)), SPACE($G \models_{\alpha} \psi'$)))

- If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$
- If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

Question:

How much space does it take?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

• If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$

use 4 pointers → LOGSPACE

• If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$

 \rightsquigarrow MAX(SPACE(G $\models_{\alpha} \psi$)), SPACE(G $\models_{\alpha} \psi'$)))

• If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$

 \rightsquigarrow SPACE($G \models_{\alpha} \psi$))

• If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

Question:

How much space does it take?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

• If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$

use 4 pointers - LOGSPACE

• If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$

 \rightsquigarrow MAX(SPACE($G \models_{\alpha} \psi$)), SPACE($G \models_{\alpha} \psi'$)))

• If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$

 \rightsquigarrow SPACE($G \models_{\alpha} \psi$))

• If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

 $\Rightarrow 2 \cdot \log(|G|) + SPACE(G \models_{\alpha'} \psi)$

Question:

How much space does it take?

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

• If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$

use 4 pointers - LOGSPACE

• If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$

 \rightsquigarrow MAX(SPACE($G \models_{\alpha} \psi$)), SPACE($G \models_{\alpha} \psi'$)))

• If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$

 \rightsquigarrow SPACE($G \models_{\alpha} \psi$))

• If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

 $\rightsquigarrow 2 \cdot \log(|G|) + SPACE(G \models_{\alpha'} \psi)$

Question:

How much space does it take?

$$2 \cdot \log(|G|) + \dots + 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space}$$

 $\leq |\phi|$ times

Evaluation problem for FO in PSPACE

Input:
$$\begin{cases} \phi(x_1,...,x_n) \\ G = (V,E) \\ \alpha = \{x_1,...,x_n\} \longrightarrow V \end{cases}$$

Output: $G \models_{\alpha} \varphi$?

• If $\phi(x_1,...,x_n) = E(x_i,x_j)$: answer YES iff $(\alpha(x_i),\alpha(x_j)) \in E$

use 4 pointers - LOGSPACE

• If $\phi(x_1,...,x_n) = \psi(x_1,...,x_n) \wedge \psi'(x_1,...,x_n)$: answer YES iff $G \models_{\alpha} \psi$ and $G \models_{\alpha} \psi'$

 \rightsquigarrow MAX(SPACE(G $\models_{\alpha} \psi$)), SPACE(G $\models_{\alpha} \psi'$)))

• If $\phi(x_1,...,x_n) = \neg \psi(x_1,...,x_n)$: answer NO iff $G \models_{\alpha} \psi$

 \rightsquigarrow SPACE($G \models_{\alpha} \psi$))

• If $\phi(x_1,...,x_n) = \exists y . \psi(x_1,...,x_n,y)$: answer YES iff for some $v \in V$ and $\alpha' = \alpha \cup \{y \mapsto v\}$ we have $G \models_{\alpha'} \psi$.

 $\Rightarrow 2 \cdot \log(|G|) + SPACE(G \models_{\alpha'} \psi)$

Question:

How much space does it take?

$$2 \cdot \log(|G|) + \dots + 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space}$$

 $\leq |\phi|$ times

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

 $\exists p \ \forall q \ . \ (p \ \lor \neg q)$ where p,q range over $\{T,F\}$

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

 $\exists p \ \forall q \ . \ (p \ \lor \neg q)$ where p,q range over $\{T,F\}$

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

 $\exists p \ \forall q \ . \ (p \ \lor \neg q)$ where p,q range over $\{T,F\}$

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction QBF \rightarrow FO:

- 1. Given $\psi \in QBF$, let $\psi'(x)$ be the replacement of each 'p' with 'p=x' in ψ .
- 2. Note: $\exists x \ \psi'$ holds in a 2-element graph iff ψ is QBF-satisfiable
- 3. Test if $G \models_{\varnothing} \psi'$ for $G = (\{v,v'\},\{\})$

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

 $\exists p \ \forall q \ . \ (p \ \lor \neg q)$ where p,q range over $\{T,F\}$

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction QBF \rightarrow FO:

$$\psi'(x) = \exists p \ \forall q . ((p=x) \lor \neg(q=x))$$

- 1. Given $\psi \in QBF$, let $\psi'(x)$ be the replacement of each 'p' with 'p=x' in ψ .
- 2. Note: $\exists x \ \psi'$ holds in a 2-element graph iff ψ is QBF-satisfiable
- 3. Test if $G \models_{\varnothing} \psi'$ for $G = (\{v,v'\},\{\})$

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

 $\exists p \ \forall q \ . \ (p \ \lor \neg q)$ where p,q range over $\{T,F\}$

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction QBF \rightarrow FO:

$$\psi'(x) = \exists p \ \forall q . ((p=x) \lor \neg(q=x))$$

1. Given
$$\psi \in QBF$$
,
let $\psi'(x)$ be the replacement
of each 'p' with 'p=x' in ψ .

$$\exists x \ \exists p \ \forall q \ . \ (\ (p{=}x) \ \lor \ \neg (q{=}x) \)$$

2. Note:
$$\exists x \ \psi'$$
 holds in a 2-element graph iff ψ is QBF-satisfiable

3. Test if
$$G \models_{\varnothing} \psi'$$
 for $G = (\{v,v'\},\{\})$

Problem: Usual scenario in database

A database of size 10⁶

A query of size 100

Input:

Problem: Usual scenario in database

A database of size 10⁶

A query of size 100

Input: • query +

Combined, Query, and Data compl

Problem: Usual scen

Input: • query +

database

Combined, Query, and Data comp

Problem: Usual scen

Input: • query +

database

But we don't distinguish this in the analysis:

Query and data play very different roles.

Separation of concerns: How the resources grow with respect to

- the size of the data
- the query size

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

 $O(2^{|query|} + |data|)$ is

exponential in **combined** complexity exponential in **query** complexity linear in **data** complexity

 $O(|query| + 2^{|data|})$ is

exponential in combined complexity linear in query complexity exponential in data complexity

Question

What is the data, query and combined complexity for the evaluation problem for FO?

Remember: data complexity, input size: |data|
query complexity, input size: |query|
combined complexity, input size: |data| + |query|

 $|\phi| \cdot 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|)$ space

Question

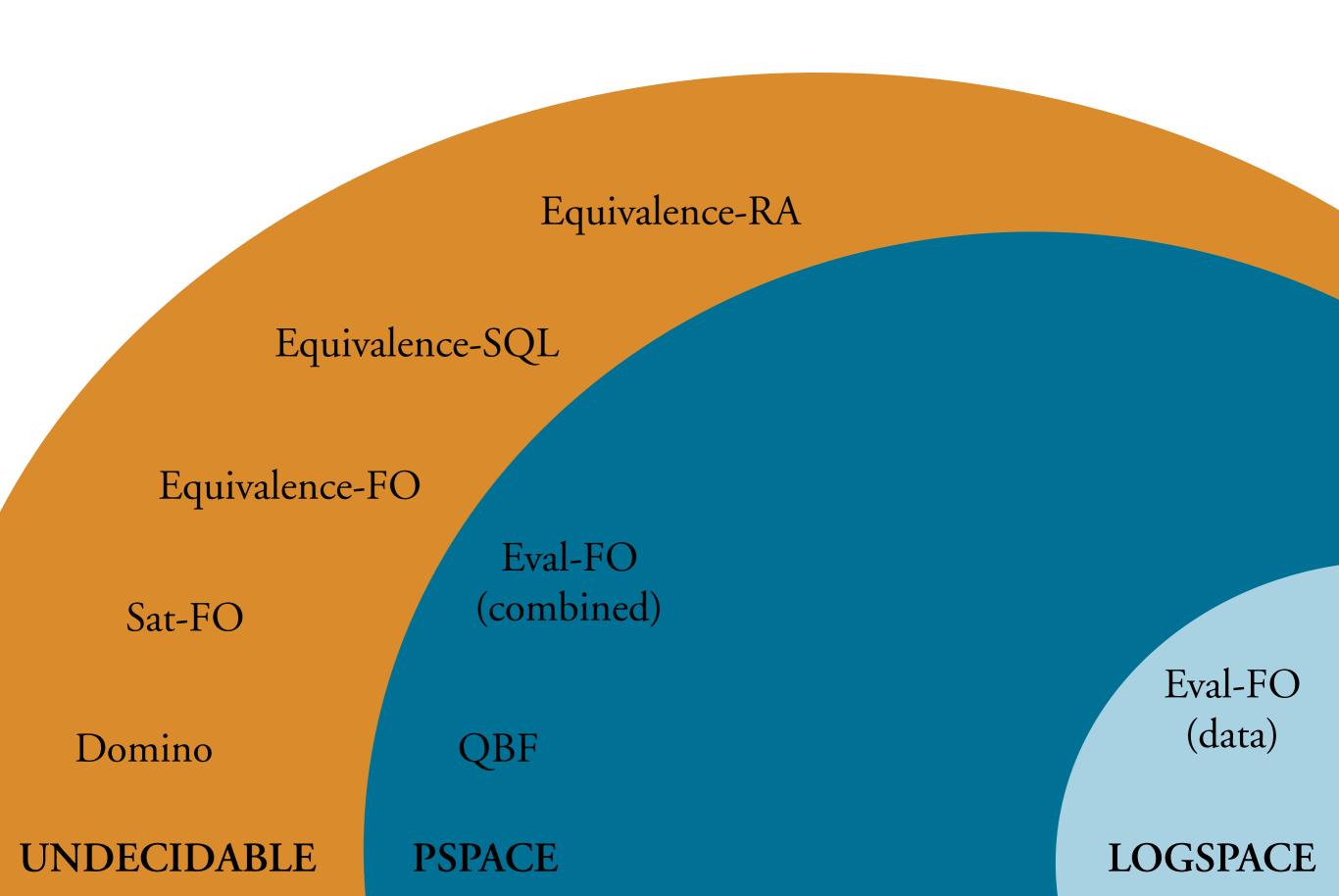
What is the data, query and combined complexity for the evaluation problem for FO?

Remember: data complexity, input size: |data|
query complexity, input size: |query|
combined complexity, input size: |data| + |query|

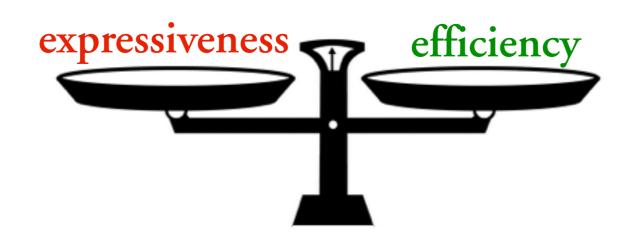
$$|\varphi| \cdot 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space}$$
 query data

O(log(|data|)·|query|) space

PSPACE combined and query complexity LOGSPACE data complexity



Trading expressiveness for efficiency



Alternation of quantifiers significantly affects complexity (recall that evaluation of QBF is PSPACE-complete: $\forall x \exists y \forall z \exists w \dots \phi$).

What happens if we disallow \forall and \neg ?

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

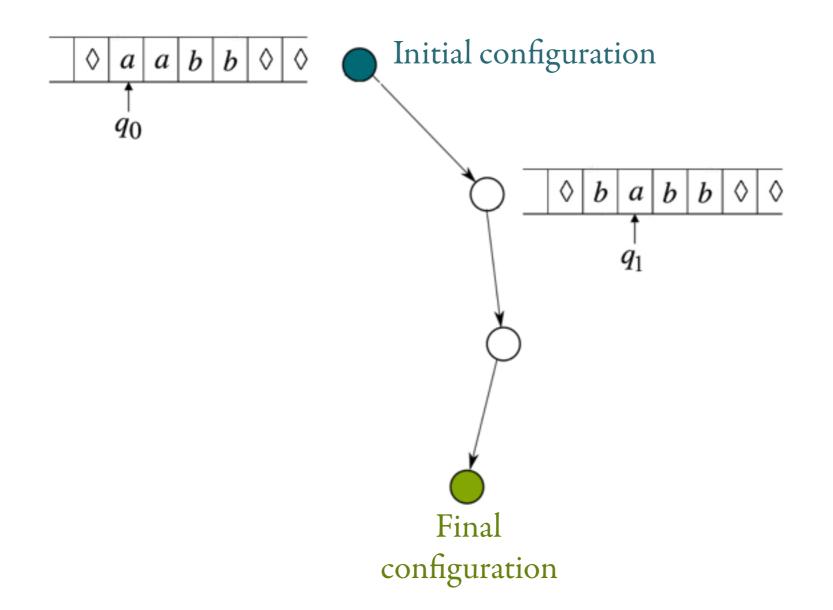
NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)

Examples:

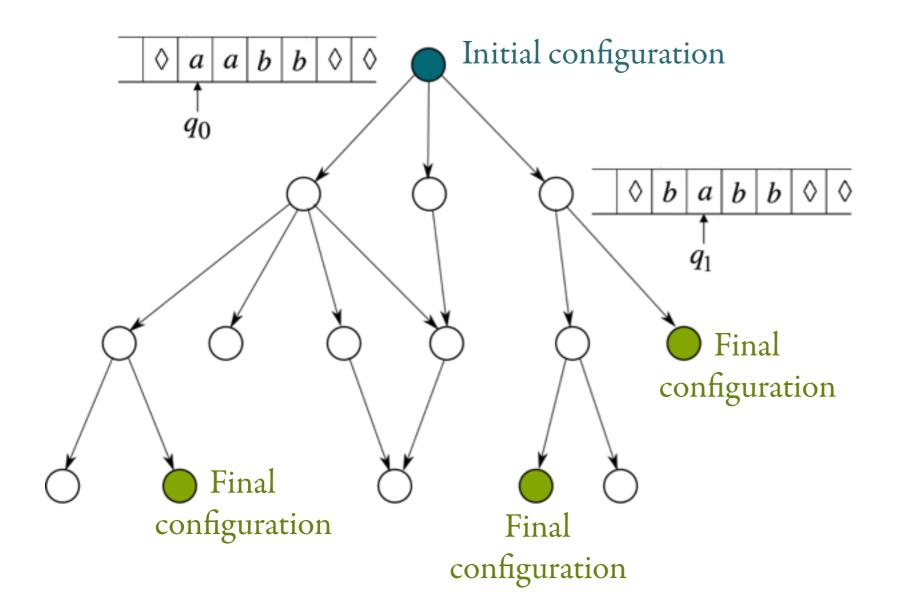
- 3-COLORABILITY: Given a graph G, can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours?
- SAT: Given a propositional formula, e.g. $(p \lor \neg q \lor r) \land (\neg p \lor s) \land (\neg s \lor \neg p)$, can we assign a truth value to each variable so that the formula becomes true ?
- MONEY-CHANGE: Given an amount of money A and a set of coins $\{B_1, ..., B_n\}$, can we find a subset $S \subseteq \{B_1, ..., B_n\}$ such that $\sum S = A$?

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

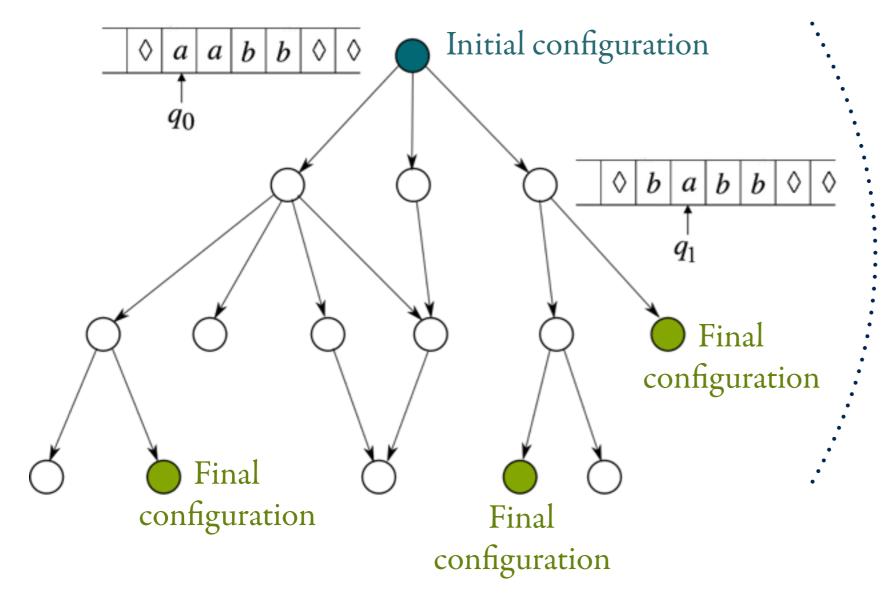


LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME



LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

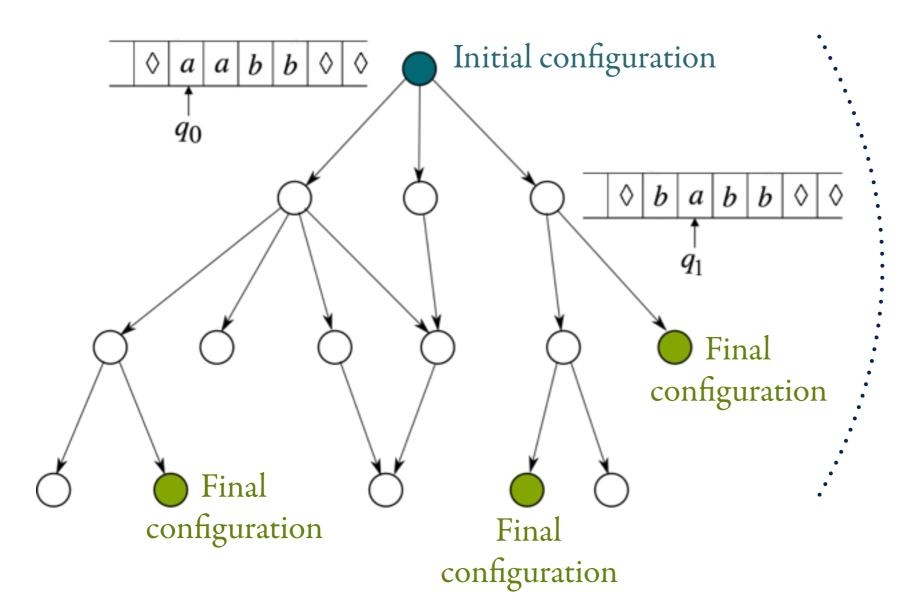
NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)



Non-deterministic transitions

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)

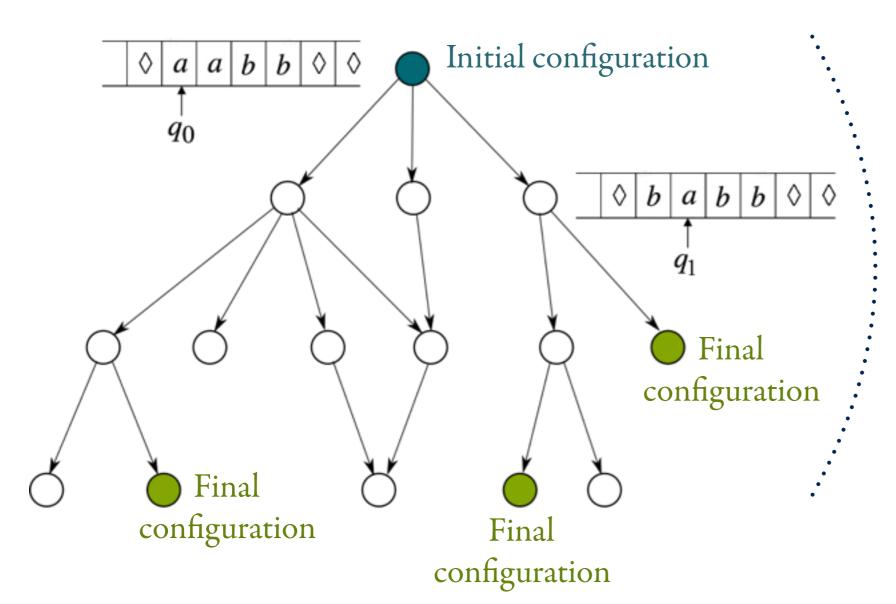


Non-deterministic transitions

Many paths, each has length bounded by a polynomial

LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME

NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)



Non-deterministic transitions

Many paths, each has length bounded by a polynomial

A solution exists if there is at least a successful path.

Question

Consider: Positive FO = FO without \forall , \neg

E.g.
$$\phi = \exists x \exists y \exists z . (E(x,y) \lor E(y,z)) \land (y=z \lor E(x,z))$$

What is the complexity of evaluating Positive FO on graphs?

Question

Consider: Positive FO = FO without \forall , \neg

E.g.
$$\phi = \exists x \exists y \exists z . (E(x,y) \lor E(y,z)) \land (y=z \lor E(x,z))$$

What is the complexity of evaluating Positive FO on graphs?

Solution

This is in NP: Given ϕ and G=(V,E) it suffices to guess a binding $\alpha:\{x,y,z,...\} \rightarrow V$ and then verify that the formula holds.

Conjunctive Queries

Def.

$$CQ = FO$$
 without \forall, \neg, \lor

Eg:
$$\phi(x, y) = \exists z . (Parent(x, z) \land Parent(z, y))$$

Usual notation: "Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)"

Conjunctive Queries

Def.

$$CQ = FO \text{ without } \forall, \neg, \lor$$

Normal form: "
$$\exists x_1, ..., x_n . \phi(x_1, ..., x_n)$$
"

quantifier-free and no equalities!

Eg:
$$\phi(x, y) = \exists z . (Parent(x, z) \land Parent(z, y))$$

Usual notation: "Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)"

Conjunctive Queries

Def.

$$CQ = FO$$
 without \forall, \neg, \lor

Normal form: "
$$\exists x_1, ..., x_n . \phi(x_1, ..., x_n)$$
"

quantifier-free and no equalities!

Eg:
$$\phi(x, y) = \exists z . (Parent(x, z) \land Parent(z, y))$$

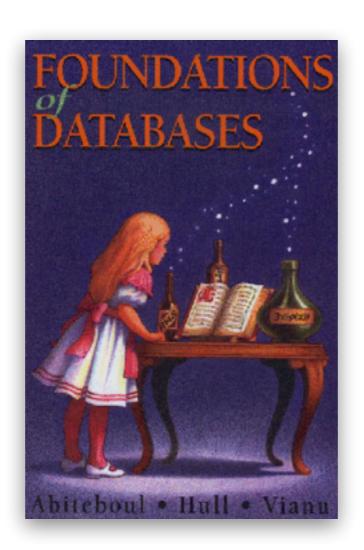
Usual notation: "Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)"

It corresponds to " π - σ - \times " RA queries

Bibliography

Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley, 1995.

(freely available at http://webdam.inria.fr/Alice/)



Chapters 1, 2, 3