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Recap

• Active domain semantics and expressiveness:   FOact =* RA 

• Undecidable problems (Halting ≤ Domino ≤ FO-Satisfiability ≤ FO-Equivalence) 

• Data complexity / Combined complexity 

• Evaluation problem for FO: in PSPACE              (combined comp.)  
                                                        in PSPACE              (query comp.)  
                                                        in LOGSPACE      (data comp.)  

• Positive FO: evaluation in NP   (combined comp.) 

• Conjunctive Queries
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))
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Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select  ...  
From  ...  
Where  Z

no negation or disjunction

It corresponds to positive  
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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Homomorphisms

S = (V, R1 , R2) S' = (V ', R1' , R2')

Homomorphism  between structures  S=(V, R1, …, Rn)  and  S '=(V ', R1', …, Rn') 
                                   is a function   h : V  ⟶ V '   such that 
                                                             (x1, …, xn) ∈ Ri   implies   (h(x1), …, h(xn)) ∈ Ri'
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Homomorphisms

G   = (V, E) G' = (V', E' )

Homomorphism  between structures  S=(V, R1, …, Rn)  and  S '=(V ', R1', …, Rn') 
                                   is a function   h : V  ⟶ V '   such that 
                                                             (x1, …, xn) ∈ Ri   implies   (h(x1), …, h(xn)) ∈ Ri'
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Gφ = (V, E) G' = (V', E' )

Canonical structures
Canonical structure   Gφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ
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Gφ = (V, E) G' = (V', E' )

Canonical structures
Canonical structure   Gφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))
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Gφ = (V, E) G' = (V', E' )

Canonical structures
Canonical structure   Gφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))
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z

Fact 1:   Gφ ⊨ φ
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Gφ = (V, E) G' = (V', E' )

Canonical structures
Canonical structure   Gφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1:   Gφ ⊨ φ Fact 2:   h(Gφ) ⊨ φ

v1 v2

v3
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Gφ = (V, E) G' = (V', E' )

Canonical structures
Canonical structure   Gφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1:   Gφ ⊨ φ Fact 2:   h(Gφ) ⊨ φ
Fact 3: 

G'' ⊨ φ   iff   ∃ h: Gφ  ⟶  G ''

v1 v2

v3



Gφ = (V, E) G' = (V', E' )Gφ = (V, E)

E.g.:     φ (x) =  ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z
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Evaluation via homomorphisms

Lemma.  The evaluation of a  CQ  φ(x1, …, xn)  on  S'  returns the set 
                           φ(S' )  =  { (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S' } 

v1 v2

v3



Gφ = (V, E) G' = (V', E' )Gφ = (V, E)

E.g.:     φ (x) =  ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y
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Evaluation via homomorphisms

Lemma.  The evaluation of a  CQ  φ(x1, …, xn)  on  S'  returns the set 
                           φ(S' )  =  { (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S' } 

Question:     Which are the  
homomorphisms Gφ ⟶ G'  ?  
What is the result of  φ(G' ) ?

v1 v2

v3
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Evaluation via homomorphisms

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Gφφ= (V, E) G' = (V', E' )

v1 v2

v3

x

y

z

Theorem.   Evaluation of  CQ  is in NP                      (combined complexity)
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Evaluation via homomorphisms

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G' = (V', E' )

v1 v2

v3

x

y

z

Theorem.   Evaluation of  CQ  is in NP                      (combined complexity)
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Evaluation via homomorphisms

1. Guess  h: Gφ ⟶ G 

2. Check that it is a homomorphism 

3. Output YES  if  (h(x1), …, h(xn)) = (a1, …, an);  NO otherwise.

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G' = (V', E' )

v1 v2

v3

x

y

z

Theorem.   Evaluation of  CQ  is in NP                      (combined complexity)
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Evaluation via homomorphisms

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Evaluation via homomorphisms

K3

Input:      A graph G 

Output:  Can we assign a colour from {R,G,B} to each node  
                  so that adjacent nodes have always different colours ? 
                                                      = 
                  Is there a  homomorphism  from G to K3 ?

NP-complete problem: 3-COLORABILITY

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Evaluation via homomorphisms

K3

Input:      A graph G 

Output:  Can we assign a colour from {R,G,B} to each node  
                  so that adjacent nodes have always different colours ? 
                                                      = 
                  Is there a  homomorphism  from G to K3 ?

NP-complete problem: 3-COLORABILITY

Reduction 3COL ⤳ CQ-EVAL:  1.  Given G,  build a CQ φ  such that  Gφ = G. 
                                                                 2.  Test if  () ∈ φ(K3). 

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Monotonicity and preservation theorems

Lemma.    Every CQ is monotone: 

                    S ⊆ S '   implies   φ(S ) ⊆ φ(S ')
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Monotonicity and preservation theorems

Lemma.    Every CQ is monotone: 

                    S ⊆ S '   implies   φ(S ) ⊆ φ(S ')

Proof:   
φ(S )  =  { (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 

           ⊆  { (h' (x1), …, h' (xn) )  |  h' : Gφ  ⟶ S' }  
           =  φ(S' )
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Monotonicity and preservation theorems

Lemma.    Every CQ is monotone: 

                    S ⊆ S '   implies   φ(S ) ⊆ φ(S ')

Proof:   
φ(S )  =  { (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 

           ⊆  { (h' (x1), …, h' (xn) )  |  h' : Gφ  ⟶ S' }  
           =  φ(S' )

“The relation R has at most 2 elements” ∉ CQ 

“There is a node connected to every other node” ∉ CQ 

“The radius of the graph is 5” ∉ CQ
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Monotonicity and preservation theorems

Theorem.    If an FO query φ is monotone 

                       then   φ  ∈  UCQ [Rossman '08]
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≈  ∃ ⋀ ⋁  fragment of FO



11

Monotonicity and preservation theorems

Theorem.    If an FO query φ is monotone 

                       then   φ  ∈  UCQ [Rossman '08]

  Finite unions of CQs 

≈  ∃ ⋀ ⋁  fragment of FO

Equally expressive, but 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Monotonicity and preservation theorems

• One example of the few properties which still hold on finite structures. 

• Proof in the finite is difficult and independent.

Theorem.    If an FO query φ is monotone 

                       then   φ  ∈  UCQ [Rossman '08]

  Finite unions of CQs 

≈  ∃ ⋀ ⋁  fragment of FO

Equally expressive, but 
UCQ are less succinct



12

The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT?  What is the complexity?
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The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT?  What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

Gφ  ⊨ φ
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT
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Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!
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1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!
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1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

Why?
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Static analysis with CQs
1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)
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3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 

If there is  h: Gφ ⟶ S  
Then there is  g: Gψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

{ (g(y1), …, g(yn) )  |  g : Gψ  ⟶ S } 
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 

If there is  h: Gφ ⟶ S  
Then there is  g: Gψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Gφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Gψ  ⟶ S } 



[⟸]  Consider S and  (v1,…,vn) ∈  φ(S).  

Then, (v1,…,vn) = (h(x1), …, h(xn)) for some  h :  Gφ  ⟶ S.
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If there is  h: Gφ ⟶ S  
Then there is  g: Gψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Gφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Gψ  ⟶ S } 

Since g(y1, …, yn) = (x1, …, xn),  then (v1, …, vn) = h(x1, …, xn) = h(g(y1, …, yn)).



[⟸]  Consider S and  (v1,…,vn) ∈  φ(S).  
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Gψ  ⟶ Gφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Gφ  ⟶ S } 

If there is  h: Gφ ⟶ S  
Then there is  g: Gψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Gφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Gψ  ⟶ S } 

Since g(y1, …, yn) = (x1, …, xn),  then (v1, …, vn) = h(x1, …, xn) = h(g(y1, …, yn)).

h ° g   is a homomorphism from Gψ to S.      Hence, (v1, …, vn) ∈ ψ(S).
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) = ψ(S)  holds for every S ?       (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) = ψ(S)  holds for every S ?       (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem.   The equivalence problem for CQ is NP-complete

1.  n = m 
2a.  There is  g: Gψ  ⟶ Gφ 

2b.  There is  h: Gφ  ⟶ Gψ 
3a.  g(yi) = xi   for all i 
3b.  h(xi) = yi   for all i

φ≣ψ    iff
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Static analysis with CQs

Amounts to testing if  Gφ and Gψ  are  hom-equivalent 
                                                        (homomorphisms in both senses)

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) = ψ(S)  holds for every S ?       (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem.   The equivalence problem for CQ is NP-complete

1.  n = m 
2a.  There is  g: Gψ  ⟶ Gφ 

2b.  There is  h: Gφ  ⟶ Gψ 
3a.  g(yi) = xi   for all i 
3b.  h(xi) = yi   for all i

φ≣ψ    iff
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Static analysis with CQs

Query optimisation: Can I simplify the query?
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a smaller CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION

smaller = with less number of atoms

Query optimisation: Can I simplify the query?
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a smaller CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a smaller CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION

Theorem.   The minimization problem for CQ is NP-complete
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a smaller CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION

Amounts to testing if there is a smaller structure hom-equivalent to Gφ   
≈ testing if there is a  non-injective endomorphism  
                                                    g: Gφ ⟶ Gφ  

The smallest structure hom-equivalent to S  is called the core of S, and 
it is unique.

Theorem.   The minimization problem for CQ is NP-complete
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Static analysis with CQs

Question:  • Is φ = ∃ x,y,z  R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?  

                      • What is its minimal equivalent query? 

Answer:
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Gφ 
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Static analysis with CQs

Question:  • Is φ = ∃ x,y,z  R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?  

                      • What is its minimal equivalent query? 

Answer:

core(Gφ)

x zR
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x

y
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Static analysis with CQs

Question:  • Is φ = ∃ x,y,z  R(x,y) ∧ R(x,z) ∧ S(z,z) ∧ S(z,y) minimal?  

                      • What is its minimal equivalent query? 

Answer:

No! ψ = ∃ x,z  R(x,z) ∧ S(z,z) is the minimal query s.t. φ ≣ ψ

core(Gφ)

x zR
Shom

Gφ 

x

y

zR

R S

S
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Adding functional dependencies
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Adding functional dependencies

key constraints like 
                "column SSN determines column Name in the table Employees" 
                (component i)                    (component j)        (relation)

e.g.
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Adding functional dependencies

                    ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj) 

"R[i⟶j]" : in relation R the i-th component determines the j-th component

   A  unary functional dependency  is a sentence of the form
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Adding functional dependencies

Agent Name Drives

007 James Bond Aston Martin

200 Mr Smith Cadillac

201 Mrs Smith Mercedes

3 Jason Bourne BMW

Example:  In the following relation we may enforce the functional dependency 

      𝜸  =  ∀ x, y, z, x', y', z'  R(x, y, z) ∧ R(x', y', z' ) ∧ ( x = x' )  ⇒  ( y = y' )

                    ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj) 

"R[i⟶j]" : in relation R the i-th component determines the j-th component

   A  unary functional dependency  is a sentence of the form
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Adding functional dependencies

A structure S verifies a set of  UFD {φ1, . . . ,φn}  if S ⊨ φ1 ∧ · · · ∧ φn.
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remain in NP if we further restrict finite structures 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Adding functional dependencies

Modify the canonical structure Gφ …

                    ∀ x1,…,xn,y1,…,yn . R(x1,…,xn) ∧ R(y1,…,yn) ∧ (xi = yi) ⇒ (xj = yj) 

"R[i⟶j]" : in relation R the i-th component determines the j-th component

   A  unary functional dependency  is a sentence of the form
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Adding functional dependencies

CQ    φ  =  R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w' ) 

          under functional dependencies   F={ R1[1⟶2],  R2: [1⟶3] }

x
y

z

y'

z'

w'

w
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Adding functional dependencies

CQ    φ  =  R2(x, y, z) ∧ R2(x, y', z') ∧ R1(z, w) ∧ R1(z', w' ) 

          under functional dependencies   F={ R1[1⟶2],  R2: [1⟶3] }

y'

z'

w

y
z

x =  chaseF(Gφ)   (the chased canonical structure)

•   chaseF(Gφ)  is unique and  
  can be constructed in polynomial time
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Adding functional dependencies

φ ∈ CQ 
FD's F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ
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Adding functional dependencies

φ ∈ CQ 
FD's F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

The static analysis problems restricted to FD's can now be also shown in NP

• CQ-Containment 

• CQ-Equivalence 

• CQ-Minimization

φ ⊆F ψ    iff    chaseF(φ) ⊆ chaseF(ψ) 

φ ≣F ψ    iff    chaseF(φ) ≣ chaseF(ψ) 

iff    chaseF(φ) is minimalφ is minimal wrt  
structures verifying F      
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Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like
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Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying 
undirected graph is 

acyclic

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t

y

x

acyclic

non acyclic
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On graphs: CQ φ is acyclic if Gφ is tree-like
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A join tree is a tree T st: 
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• for every variable x of φ the set of  Ri(z̄i)’s with x ∈ z̄i forms a subtree of T
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Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st: 
• nodes are the atoms Ri(z̄i) 
• for every variable x of φ the set of  Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in 
two nodes, then it occurs in 

the path linking the two 
nodes.

Alternatively, if its 
canonical hyper-graph is 

α-acyclic.
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Acyclic CQ’s

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) E(x,z)

E(z,t)E(y,z)

join tree

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

not a join tree a join tree

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)
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Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

The semi-join

R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k} 

Note:  R ⋉{i1=j1,…,in=jn} S   ⊆   R


