
Logical foundations of databases

∀∃¬

ESSLLI 2016
Bolzano, Italy

CNRS LaBRI

Diego Figueira Gabriele Puppis

day 3

Recap

• Active domain semantics and expressiveness: FOact =* RA

• Undecidable problems (Halting ≤ Domino ≤ FO-Satisfiability ≤ FO-Equivalence)

• Data complexity / Combined complexity

• Evaluation problem for FO: in PSPACE (combined comp.)  
 in PSPACE (query comp.)  
 in LOGSPACE (data comp.)  

• Positive FO: evaluation in NP (combined comp.)

• Conjunctive Queries

3

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

3

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

3

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select ...
From ...
Where Z

no negation or disjunction

It corresponds to positive
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

4

Homomorphisms

S = (V, R1 , R2) S' = (V ', R1' , R2')

Homomorphism between structures S=(V, R1, …, Rn) and S '=(V ', R1', …, Rn') 
 is a function h : V ⟶ V ' such that
 (x1, …, xn) ∈ Ri implies (h(x1), …, h(xn)) ∈ Ri'

5

Homomorphisms

G = (V, E) G' = (V', E')

Homomorphism between structures S=(V, R1, …, Rn) and S '=(V ', R1', …, Rn') 
 is a function h : V ⟶ V ' such that
 (x1, …, xn) ∈ Ri implies (h(x1), …, h(xn)) ∈ Ri'

6

Gφ = (V, E) G' = (V', E')

Canonical structures
Canonical structure Gφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

6

Gφ = (V, E) G' = (V', E')

Canonical structures
Canonical structure Gφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z v1 v2

v3

6

Gφ = (V, E) G' = (V', E')

Canonical structures
Canonical structure Gφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ

v1 v2

v3

6

Gφ = (V, E) G' = (V', E')

Canonical structures
Canonical structure Gφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ Fact 2: h(Gφ) ⊨ φ

v1 v2

v3

6

Gφ = (V, E) G' = (V', E')

Canonical structures
Canonical structure Gφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ Fact 2: h(Gφ) ⊨ φ
Fact 3: 

G'' ⊨ φ iff ∃ h: Gφ ⟶ G ''

v1 v2

v3

Gφ = (V, E) G' = (V', E')Gφ = (V, E)

E.g.: φ (x) = ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

7

Evaluation via homomorphisms

Lemma. The evaluation of a CQ φ(x1, …, xn) on S' returns the set 
 φ(S') = { (h(x1), …, h(xn)) | h : Gφ ⟶ S' }

v1 v2

v3

Gφ = (V, E) G' = (V', E')Gφ = (V, E)

E.g.: φ (x) = ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

7

Evaluation via homomorphisms

Lemma. The evaluation of a CQ φ(x1, …, xn) on S' returns the set 
 φ(S') = { (h(x1), …, h(xn)) | h : Gφ ⟶ S' }

Question: Which are the  
homomorphisms Gφ ⟶ G' ?
What is the result of φ(G') ?

v1 v2

v3

8

Evaluation via homomorphisms

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Gφφ= (V, E) G' = (V', E')

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

8

Evaluation via homomorphisms

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G' = (V', E')

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

8

Evaluation via homomorphisms

1. Guess h: Gφ ⟶ G

2. Check that it is a homomorphism

3. Output YES if (h(x1), …, h(xn)) = (a1, …, an); NO otherwise.

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G' = (V', E')

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

9

Evaluation via homomorphisms

Theorem. Evaluation of CQ is NP-complete (combined complexity)

9

Evaluation via homomorphisms

K3

Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node  
 so that adjacent nodes have always different colours ?
 =
 Is there a homomorphism from G to K3 ?

NP-complete problem: 3-COLORABILITY

Theorem. Evaluation of CQ is NP-complete (combined complexity)

9

Evaluation via homomorphisms

K3

Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node  
 so that adjacent nodes have always different colours ?
 =
 Is there a homomorphism from G to K3 ?

NP-complete problem: 3-COLORABILITY

Reduction 3COL ⤳ CQ-EVAL: 1. Given G, build a CQ φ such that Gφ = G.
 2. Test if () ∈ φ(K3).

Theorem. Evaluation of CQ is NP-complete (combined complexity)

10

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ' implies φ(S) ⊆ φ(S ')

10

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ' implies φ(S) ⊆ φ(S ')

Proof:
φ(S) = { (h(x1), …, h(xn)) | h : Gφ ⟶ S }

 ⊆ { (h' (x1), …, h' (xn)) | h' : Gφ ⟶ S' }  
 = φ(S')

10

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ' implies φ(S) ⊆ φ(S ')

Proof:
φ(S) = { (h(x1), …, h(xn)) | h : Gφ ⟶ S }

 ⊆ { (h' (x1), …, h' (xn)) | h' : Gφ ⟶ S' }  
 = φ(S')

“The relation R has at most 2 elements” ∉ CQ

“There is a node connected to every other node” ∉ CQ

“The radius of the graph is 5” ∉ CQ

11

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

11

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

11

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

Equally expressive, but 
UCQ are less succinct

11

Monotonicity and preservation theorems

• One example of the few properties which still hold on finite structures.

• Proof in the finite is difficult and independent.

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

Equally expressive, but 
UCQ are less succinct

12

The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT? What is the complexity?

12

The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT? What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

Gφ ⊨ φ

13

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

13

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

13

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

13

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

13

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

13

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

Why?

14

Static analysis with CQs
1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

If there is h: Gφ ⟶ S  
Then there is g: Gψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

If there is h: Gφ ⟶ S  
Then there is g: Gψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Gφ and h = identity.

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

[⟸] Consider S and (v1,…,vn) ∈ φ(S).

Then, (v1,…,vn) = (h(x1), …, h(xn)) for some h : Gφ ⟶ S.

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

If there is h: Gφ ⟶ S  
Then there is g: Gψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Gφ and h = identity.

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

[⟸] Consider S and (v1,…,vn) ∈ φ(S).

Then, (v1,…,vn) = (h(x1), …, h(xn)) for some h : Gφ ⟶ S.

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

If there is h: Gφ ⟶ S  
Then there is g: Gψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Gφ and h = identity.

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

Since g(y1, …, yn) = (x1, …, xn), then (v1, …, vn) = h(x1, …, xn) = h(g(y1, …, yn)).

[⟸] Consider S and (v1,…,vn) ∈ φ(S).

Then, (v1,…,vn) = (h(x1), …, h(xn)) for some h : Gφ ⟶ S.

14

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Gψ ⟶ Gφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Gφ ⟶ S }

If there is h: Gφ ⟶ S  
Then there is g: Gψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Gφ and h = identity.

{ (g(y1), …, g(yn)) | g : Gψ ⟶ S }

Since g(y1, …, yn) = (x1, …, xn), then (v1, …, vn) = h(x1, …, xn) = h(g(y1, …, yn)).

h ° g is a homomorphism from Gψ to S. Hence, (v1, …, vn) ∈ ψ(S).

15

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

15

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem. The equivalence problem for CQ is NP-complete

15

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem. The equivalence problem for CQ is NP-complete

1. n = m
2a. There is g: Gψ ⟶ Gφ

2b. There is h: Gφ ⟶ Gψ
3a. g(yi) = xi for all i
3b. h(xi) = yi for all i

φ≣ψ iff

15

Static analysis with CQs

Amounts to testing if Gφ and Gψ are hom-equivalent
 (homomorphisms in both senses)

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem. The equivalence problem for CQ is NP-complete

1. n = m
2a. There is g: Gψ ⟶ Gφ

2b. There is h: Gφ ⟶ Gψ
3a. g(yi) = xi for all i
3b. h(xi) = yi for all i

φ≣ψ iff

16

Static analysis with CQs

Query optimisation: Can I simplify the query?

16

Static analysis with CQs

Input: A CQ φ
Output: Is there a smaller CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

smaller = with less number of atoms

Query optimisation: Can I simplify the query?

17

Static analysis with CQs

Input: A CQ φ
Output: Is there a smaller CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

17

Static analysis with CQs

Input: A CQ φ
Output: Is there a smaller CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

Theorem. The minimization problem for CQ is NP-complete

17

Static analysis with CQs

Input: A CQ φ
Output: Is there a smaller CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

Amounts to testing if there is a smaller structure hom-equivalent to Gφ
≈ testing if there is a non-injective endomorphism  
 g: Gφ ⟶ Gφ

The smallest structure hom-equivalent to S is called the core of S, and
it is unique.

Theorem. The minimization problem for CQ is NP-complete

18

Static analysis with CQs

Question: • Is φ = ∃ x,y,z R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?

 • What is its minimal equivalent query?

Answer:

18

Static analysis with CQs

Question: • Is φ = ∃ x,y,z R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?

 • What is its minimal equivalent query?

Answer:

Gφ

x

y

zR

R S

S

18

Static analysis with CQs

Question: • Is φ = ∃ x,y,z R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?

 • What is its minimal equivalent query?

Answer:

core(Gφ)

x zR
Shom

Gφ

x

y

zR

R S

S

18

Static analysis with CQs

Question: • Is φ = ∃ x,y,z R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?

 • What is its minimal equivalent query?

Answer:

core(Gφ)

x zR
Shom

Gφ

x

y

zR

R S

S

18

Static analysis with CQs

Question: • Is φ = ∃ x,y,z R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?

 • What is its minimal equivalent query?

Answer:

No! ψ = ∃ x,z R(x,z) ∧ S(z,z) is the minimal query s.t. φ ≣ ψ

core(Gφ)

x zR
Shom

Gφ

x

y

zR

R S

S

19

Adding functional dependencies

19

Adding functional dependencies

key constraints like
 "column SSN determines column Name in the table Employees"
 (component i) (component j) (relation)

e.g.

20

Adding functional dependencies

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

20

Adding functional dependencies

Agent Name Drives

007 James Bond Aston Martin

200 Mr Smith Cadillac

201 Mrs Smith Mercedes

3 Jason Bourne BMW

Example: In the following relation we may enforce the functional dependency

 𝜸 = ∀ x, y, z, x', y', z' R(x, y, z) ∧ R(x', y', z') ∧ (x = x') ⇒ (y = y')

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

21

Adding functional dependencies

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

21

Adding functional dependencies

A structure S verifies a set of UFD {φ1, . . . ,φn} if S ⊨ φ1 ∧ · · · ∧ φn.

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

22

All the previous problems: 

• CQ-CONTAINMENT
• CQ-EQUIVALENCE
• CQ-MINIMIZATION

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies

Adding functional dependencies

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

22

All the previous problems: 

• CQ-CONTAINMENT
• CQ-EQUIVALENCE
• CQ-MINIMIZATION

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies

Adding functional dependencies

Modify the canonical structure Gφ …

 ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj)

"R[i⟶j]" : in relation R the i-th component determines the j-th component

 A unary functional dependency is a sentence of the form

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

x
y

z

y'

z'

w'

w

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

x
y

z

y'

z'

w'

w

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

y'

z'

y
z

w

x

w'

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

y'

z'

y
z

w

x

w'

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

y'

z'

w

y
z

x

23

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w') 

 under functional dependencies F={ R1[1⟶2], R2: [1⟶3] }

y'

z'

w

y
z

x = chaseF(Gφ) (the chased canonical structure)

• chaseF(Gφ) is unique and  
 can be constructed in polynomial time

24

Adding functional dependencies

φ ∈ CQ
FD's F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

24

Adding functional dependencies

φ ∈ CQ
FD's F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

The static analysis problems restricted to FD's can now be also shown in NP

• CQ-Containment

• CQ-Equivalence

• CQ-Minimization

φ ⊆F ψ iff chaseF(φ) ⊆ chaseF(ψ)

φ ≣F ψ iff chaseF(φ) ≣ chaseF(ψ)

iff chaseF(φ) is minimalφ is minimal wrt  
structures verifying F

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

underlying
undirected graph is

acyclic

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

acyclic

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t

y

x

acyclic

25

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t

y

x

acyclic

non acyclic

26

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

26

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

26

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

26

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in
two nodes, then it occurs in

the path linking the two
nodes.

26

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in
two nodes, then it occurs in

the path linking the two
nodes.

Alternatively, if its
canonical hyper-graph is

α-acyclic.

27

Acyclic CQ’s

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) E(x,z)

E(z,t)E(y,z)

join tree

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

not a join tree a join tree

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

28

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

The semi-join

R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S
 where xik = yjk for all k}

Note: R ⋉{i1=j1,…,in=jn} S ⊆ R

