day 3

ESSLLI 2016 Bolzano, Italy

Logical foundations of databases

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Recap

- Active domain semantics and expressiveness: $FO^{act} = RA$
- Undecidable problems (Halting ≤ Domino ≤ FO-Satisfiability ≤ FO-Equivalence)
- Data complexity / Combined complexity
- Evaluation problem for FO: in PSPACE (combined comp.) in PSPACE (query comp.) in LOGSPACE (data comp.)
- Positive FO: evaluation in NP (combined comp.)
- Conjunctive Queries

Conjunctive Queries

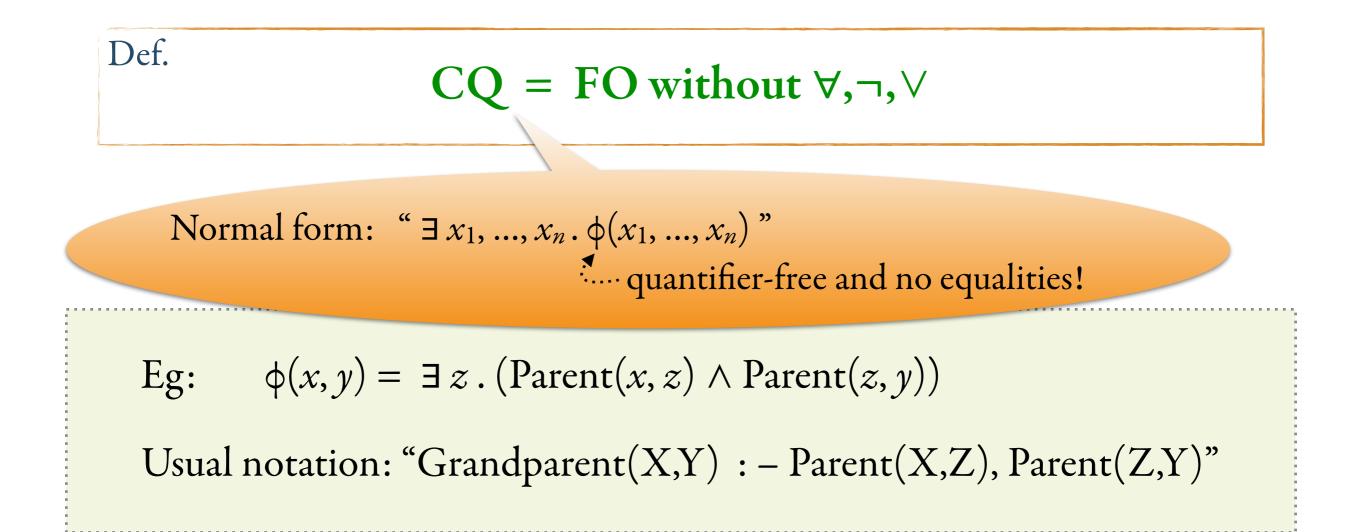
Def.

CQ = FO without \forall, \neg, \lor

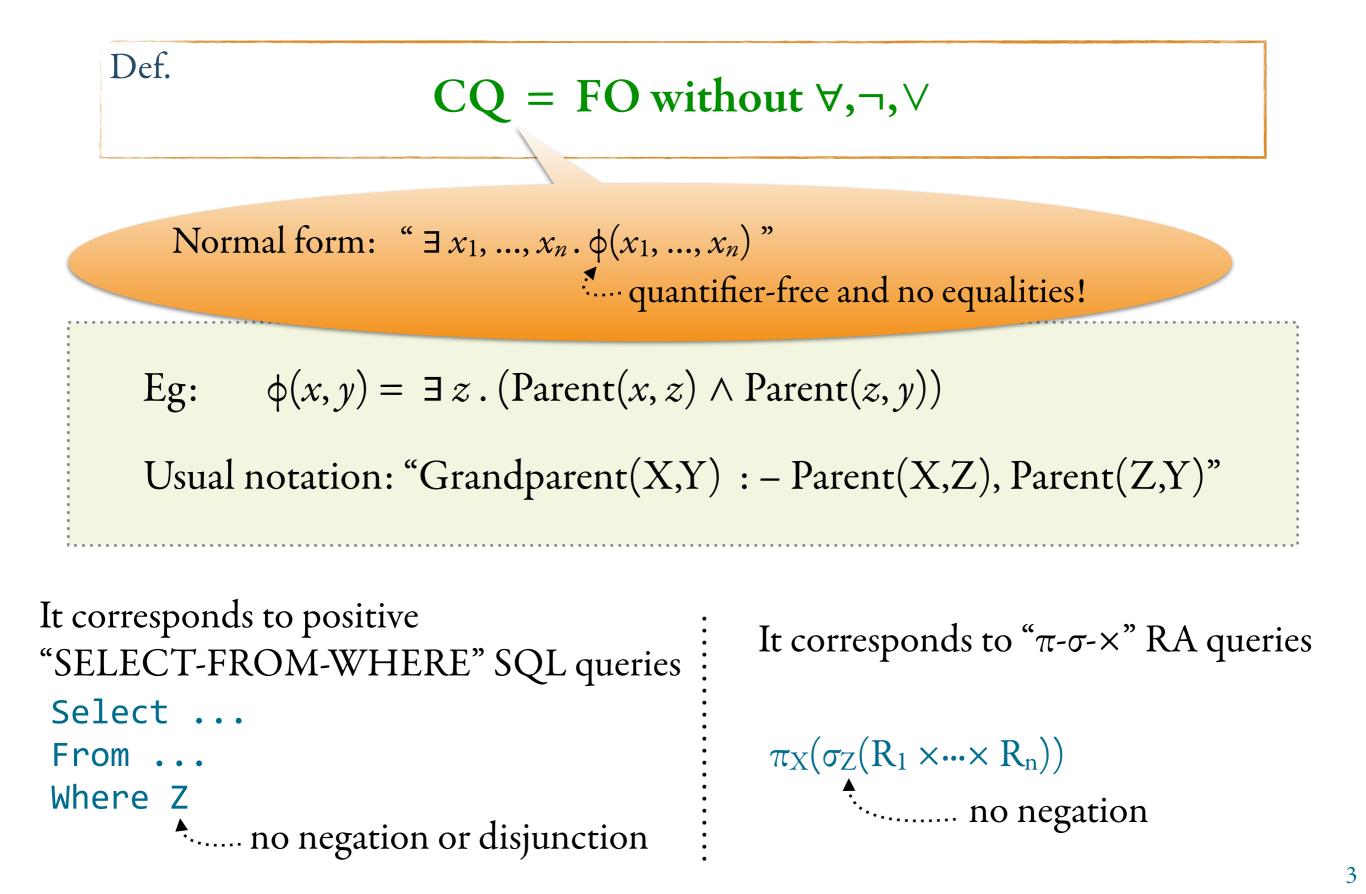
Eg: $\phi(x, y) = \exists z . (Parent(x, z) \land Parent(z, y))$

Usual notation: "Grandparent(X,Y) : - Parent(X,Z), Parent(Z,Y)"

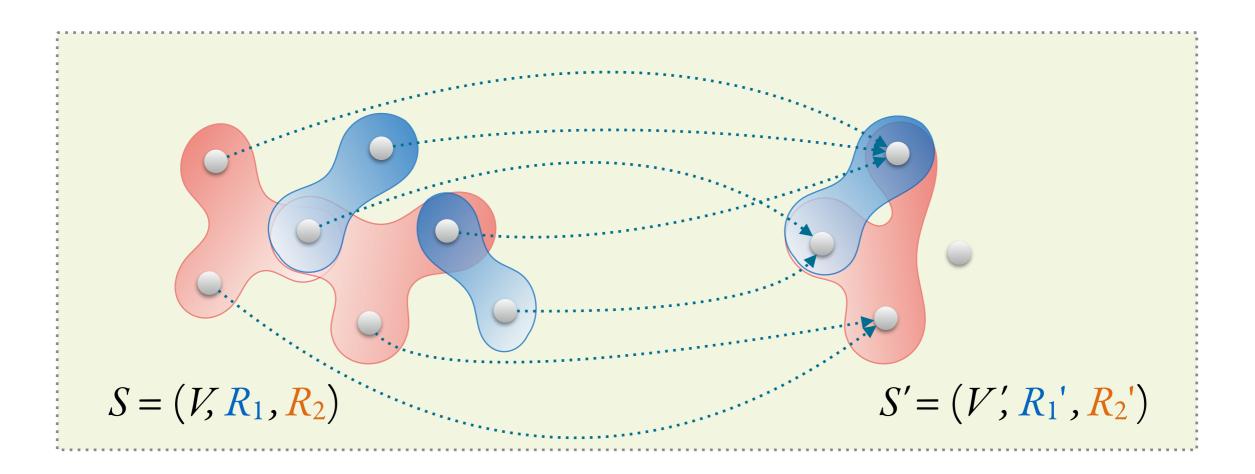
Conjunctive Queries



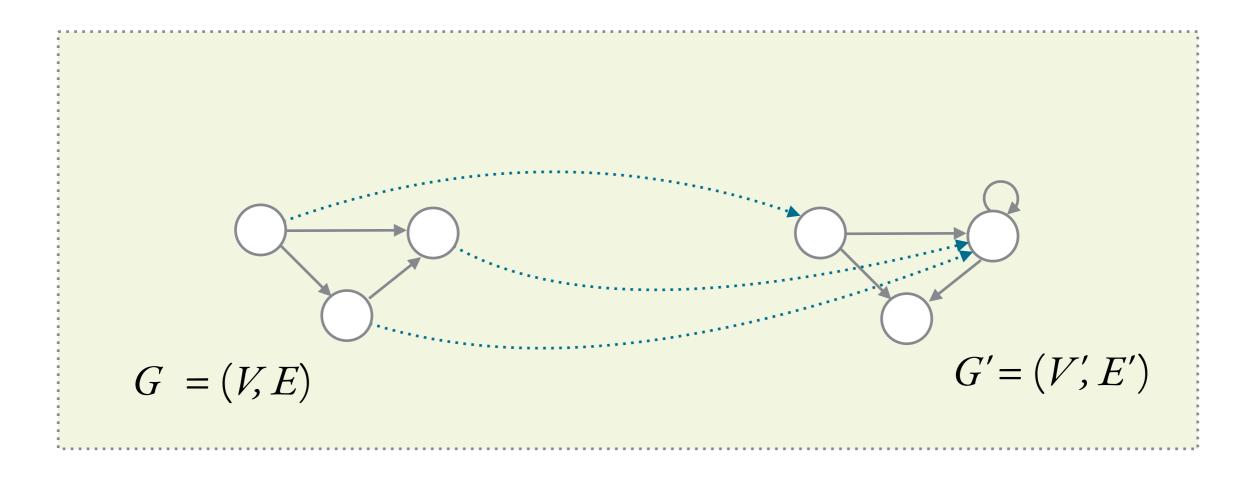
Conjunctive Queries



Homomorphism between structures $S=(V, R_1, ..., R_n)$ and $S'=(V', R_1', ..., R_n')$ is a function $h: V \longrightarrow V'$ such that $(x_1, ..., x_n) \in R_i$ implies $(h(x_1), ..., h(x_n)) \in R_i'$



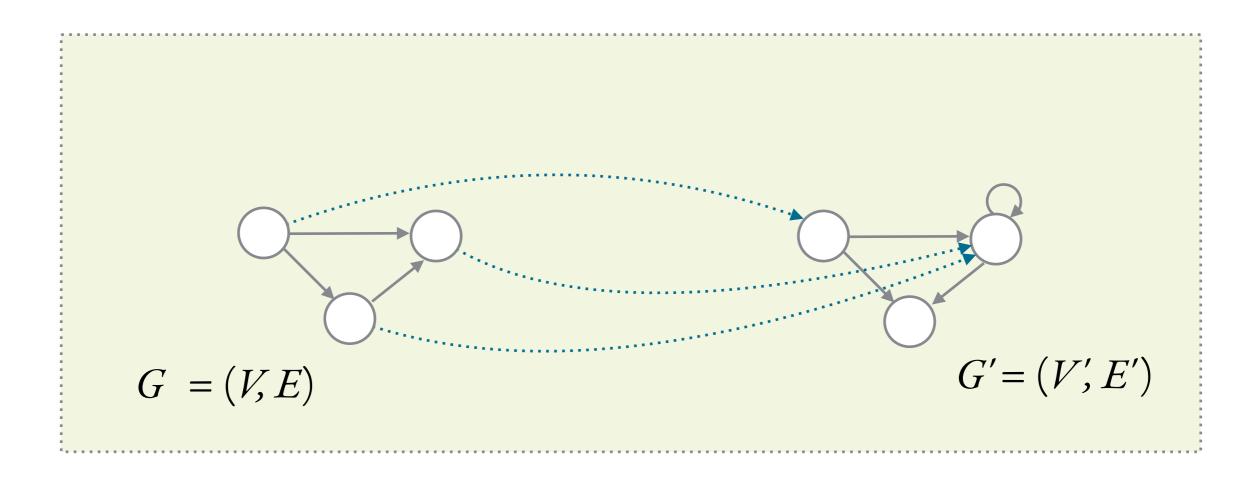
Homomorphism between structures $S=(V, R_1, ..., R_n)$ and $S'=(V', R_1', ..., R_n')$ is a function $h: V \longrightarrow V'$ such that $(x_1, ..., x_n) \in R_i$ implies $(h(x_1), ..., h(x_n)) \in R_i'$



Canonical structure G_{ϕ} of a Conjunctive Query ϕ has

- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$

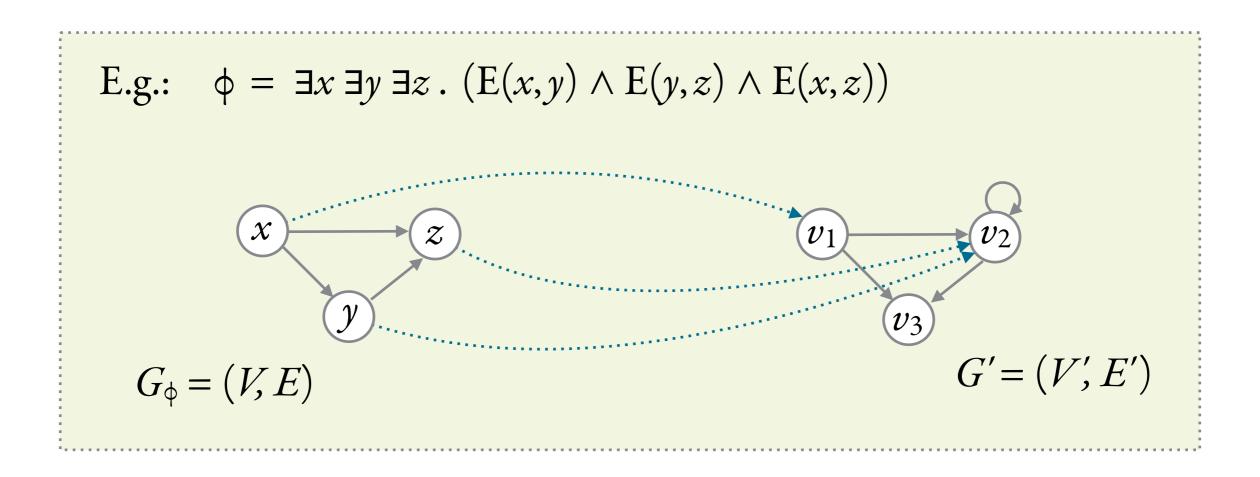
for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ



Canonical structure G_{ϕ} of a Conjunctive Query ϕ has

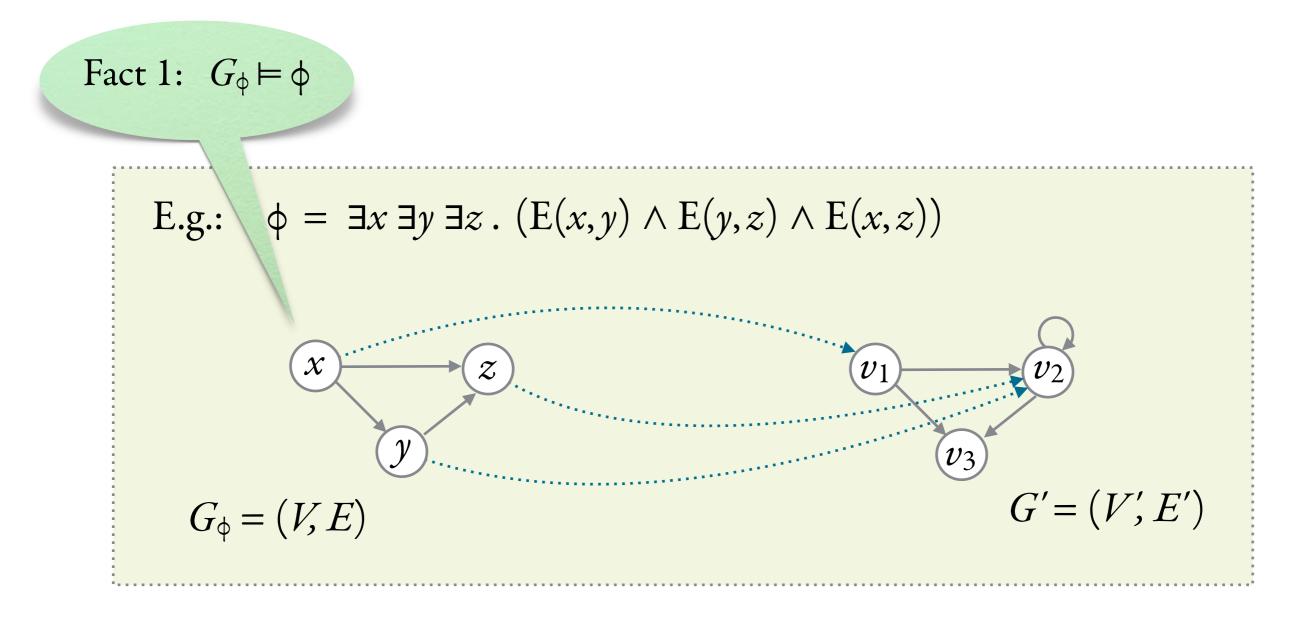
- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$

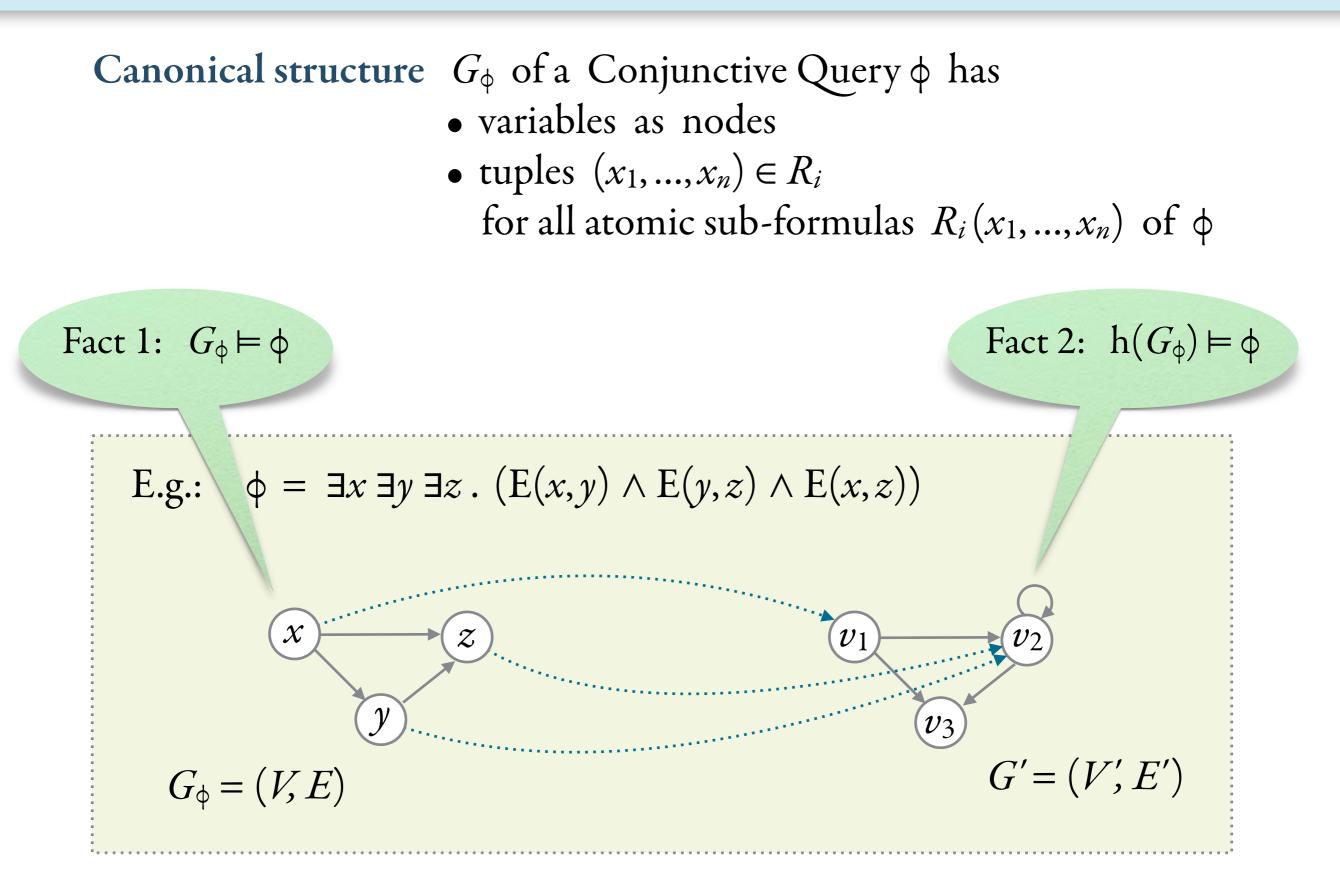
for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ

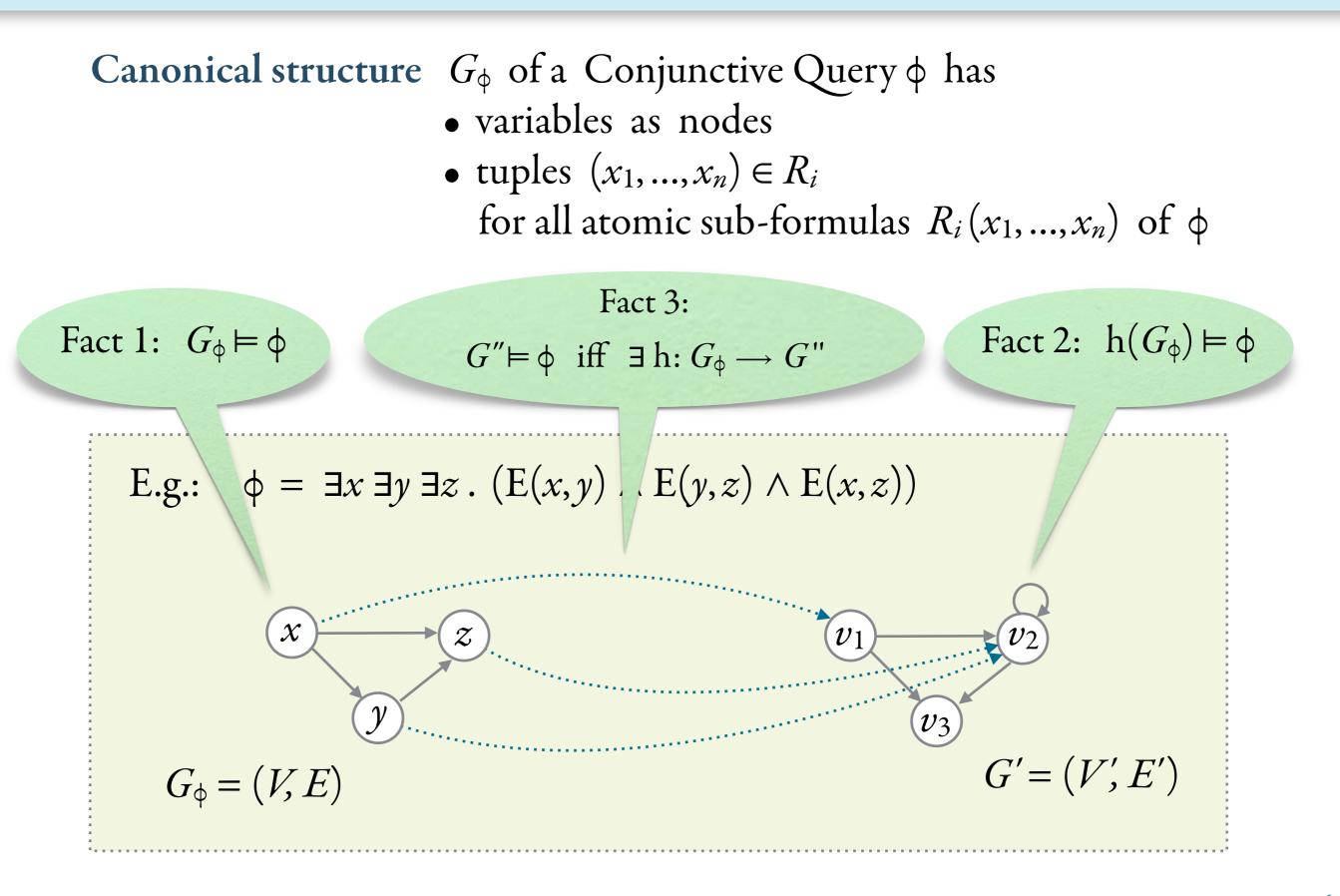


Canonical structure G_{ϕ} of a Conjunctive Query ϕ has

- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$
 - for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ

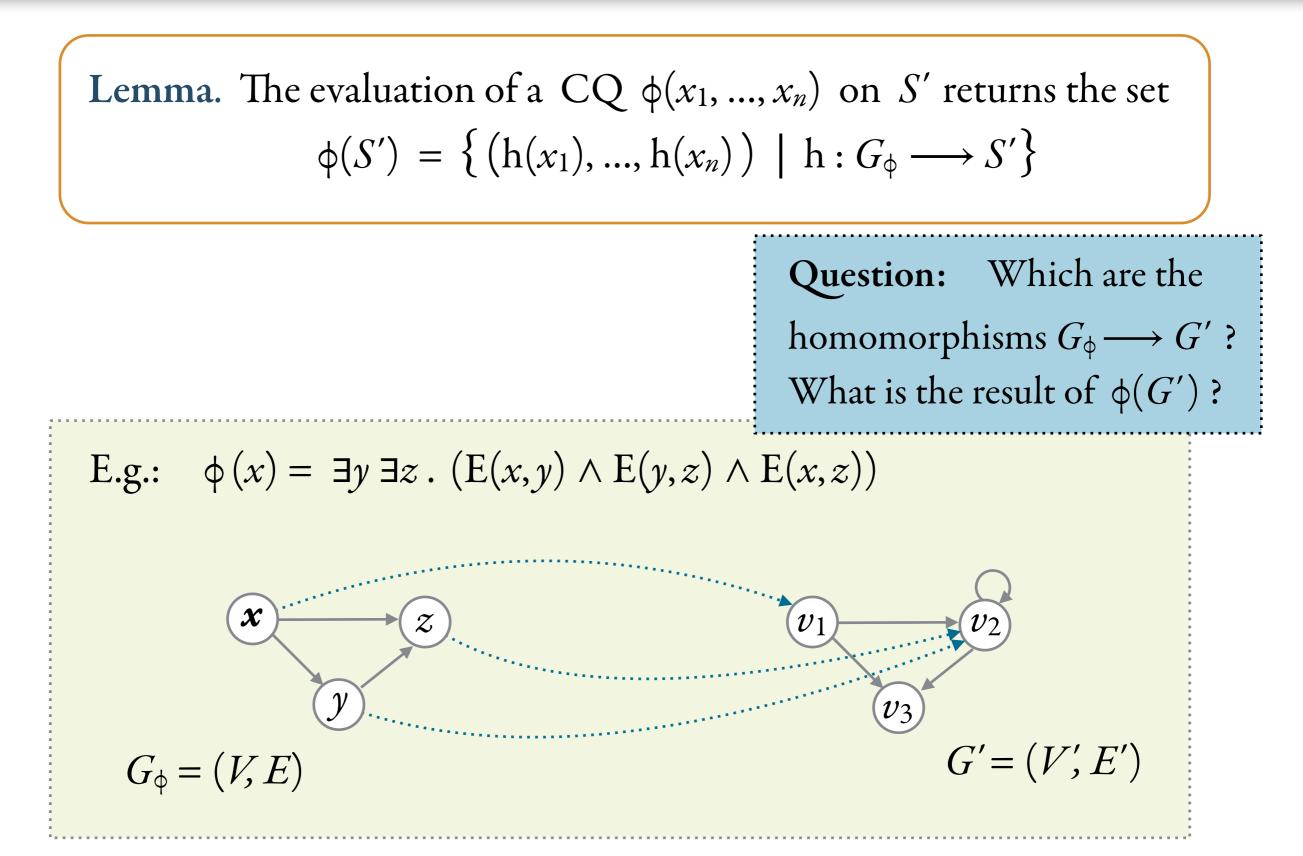


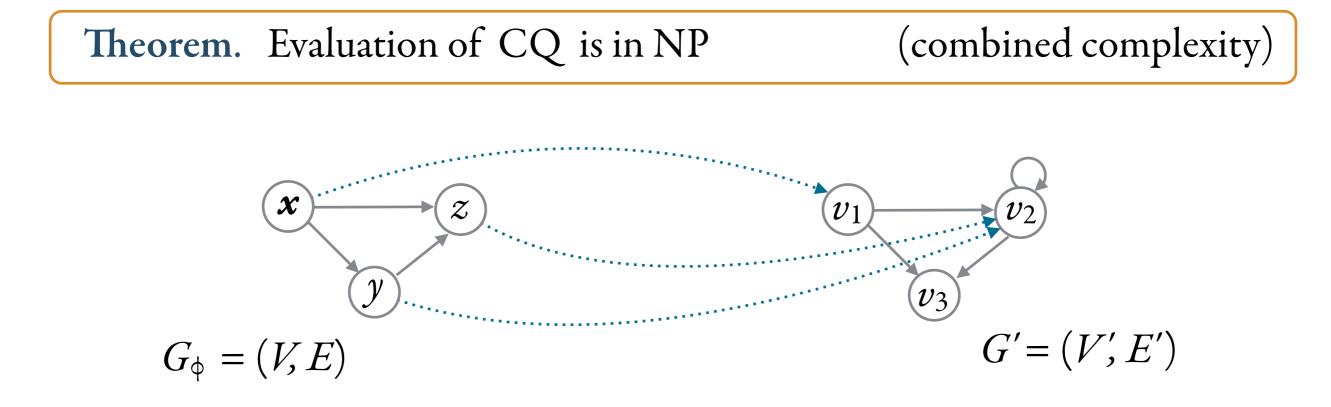




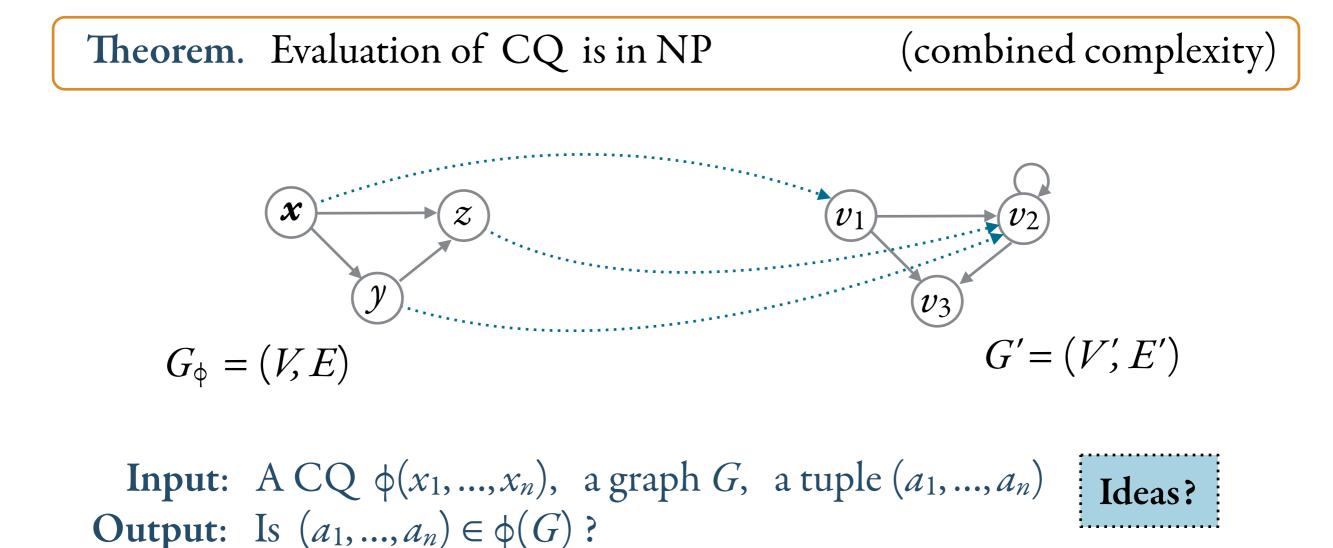
Lemma. The evaluation of a CQ
$$\phi(x_1, ..., x_n)$$
 on S' returns the set
 $\phi(S') = \{(h(x_1), ..., h(x_n)) \mid h : G_{\phi} \longrightarrow S'\}$

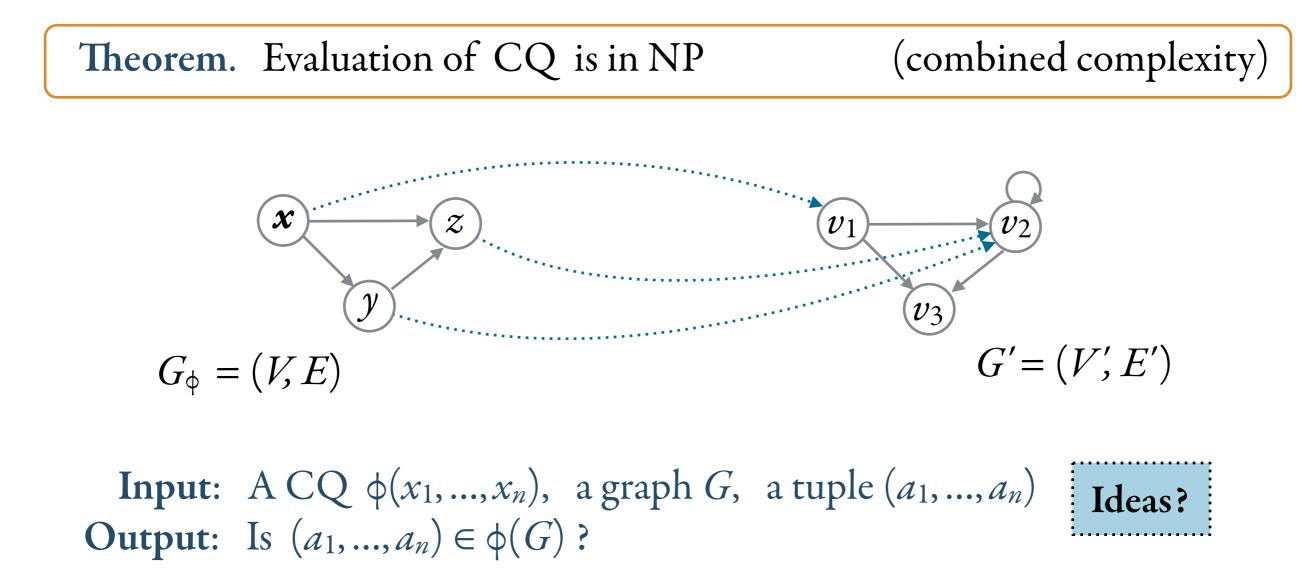






Input: A CQ $\phi(x_1, ..., x_n)$, a graph G, a tuple $(a_1, ..., a_n)$ Output: Is $(a_1, ..., a_n) \in \phi(G)$?





- 1. Guess $h: G_{\phi} \longrightarrow G$
- 2. Check that it is a homomorphism
- 3. Output YES if $(h(x_1), ..., h(x_n)) = (a_1, ..., a_n)$; NO otherwise.

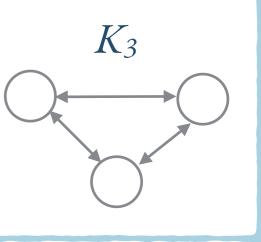
Theorem. Evaluation of CQ is NP-complete (combined complexity)

Theorem. Evaluation of CQ is NP-complete (combined complexity)

-NP-complete problem: 3-COLORABILITY -Input: A graph *G*

Output: Can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours ?

Is there a *homomorphism* from G to K_3 ?



Theorem. Evaluation of CQ is NP-complete (combined complexity)

NP-complete problem: 3-COLORABILITY – Input: A graph *G*

Output: Can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours ?

Is there a *homomorphism* from G to K_3 ?

Reduction 3COL \rightarrow CQ-EVAL: 1. Given *G*, build a CQ ϕ such that $G_{\phi} = G$. 2. Test if () $\in \phi(K_3)$.

 K_3

Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

Proof:

$$\varphi(S) = \{ (h(x_1), ..., h(x_n)) \mid h : G_{\varphi} \longrightarrow S \}$$
$$\subseteq \{ (h'(x_1), ..., h'(x_n)) \mid h' : G_{\varphi} \longrightarrow S' \}$$
$$= \varphi(S')$$

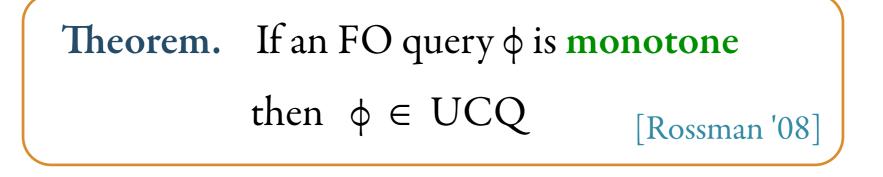
Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

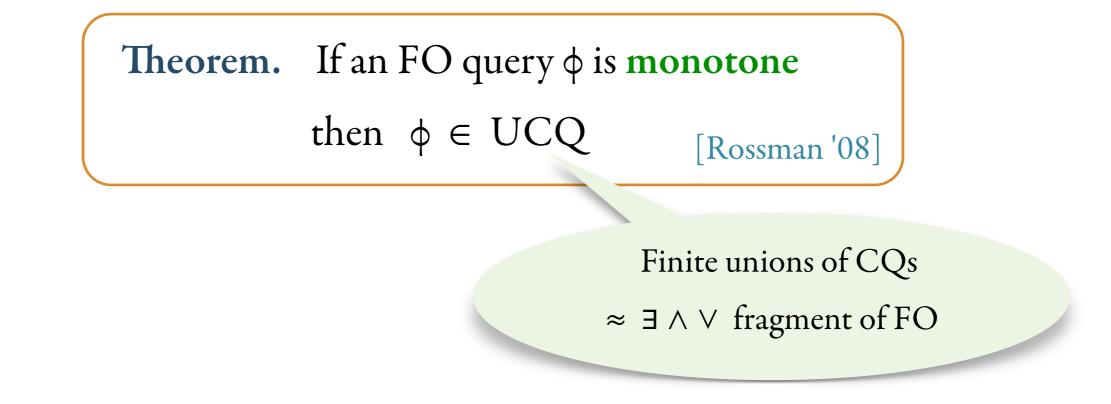
Proof: $\phi(S) = \{ (h(x_1), ..., h(x_n)) \mid h : G_{\phi} \longrightarrow S \}$ $\subseteq \{ (h'(x_1), ..., h'(x_n)) \mid h' : G_{\phi} \longrightarrow S' \}$ $= \phi(S')$

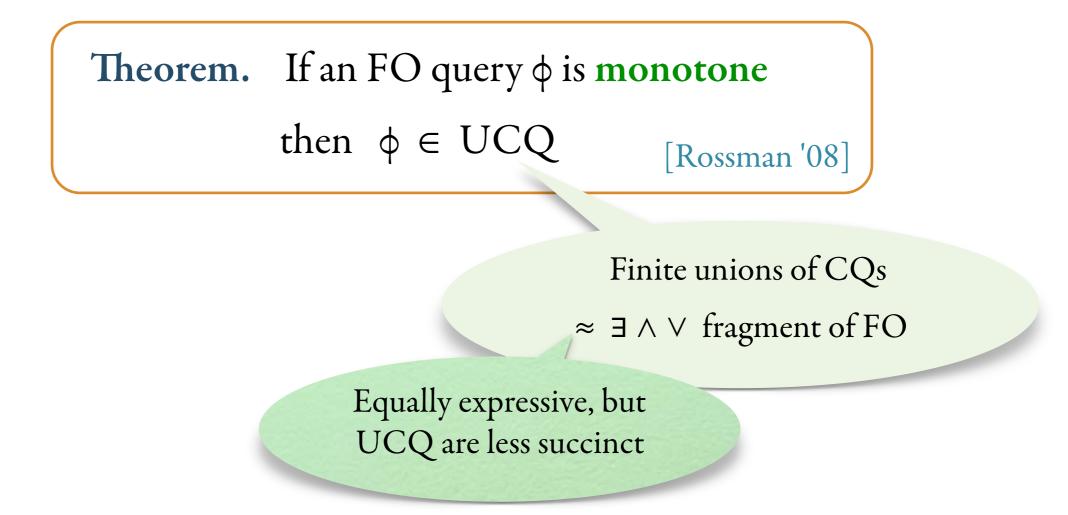
"The relation R has at most 2 elements" $\notin CQ$

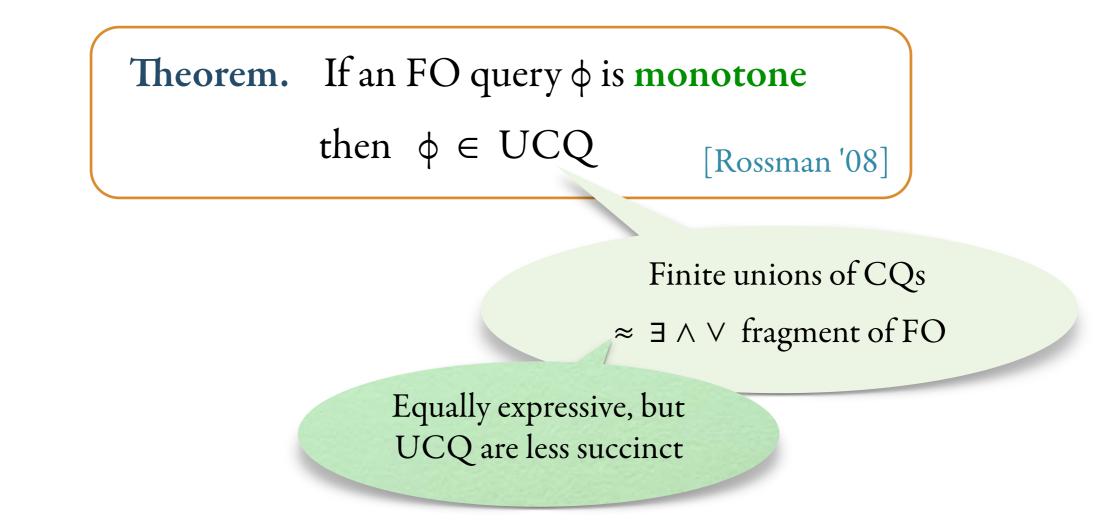
"There is a node connected to every other node" $\notin CQ$

"The radius of the graph is 5" $\notin CQ$









- One example of the few properties which still hold on finite structures.
- Proof in the finite is difficult and independent.

The satisfiability problem for CQ is decidable...

Question: What is the algorithm for CQ-SAT? What is the complexity?

The satisfiability problem for CQ is decidable...

Question: What is the algorithm for CQ-SAT? What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

 $G_{\varphi} \vDash \phi$

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

Theorem. The containment problem for CQ is NP-complete

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

Answer: None!

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

2. There is $g: G_{\psi} \longrightarrow G_{\phi}$

3. $g(y_i) = x_i$ for all *i*

Question: Is this combined or data complexity?

Answer: None!

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

Theorem. The containment problem for CQ is NP-complete

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

Why? 3. $g(y_i) = x_i$ for all i

Question: Is this combined or data complexity?

Answer: None!

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

2. There is $g: G_{\psi} \longrightarrow G_{\phi}$

3. $g(y_i) = x_i$ for all *i*

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1. n = m2. There is $g: G_{\psi} \longrightarrow G_{\phi}$ 3. $g(y_i) = x_i$ for all i

 $[\Longrightarrow] \quad \text{Suppose} \quad \forall S \quad \varphi(S) \subseteq \psi(S)$

$\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

$$\{(h(x_1), ..., h(x_n)) \mid h: G_{\phi} \longrightarrow S\}$$
$$[\Longrightarrow] \quad \text{Suppose} \quad \forall S \quad \phi(S) \subseteq \psi(S)$$

2. There is $g: G_{\psi} \longrightarrow G_{\phi}$

3. $g(y_i) = x_i$ for all *i*

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

 $\{(h(x_1), ..., h(x_n)) \mid h: G_{\phi} \longrightarrow S\}$ (\Longrightarrow) (\Longrightarrow) $Suppose \forall S \quad \phi(S) \subseteq \psi(S)$ $\{(g(y_1), ..., g(y_n)) \mid g: G_{\psi} \longrightarrow S\}$ $(= G_{\psi} \longrightarrow S)$

 $\varphi(x_1, ..., x_n) \text{ is contained in } \psi(y_1, ..., y_m) \text{ iff } 1. n = m$ $\{(h(x_1), ..., h(x_n)) \mid h: G_{\phi} \longrightarrow S\}$ $(\Longrightarrow) \quad \{(h(x_1), ..., h(x_n)) \mid h: G_{\phi} \longrightarrow S\}$ $(\Longrightarrow) \quad \{(g(y_1), ..., g(y_n)) \mid g: G_{\psi} \longrightarrow S\}$ $(f \text{ there is } h: G_{\phi} \longrightarrow S \quad \{(g(y_1), ..., g(y_n)) \mid g: G_{\psi} \longrightarrow S\}$ $(f \text{ there is } h: G_{\phi} \longrightarrow S \quad \{(g(y_1), ..., g(y_n)) \mid g: G_{\psi} \longrightarrow S\}$ $(f \text{ there is } g: G_{\psi} \longrightarrow S \text{ such that } h(x_1, ..., x_n) = g(y_1, ..., y_m)$

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m2. There is $g: G_{\psi} \longrightarrow G_{\varphi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: G_{\phi} \longrightarrow S\}$ 3. $g(y_i) = x_i$ for all *i* $[\Longrightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(y_1), ..., g(y_n) \right) \mid g: G_{\psi} \longrightarrow S \right\}$ If there is $h: G_{\phi} \longrightarrow S$ Then there is $g: G_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = G_{\phi}$ and h = identity.

۲

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1. n = m

$$\{ (h(x_1), ..., h(x_n)) \mid h: G_{\phi} \longrightarrow S \}$$

$$(=) Suppose \forall S \quad \phi(S) \subseteq \psi(S)$$

$$If there is h: G_{\phi} \longrightarrow S \qquad \{ (g(y_1), ..., g(y_n)) \mid g: G_{\psi} \longrightarrow S \}$$

$$Then there is g: G_{\psi} \longrightarrow S \text{ such that } h(x_1, ..., x_n) = g(y_1, ..., y_m)$$

$$Take S = G_{\phi} \text{ and } h = identity.$$

$$[=] Consider S and (v_1, ..., v_n) \in \phi(S).$$

$$Then, (v_1, ..., v_n) = (h(x_1), ..., h(x_n)) \text{ for some } h: G_{\phi} \longrightarrow S.$$

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

2. There is $g: G_{\psi} \longrightarrow G_{\varphi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: G_{\phi} \longrightarrow S\}$ 3. $g(y_i) = x_i$ for all *i* $[\Longrightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(\gamma_1), ..., g(\gamma_n) \right) \mid g: G_{\psi} \longrightarrow S \right\}$ If there is $h: G_{\phi} \longrightarrow S$ Then there is $g: G_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = G_{\phi}$ and h = identity. [\Leftarrow] Consider S and $(v_1,...,v_n) \in \phi(S)$. Then, $(v_1,...,v_n) = (h(x_1),...,h(x_n))$ for some $h: G_{\phi} \longrightarrow S$. Since $g(y_1, ..., y_n) = (x_1, ..., x_n)$, then $(v_1, ..., v_n) = h(x_1, ..., x_n) = h(g(y_1, ..., y_n))$.

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

2. There is $g: G_{\psi} \longrightarrow G_{\varphi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: G_{\phi} \longrightarrow S\}$ 3. $g(y_i) = x_i$ for all *i* $[\Longrightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(\gamma_1), ..., g(\gamma_n) \right) \mid g: G_{\psi} \longrightarrow S \right\}$ If there is $h: G_{\phi} \longrightarrow S$ Then there is $g: G_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = G_{\phi}$ and h = identity. [\Leftarrow] Consider S and $(v_1,...,v_n) \in \phi(S)$. Then, $(v_1,...,v_n) = (h(x_1),...,h(x_n))$ for some $h: G_{\phi} \longrightarrow S$. Since $g(y_1, ..., y_n) = (x_1, ..., x_n)$, then $(v_1, ..., v_n) = h(x_1, ..., x_n) = h(g(y_1, ..., y_n))$. h \circ g is a homomorphism from G_{ψ} to S. Hence, $(v_1, ..., v_n) \in \psi(S)$.

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

Theorem. The equivalence problem for CQ is NP-complete

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

Theorem. The equivalence problem for CQ is NP-complete

1. n = m2a. There is $g: G_{\psi} \longrightarrow G_{\varphi}$ $\varphi \equiv \psi$ iff 2b. There is $h: G_{\varphi} \longrightarrow G_{\psi}$ 3a. $g(y_i) = x_i$ for all i3b. $h(x_i) = y_i$ for all i

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

Theorem. The equivalence problem for CQ is NP-complete

1. n = m

2a. There is $g: G_{\psi} \longrightarrow G_{\phi}$

 $\phi \equiv \psi \quad \text{iff} \qquad 2b. \text{ There is } h: G_{\phi} \longrightarrow G_{\psi} \\ 3a. g(y_i) = x_i \text{ for all } i \\ 3b. h(x_i) = y_i \text{ for all } i \end{cases}$

Amounts to testing if G_{ϕ} and G_{ψ} are **hom-equivalent** (homomorphisms in both senses)

Query optimisation: Can I simplify the query?

Query optimisation: Can I simplify the query?

problem: CQ-MINIMIZATION

Input: A CQ ϕ **Output:** Is there a smaller CQ ψ such that $\psi \equiv \phi$?

smaller = with less number of atoms

problem: CQ-MINIMIZATION -

Input: A CQ ϕ **Output:** Is there a smaller CQ ψ such that $\psi \equiv \phi$?

problem: CQ-MINIMIZATION

Input: A CQ ϕ **Output:** Is there a smaller CQ ψ such that $\psi \equiv \phi$?

Theorem. The minimization problem for CQ is NP-complete

problem: CQ-MINIMIZATION

Input: A CQ ϕ **Output:** Is there a smaller CQ ψ such that $\psi \equiv \phi$?

Theorem. The minimization problem for CQ is NP-complete

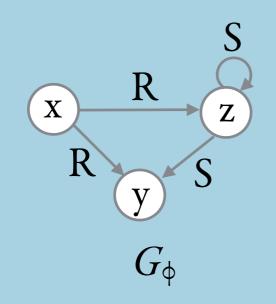
Amounts to testing if there is a smaller structure hom-equivalent to G_{ϕ} \approx testing if there is a **non-injective endomorphism**

 $g\colon G_{\varphi} \longrightarrow G_{\varphi}$

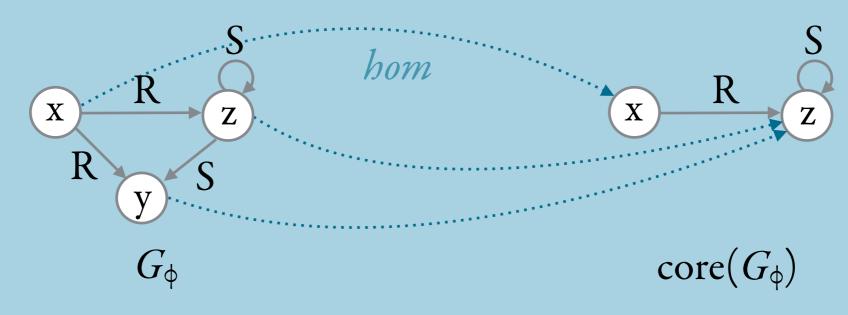
The smallest structure hom-equivalent to S is called the core of S, and it is <u>unique</u>.

• What is its minimal equivalent query?

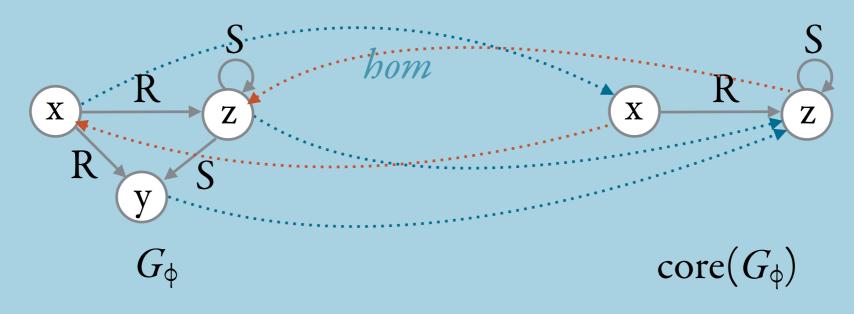
• What is its minimal equivalent query?



• What is its minimal equivalent query?

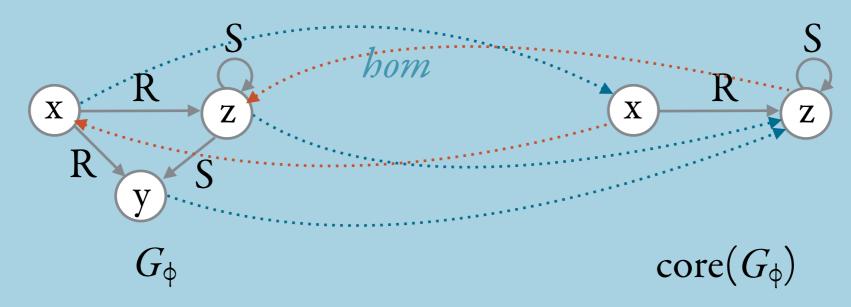


• What is its minimal equivalent query?



• What is its minimal equivalent query?

Answer:



No! $\psi = \exists x, z \ R(x, z) \land S(z, z)$ is the minimal query s.t. $\varphi \equiv \psi$

e.g. key constraints like "<u>column SSN</u> determines <u>column Name</u> in the <u>table</u> Employees" (component *i*) (component *j*) (relation)

A unary functional dependency is a sentence of the form

 $\forall x_1,...,x_n,y_1,...,y_n . R(x_1,...,x_n) \land R(y_1,...,y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$

 $[R[i \rightarrow j]]$: in relation R the i-th component determines the j-th component

A unary functional dependency is a sentence of the form

$$\forall x_1,...,x_n,y_1,...,y_n . R(x_1,...,x_n) \land R(y_1,...,y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$$

 $[R[i \rightarrow j]]$: in relation R the i-th component determines the j-th component

Example: In the following relation we may enforce the functional dependency

$$\boldsymbol{\gamma} = \forall x, y, z, x', y', z' \ R(x, y, z) \land R(x', y', z') \land (x = x') \Rightarrow (y = y')$$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

A unary functional dependency is a sentence of the form

 $\forall x_1,...,x_n,y_1,...,y_n . R(x_1,...,x_n) \land R(y_1,...,y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$

 $[R[i \rightarrow j]]$: in relation R the i-th component determines the j-th component

A unary functional dependency is a sentence of the form

 $\forall x_1, \dots, x_n, y_1, \dots, y_n . R(x_1, \dots, x_n) \land R(y_1, \dots, y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$

 $[R[i \rightarrow j]]$: in relation R the i-th component determines the j-th component

A structure S verifies a set of UFD $\{\phi_1, \ldots, \phi_n\}$ if $S \models \phi_1 \land \cdots \land \phi_n$.

A unary functional dependency is a sentence of the form

 $\forall x_1, \dots, x_n, y_1, \dots, y_n . R(x_1, \dots, x_n) \land R(y_1, \dots, y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$

 $[R[i \rightarrow j]]$: in relation R the i-th component determines the j-th component

All the previous problems:

CQ-CONTAINMENTCQ-EQUIVALENCECQ-MINIMIZATION

remain in NP if we further restrict finite structures so as to satisfy any set of functional dependencies

A unary functional dependency is a sentence of the form

 $\forall x_1, \dots, x_n, y_1, \dots, y_n : R(x_1, \dots, x_n) \land R(y_1, \dots, y_n) \land (x_i = y_i) \Rightarrow (x_i = y_i)$

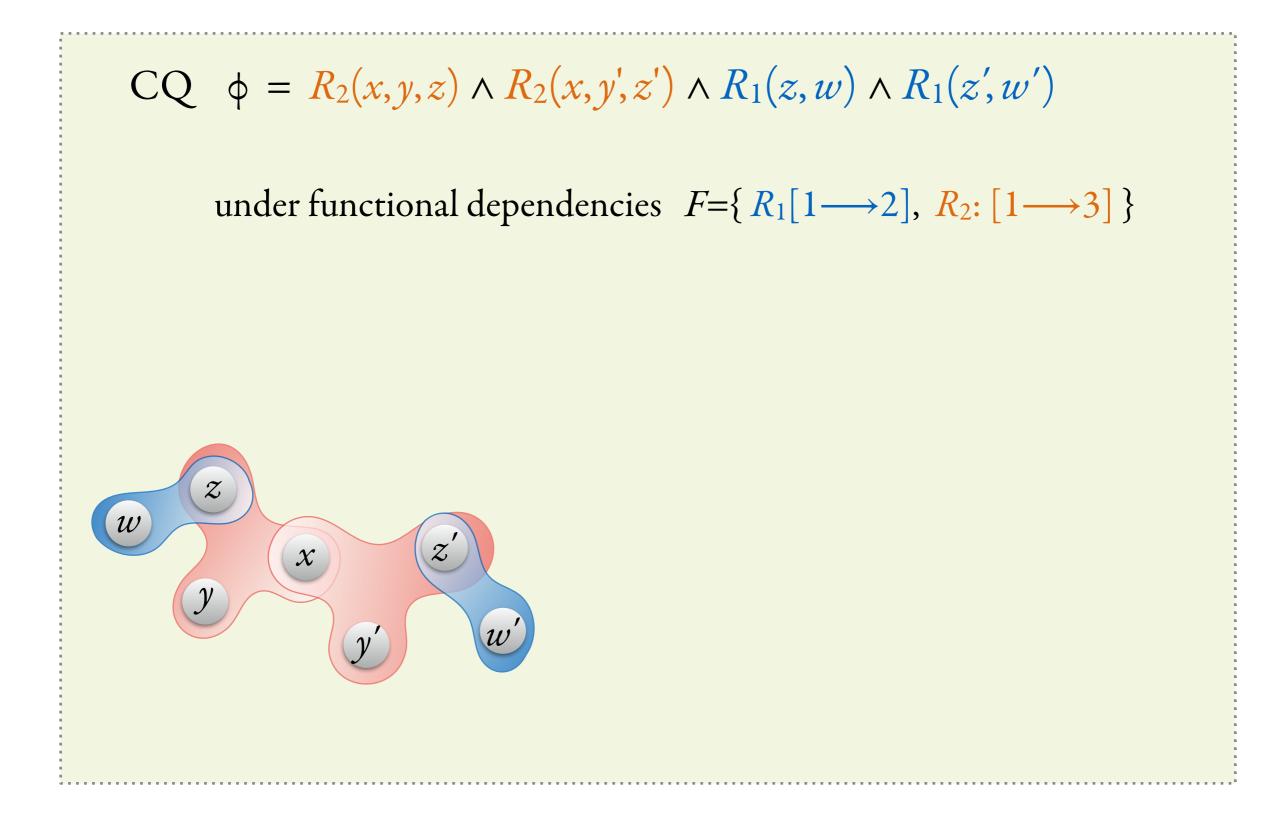
 $[\mathbf{R}[\mathbf{i} \rightarrow \mathbf{j}]]$: in relation R the i-th component determines the j-th component

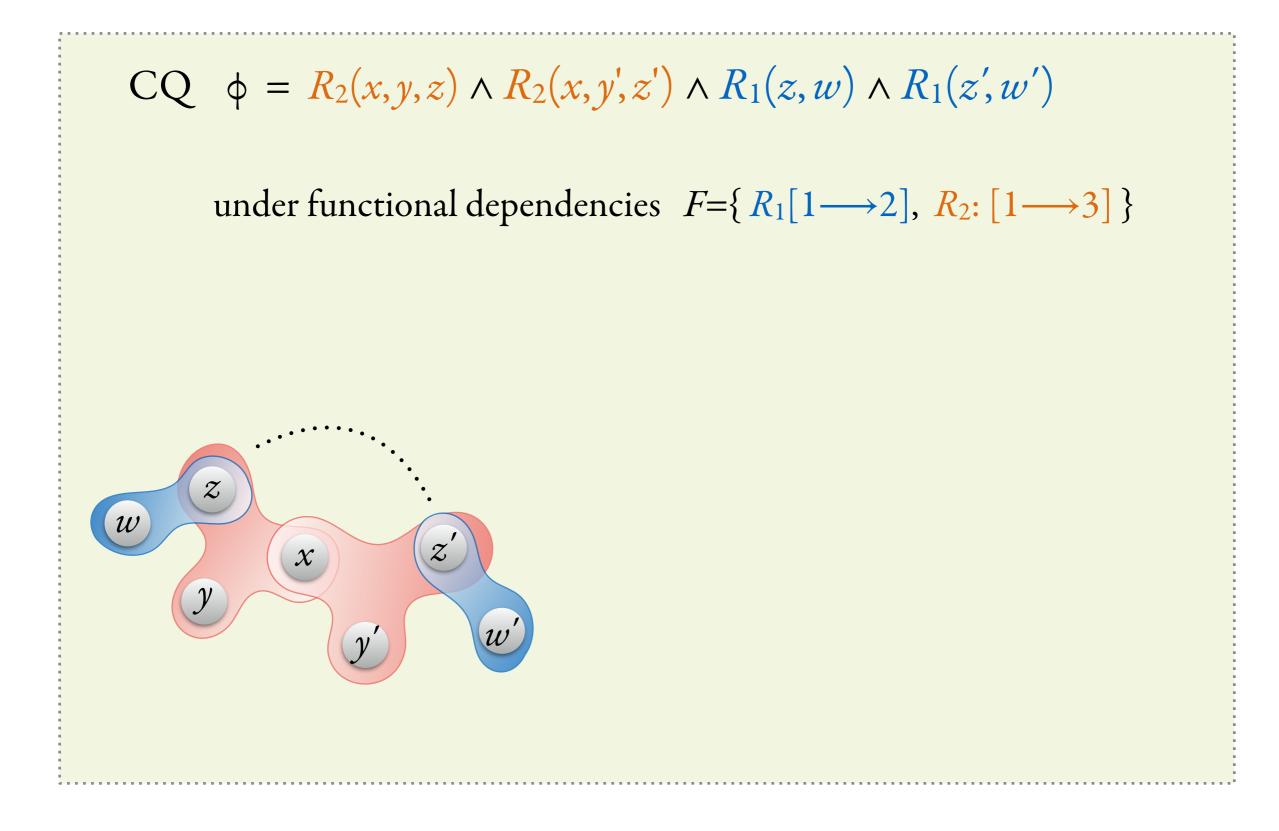
All the previous problems:

 \mathcal{V}^{-} Modify the canonical structure G_{ϕ} ...

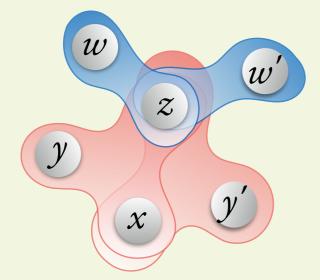
• CQ-CONTAINMENT • CQ-EQUIVALENCE • CQ-MINIMIZATION

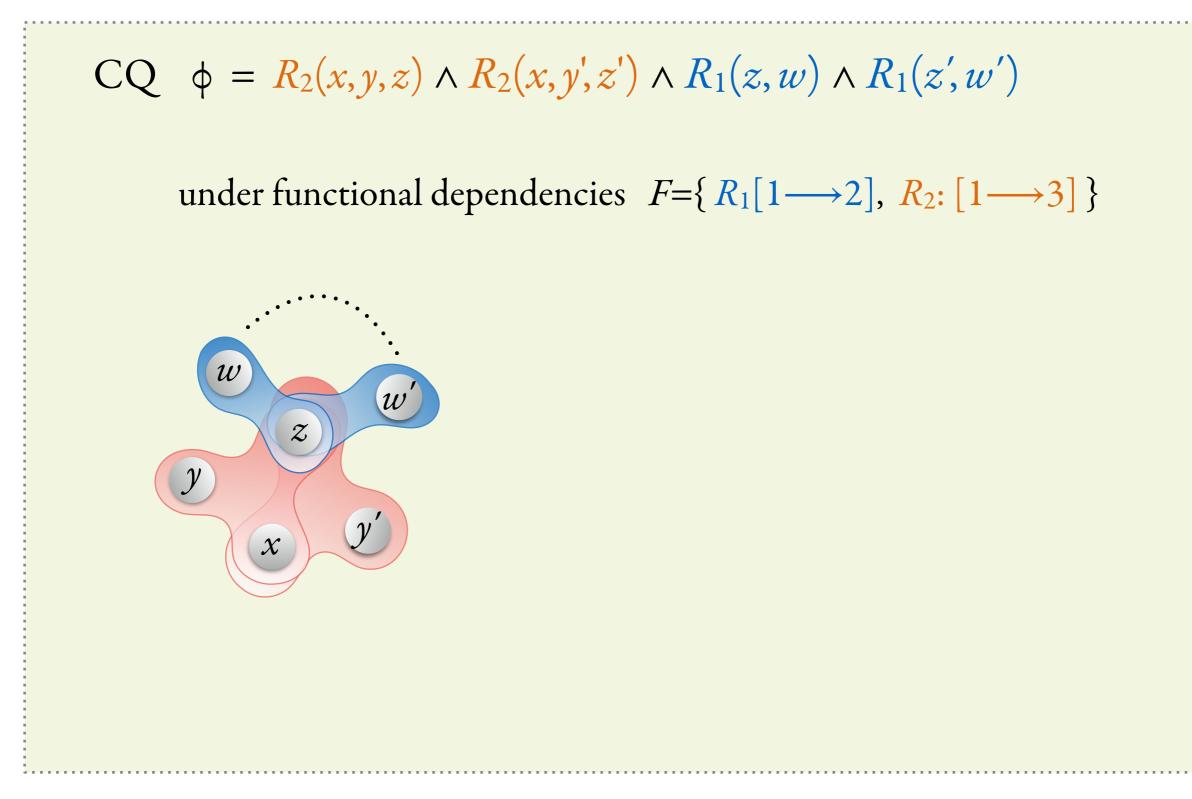
remain in NP if we further restrict finite structures so as to satisfy any set of functional dependencies



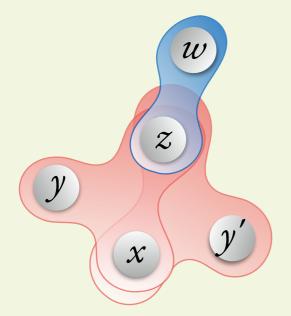


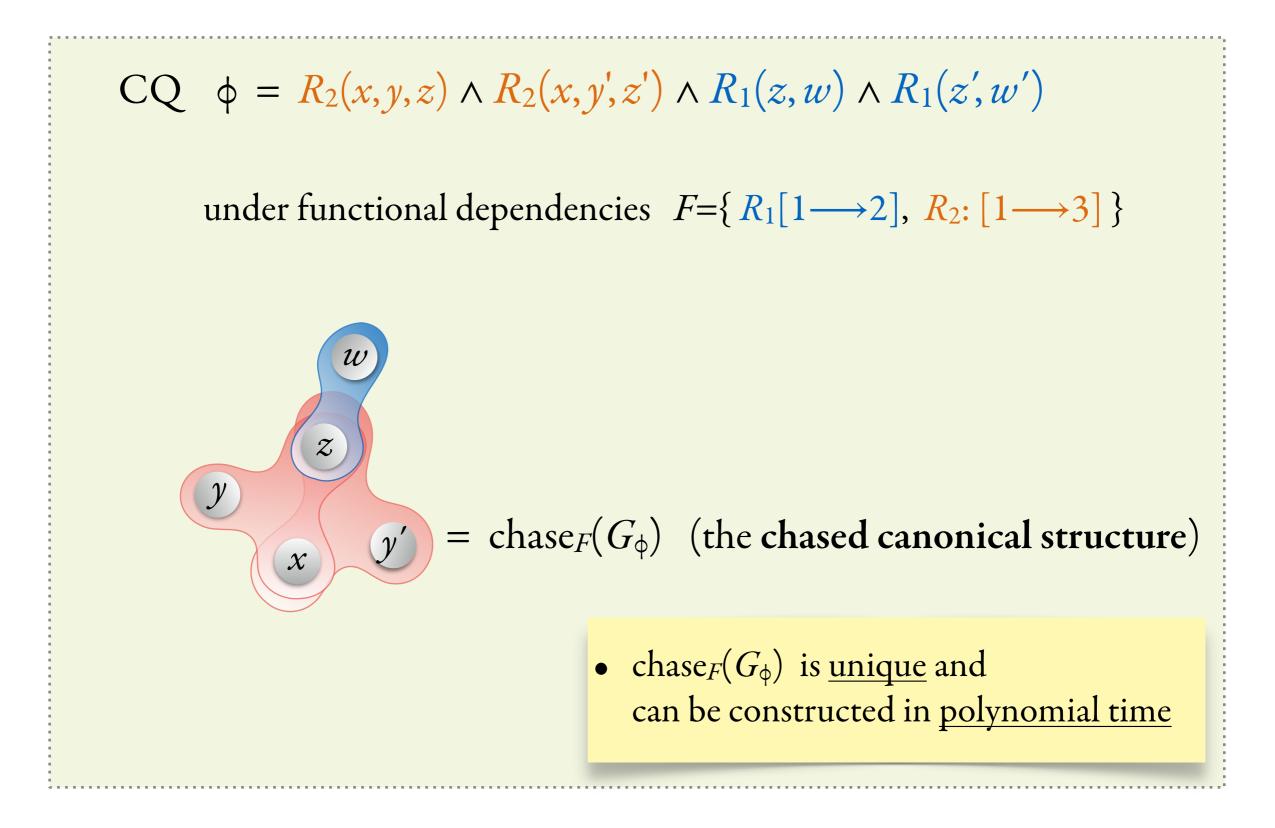
under functional dependencies $F = \{ R_1 [1 \rightarrow 2], R_2 : [1 \rightarrow 3] \}$





under functional dependencies $F = \{ R_1[1 \longrightarrow 2], R_2: [1 \longrightarrow 3] \}$





Adding functional dependencies

Adding functional dependencies

$$\varphi \in CQ$$

$$FD's F = \{fd_1, ..., fd_n\}$$

$$chase$$

$$chase$$

$$chase_F(\varphi) \in CQ$$

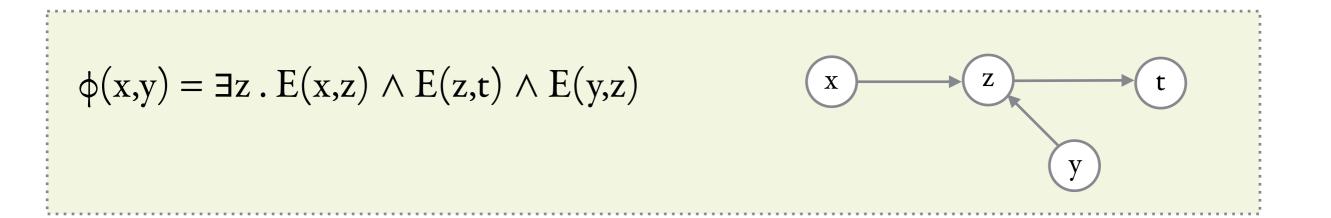
The static analysis problems restricted to FD's can now be also shown in NP

- CQ-Containment $\phi \subseteq_F \psi$ iff $chase_F(\phi) \subseteq chase_F(\psi)$
- CQ-Equivalence $\phi \equiv_F \psi$ iff $chase_F(\phi) \equiv chase_F(\psi)$
- CQ-Minimization

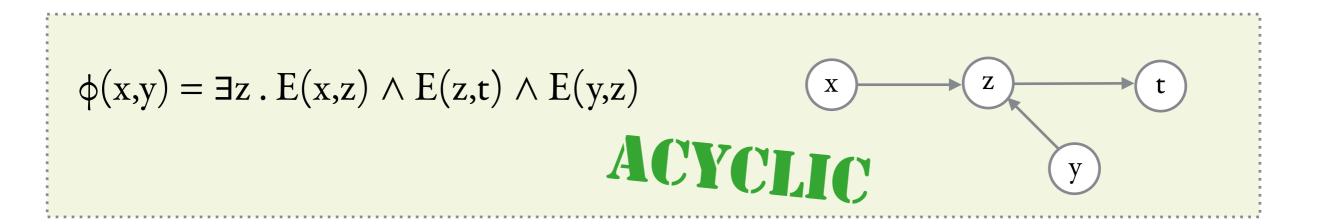
 ϕ is minimal wrt structures verifying F iff chase_F(ϕ) is minimal

underlying undirected graph is acyclic

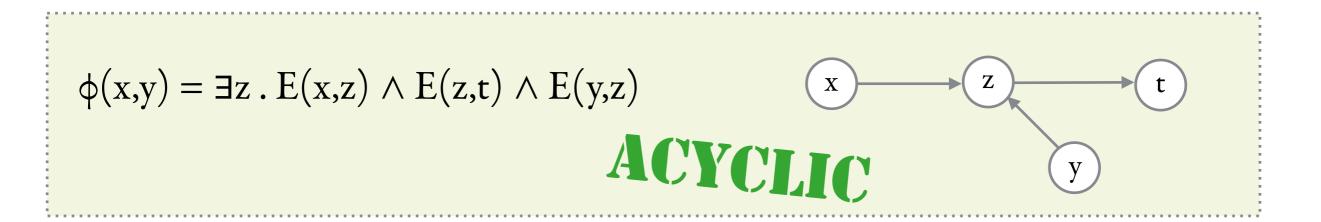
underlying undirected graph is acyclic



underlying undirected graph is acyclic

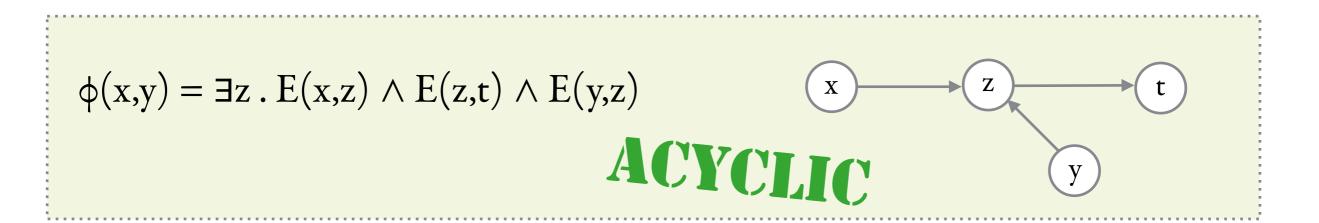


underlying undirected graph is acyclic



$$\phi(\mathbf{x},\mathbf{y}) = \exists \mathbf{z} \cdot \mathbf{E}(\mathbf{x},\mathbf{z}) \land \mathbf{E}(\mathbf{z},\mathbf{t}) \land \mathbf{E}(\mathbf{y},\mathbf{z}) \land \mathbf{E}(\mathbf{x},\mathbf{y}) \quad \mathbf{x} \quad \mathbf{z} \quad \mathbf{y} \quad \mathbf{t}$$

underlying undirected graph is acyclic



$$\phi(x,y) = \exists z . E(x,z) \land E(z,t) \land E(y,z) \land E(x,y) \xrightarrow{x} \xrightarrow{z} \xrightarrow{t} t$$

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

 $\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$

On graphs: CQ φ is acyclic if G_φ is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- \bullet for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ φ is acyclic if G_φ is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

If x occurs in two nodes, then it occurs in the path linking the two nodes.

A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- \bullet for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

Alternatively, if its canonical hyper-graph is α-acyclic.

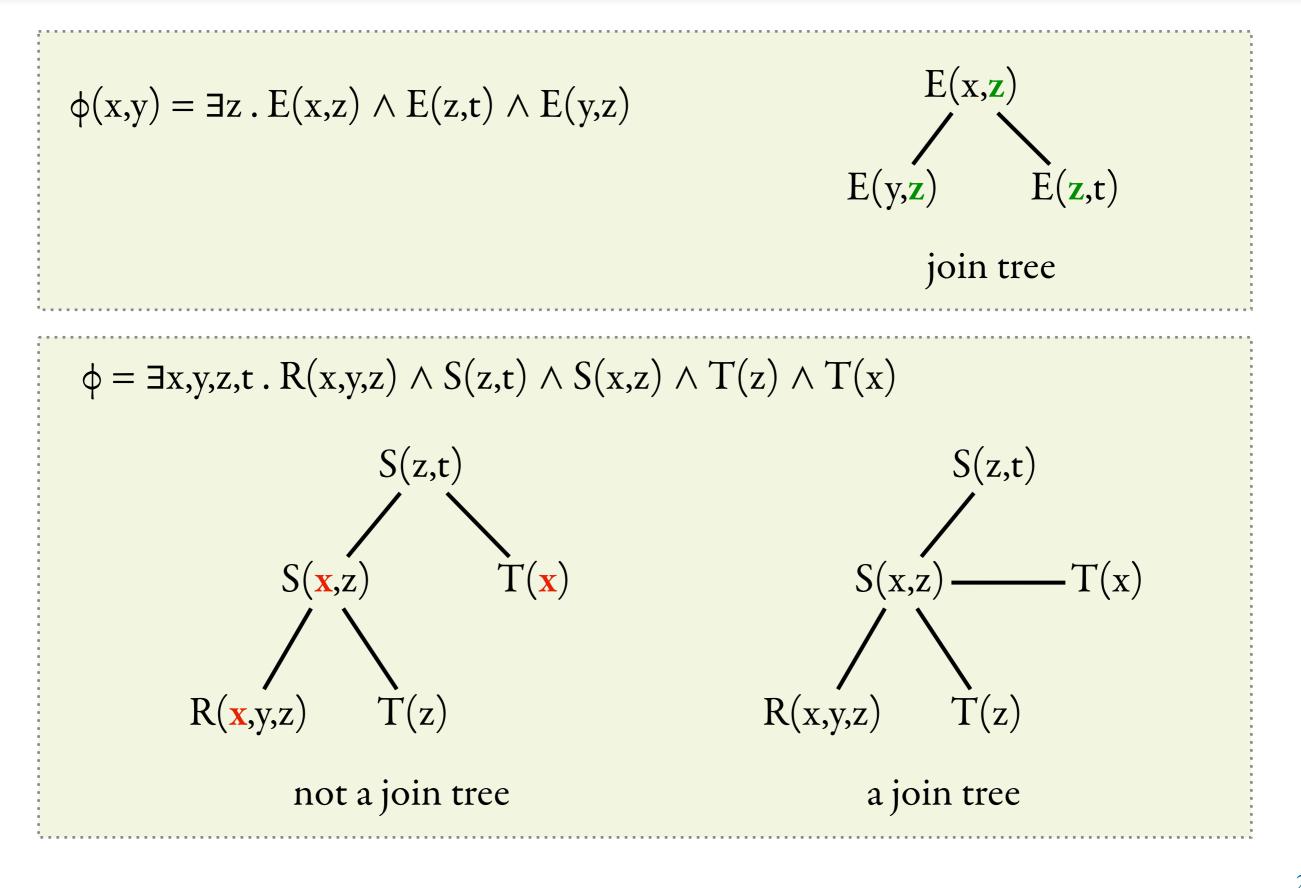
On general structures: a CQ ϕ is acyclic if it has a join tree

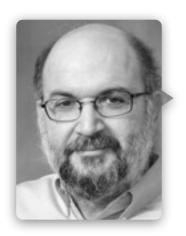
$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

If x occurs in two nodes, then it occurs in the path linking the two nodes.

A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- \bullet for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T





The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$

[Yannakakis]

The semi-join

$$\begin{split} R \Join_{\{i_1=j_1,\dots,i_n=j_n\}} S = \{ (x_1,\dots,x_n) \in R \mid \text{there is } (y_1,\dots,y_m) \in S \\ & \text{where } x_{i_k} = y_{j_k} \text{ for all } k \rbrace \end{split}$$

Note: $\mathbb{R} \ltimes_{\{i_1=j_1,\dots,i_n=j_n\}} S \subseteq \mathbb{R}$