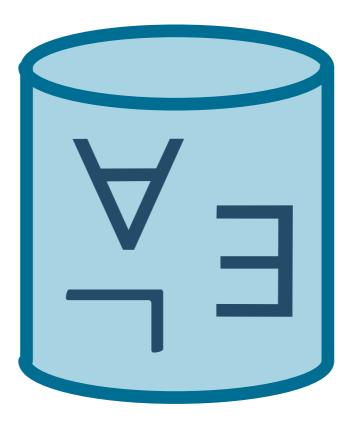
day 4

ESSLLI 2016 Bolzano, Italy



Logical foundations of databases

Diego Figueira

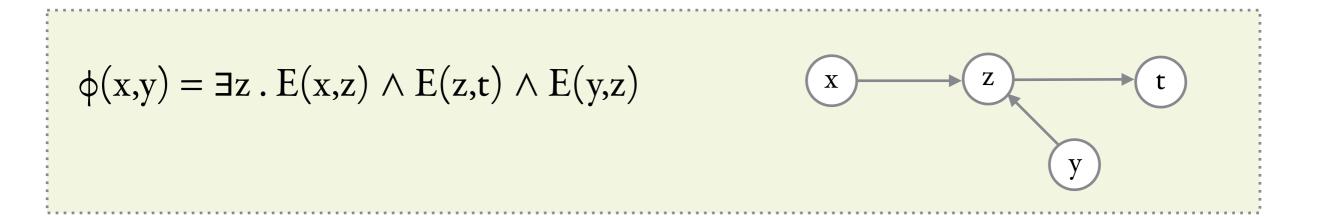
Gabriele Puppis

CNRS LaBRI

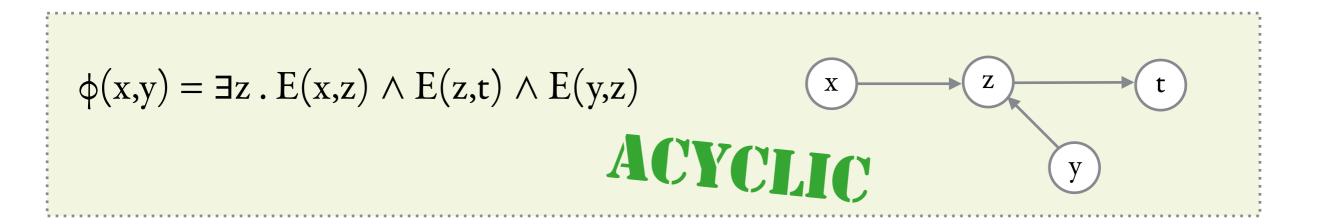
- Conjunctive Queries (correspondence with SQL and Relational Algebra)
- Homomorphisms and canonical structure
- Evaluation of CQ (NP-completeness)
- Containment, Equivalence, Minimisation of CQ (NP-completeness)
- Extension to functional dependencies (chased canonical structure)
- Acyclic Conjunctive Queries

underlying undirected graph is acyclic

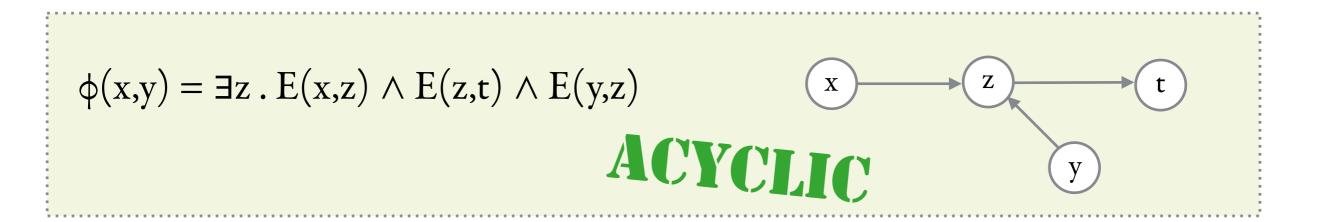
underlying undirected graph is acyclic



underlying undirected graph is acyclic

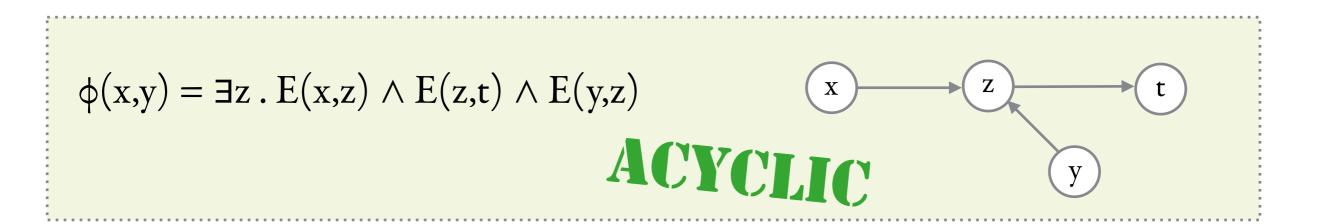


underlying undirected graph is acyclic



$$\phi(\mathbf{x},\mathbf{y}) = \exists \mathbf{z} \cdot \mathbf{E}(\mathbf{x},\mathbf{z}) \land \mathbf{E}(\mathbf{z},\mathbf{t}) \land \mathbf{E}(\mathbf{y},\mathbf{z}) \land \mathbf{E}(\mathbf{x},\mathbf{y}) \quad \mathbf{x} \quad \mathbf{z} \quad \mathbf{y} \quad \mathbf{t}$$

underlying undirected graph is acyclic



$$\phi(x,y) = \exists z . E(x,z) \land E(z,t) \land E(y,z) \land E(x,y) \xrightarrow{x} \xrightarrow{z} \xrightarrow{y} t$$

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

 $\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$

On graphs: CQ φ is acyclic if G_φ is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ φ is acyclic if G_φ is tree-like

On general structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

If x occurs in two nodes, then it occurs in the path linking the two nodes.

A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- \bullet for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

Alternatively, if its canonical hyper-graph is α-acyclic.

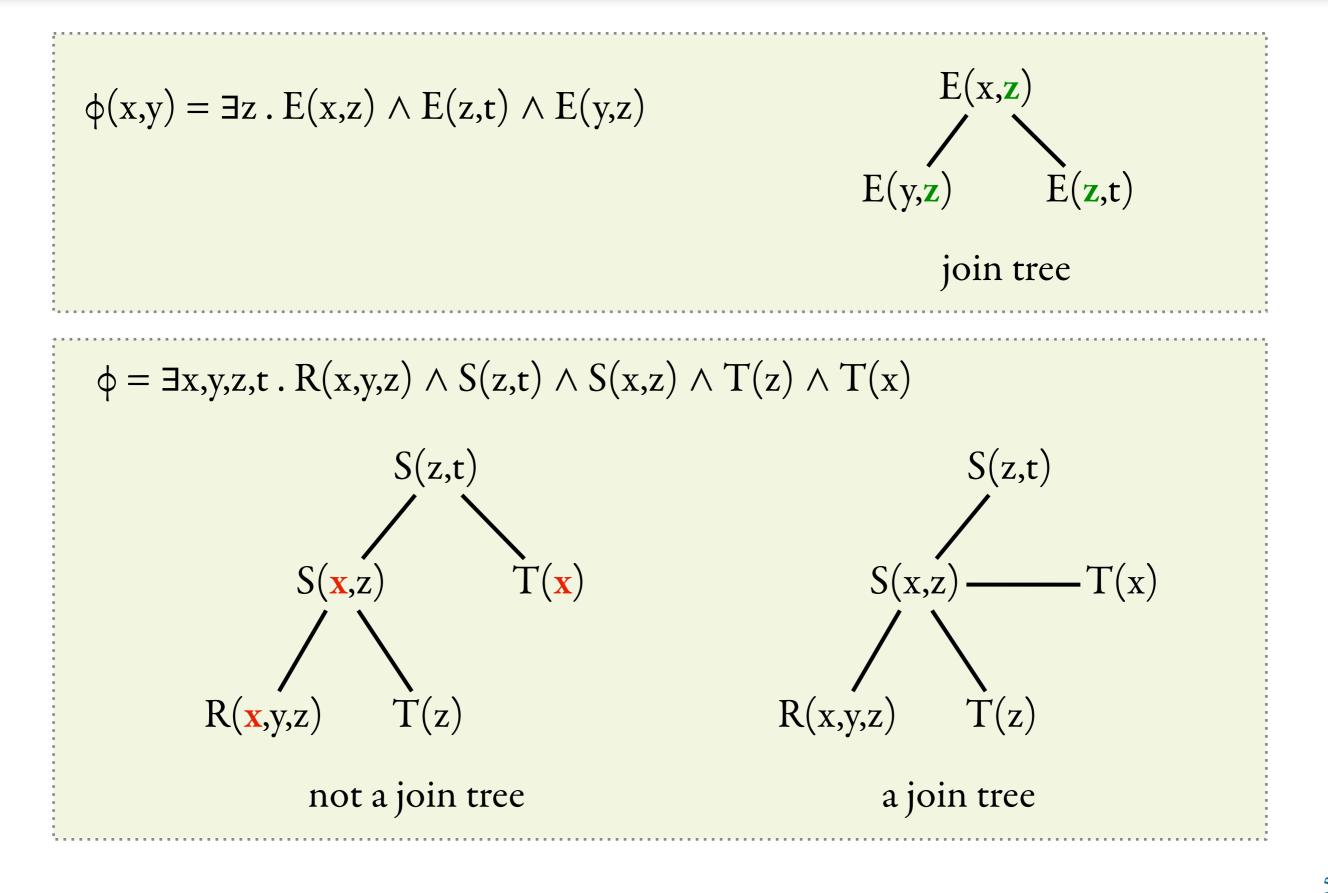
On general structures: a CQ ϕ is acyclic if it has a join tree

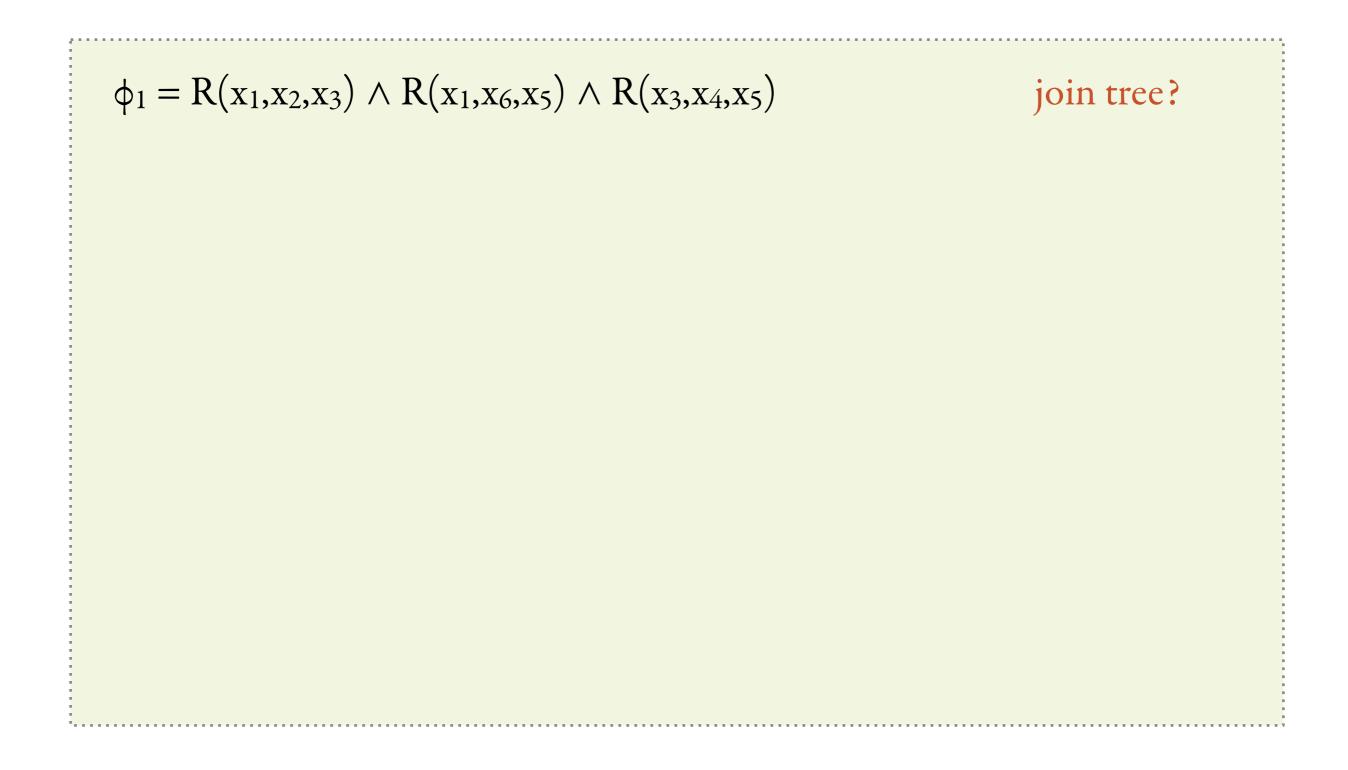
$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

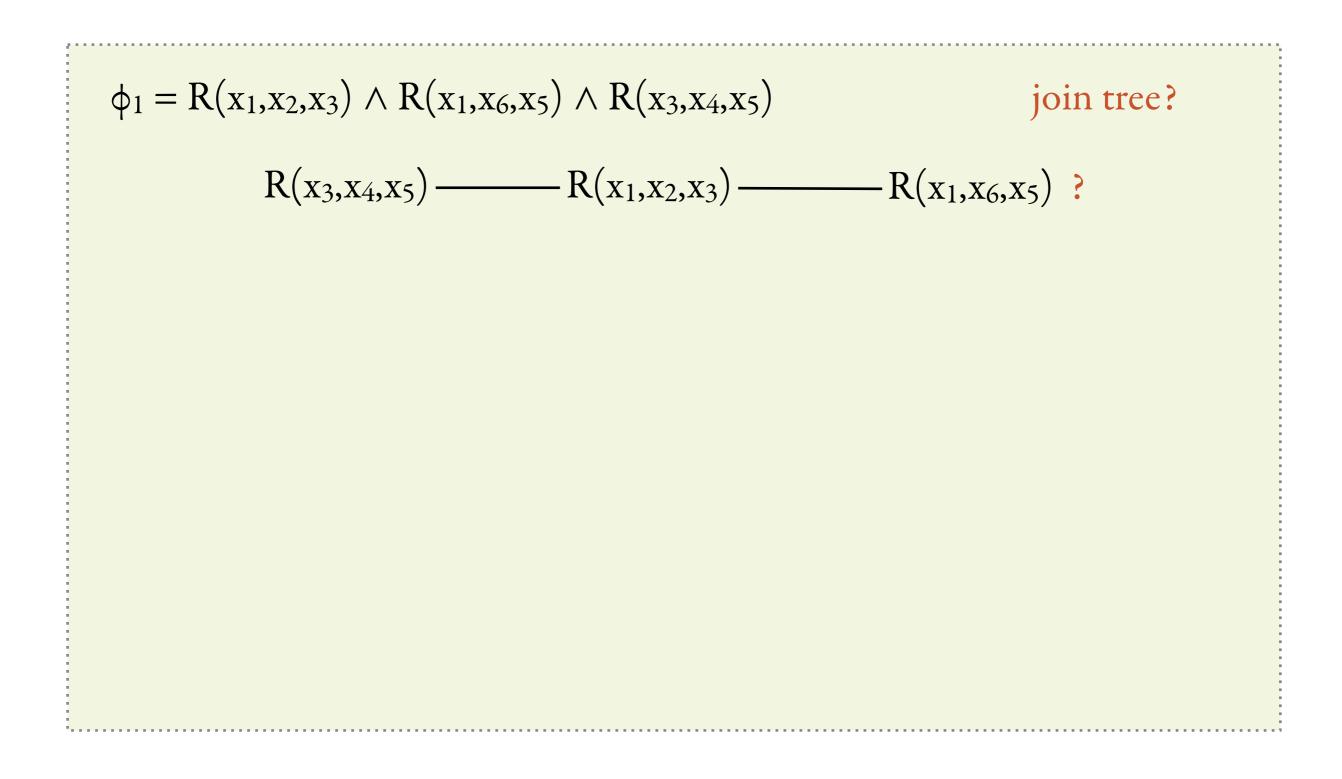
If x occurs in two nodes, then it occurs in the path linking the two nodes.

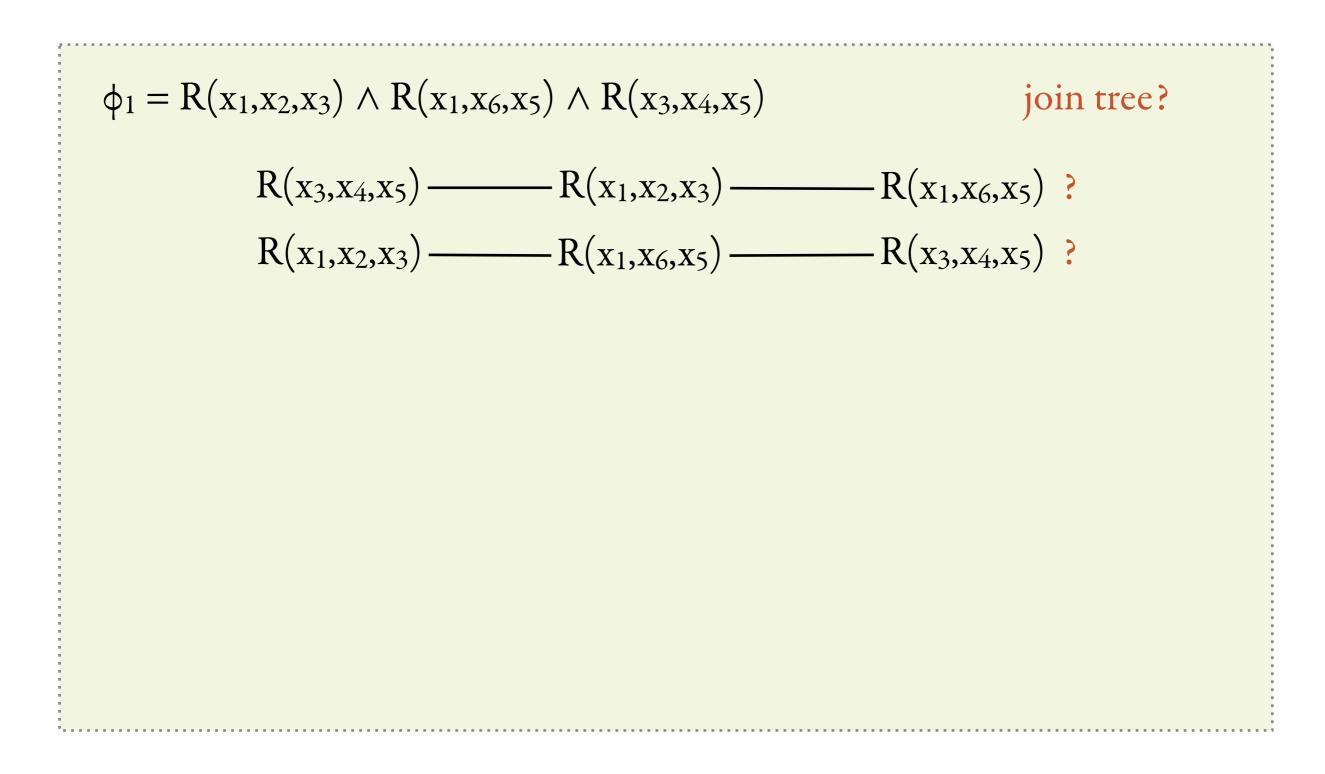
A join tree is a tree T st:

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T







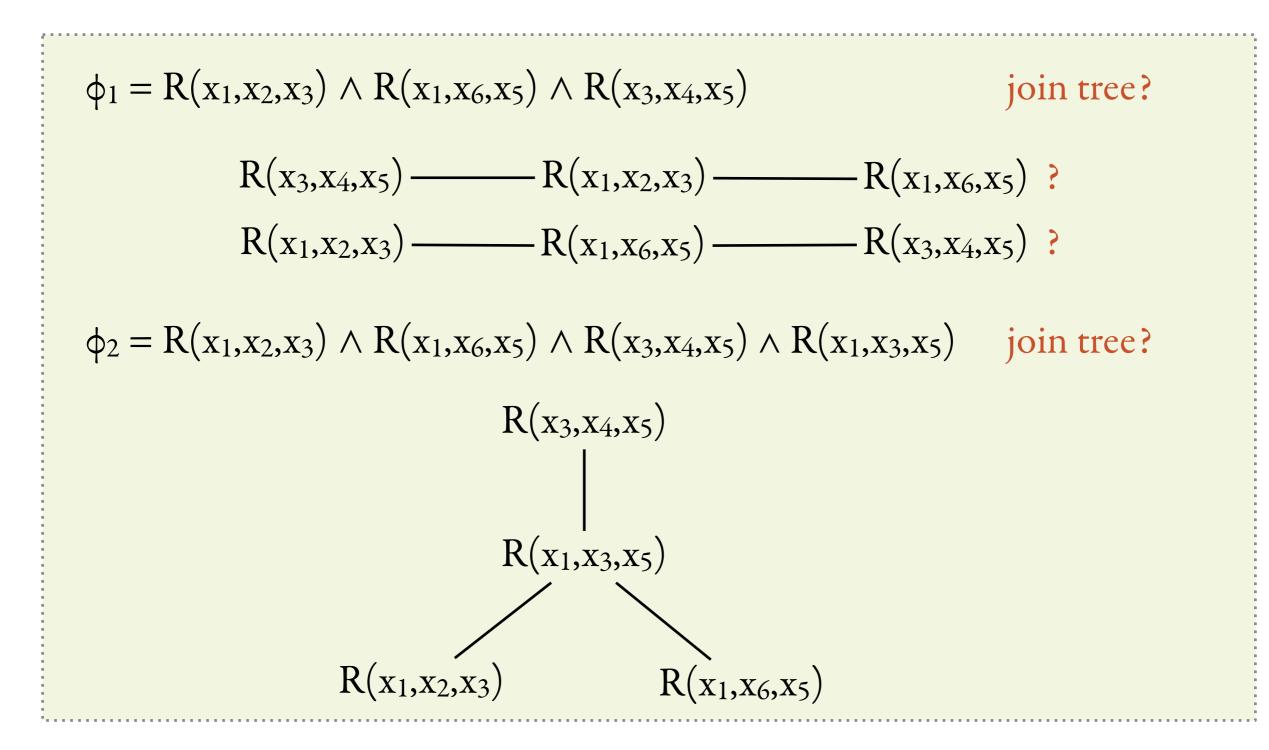


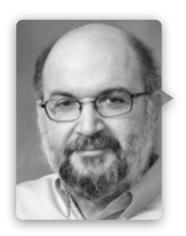
$$\phi_{1} = R(x_{1}, x_{2}, x_{3}) \land R(x_{1}, x_{6}, x_{5}) \land R(x_{3}, x_{4}, x_{5})$$
 join tree?

$$R(x_{3}, x_{4}, x_{5}) \longrightarrow R(x_{1}, x_{2}, x_{3}) \longrightarrow R(x_{1}, x_{6}, x_{5}) ?$$

$$R(x_{1}, x_{2}, x_{3}) \land R(x_{1}, x_{6}, x_{5}) \land R(x_{3}, x_{4}, x_{5}) \land R(x_{1}, x_{3}, x_{5})$$
 join tree?

$$\phi_{2} = R(x_{1}, x_{2}, x_{3}) \land R(x_{1}, x_{6}, x_{5}) \land R(x_{3}, x_{4}, x_{5}) \land R(x_{1}, x_{3}, x_{5})$$
 join tree?





The evaluation problem for acyclic CQ sentences is in $O(|\varphi|.|D|)$

[Yannakakis]

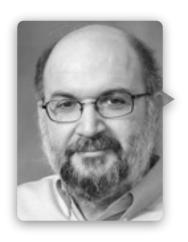
The semi-join

$$\begin{split} R \Join_{\{i_1=j_1,\ldots,i_n=j_n\}} S = \{ (x_1,\ldots,x_n) \in R \mid \text{there is } (y_1,\ldots,y_m) \in S \\ & \text{where } x_{i_k} = y_{j_k} \text{ for all } k \rbrace \end{split}$$

Note: $\mathbb{R} \Join_{\{i_1=j_1,\dots,i_n=j_n\}} S \subseteq \mathbb{R}$

The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$ [Yannakakis]

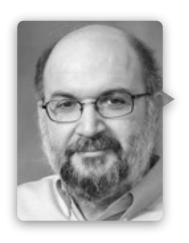
- 1. Compute the join tree T for ϕ
- 2. Populate the nodes of T with corresponding relations of D
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ perform $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.



The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$ [Yannakakis]

in linear time

- 1. Compute the join tree T for ϕ
- 2. Populate the nodes of T with corresponding relations of D
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ perform $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.



The evaluation problem for acyclic CQ sentences is in $O(|\varphi|.|D|)$

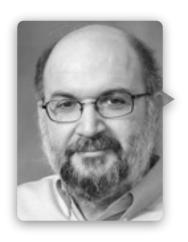
[Yannakakis]

in linear time

- 1. Compute the join tree T for ϕ
- 2. Populate the nodes of T with correspondi
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(v R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.

remove all the tuples from the parent that do not match a tuple from the child

4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.

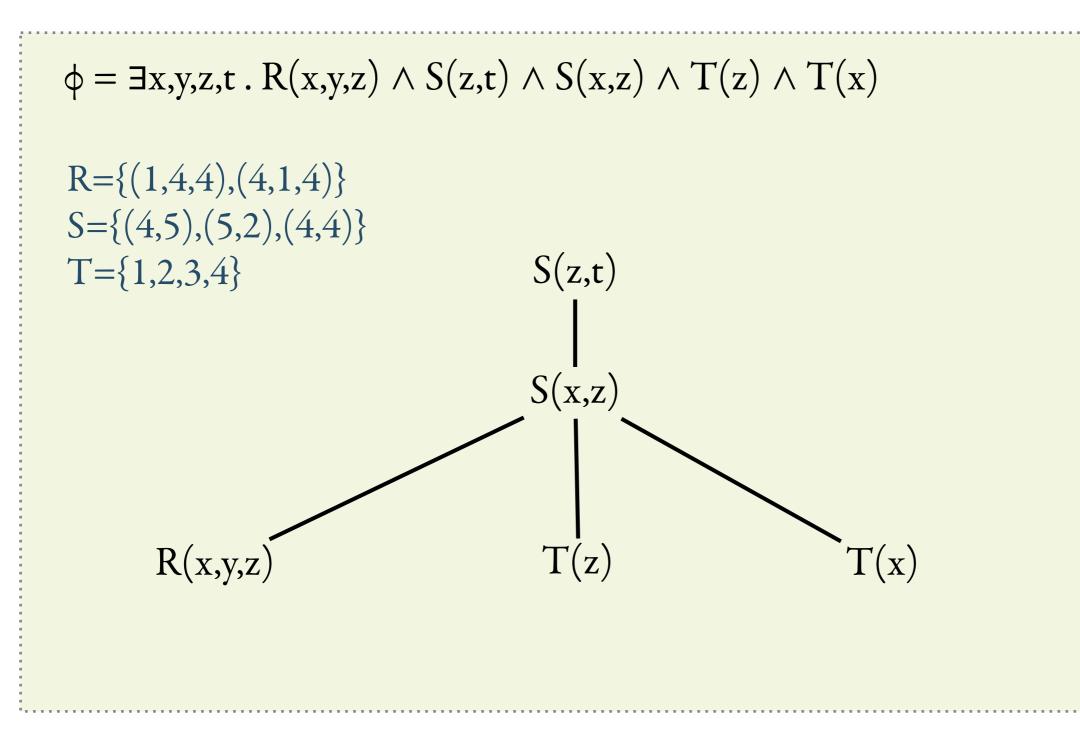


The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$ [Yannakakis]

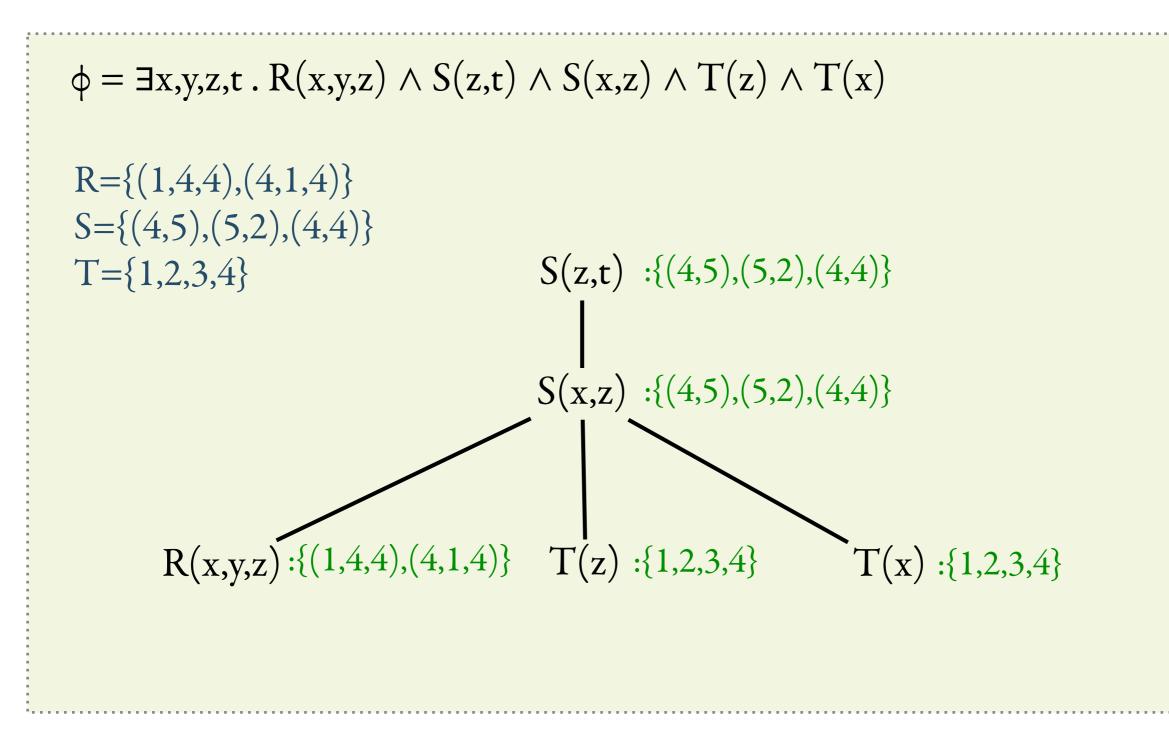
in linear time

- 1. Compute the join tree T for ϕ
- 2. Populate the nodes of T with corresponding relations of D
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ perform $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.

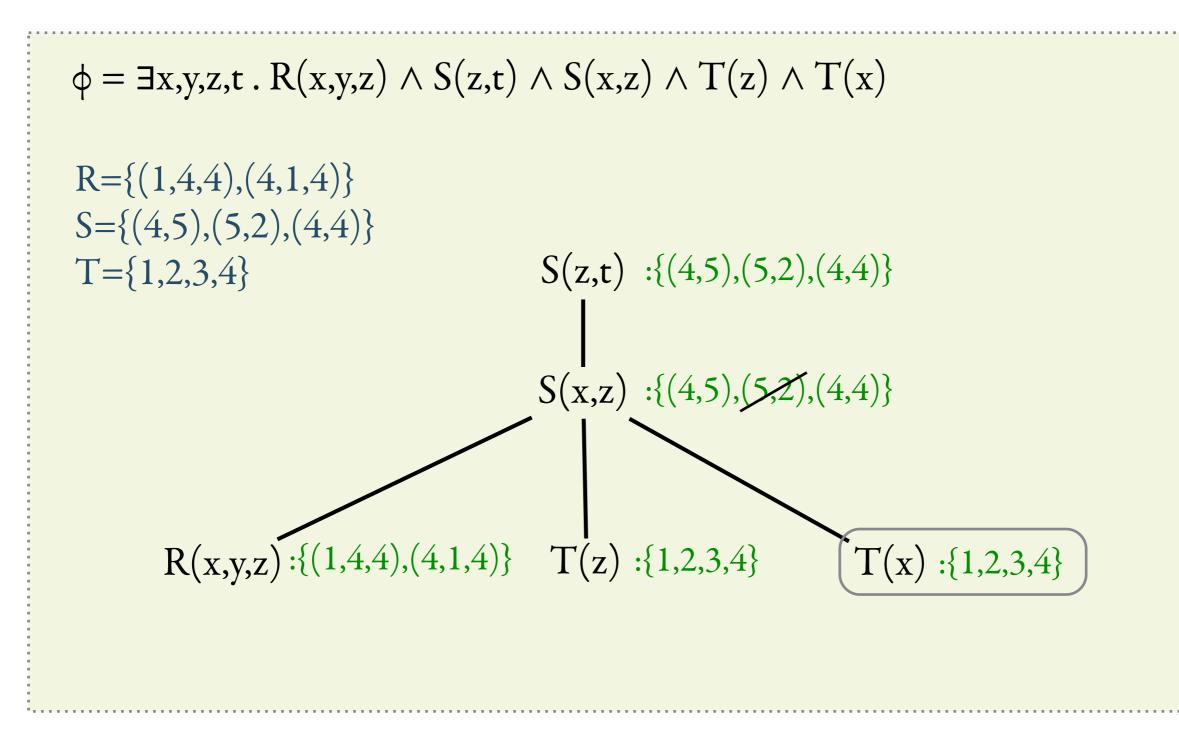
The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



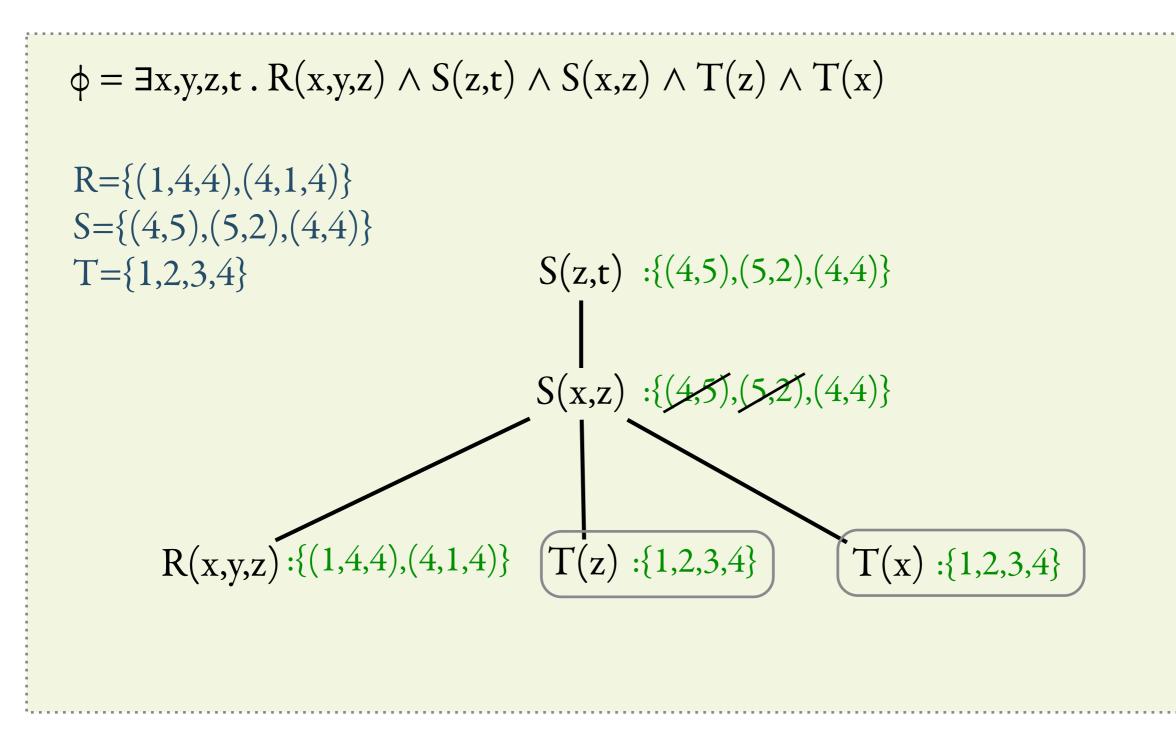
The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



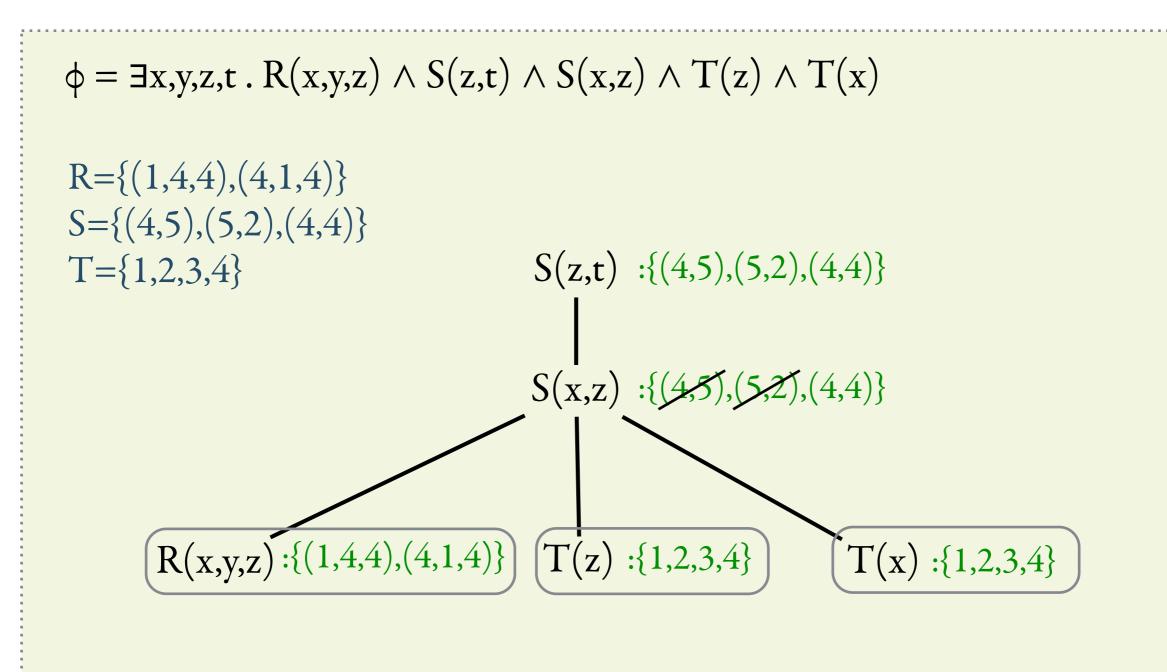
The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



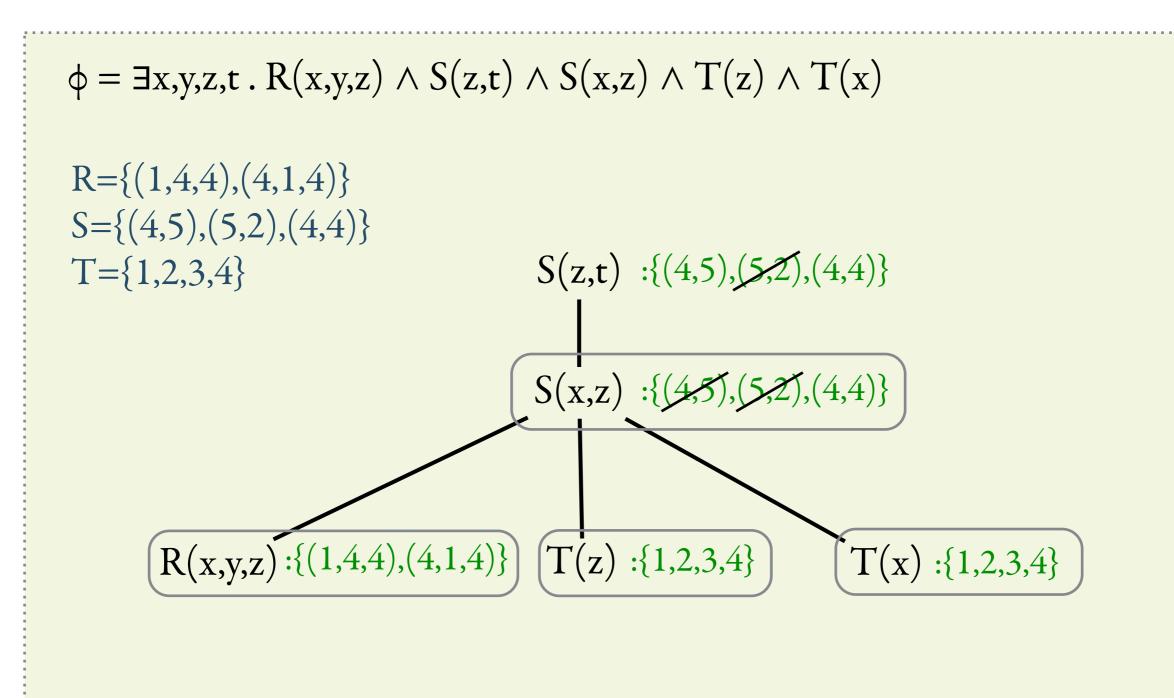
The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



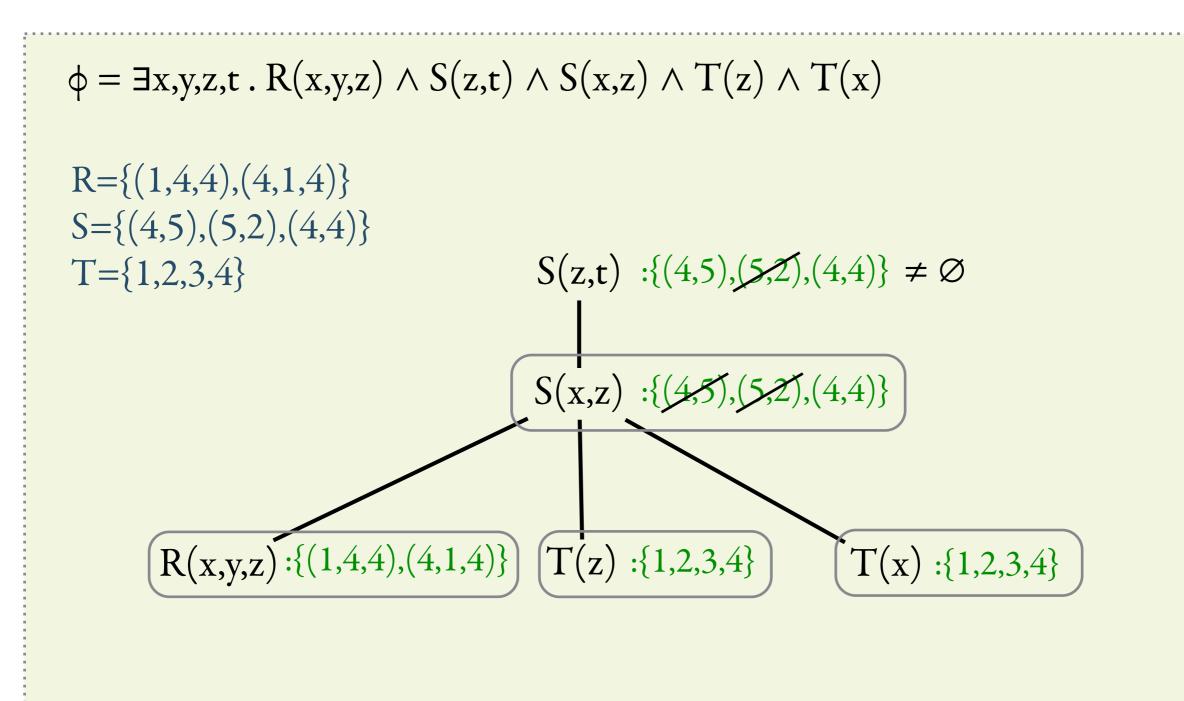
The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$



How to compute a join tree?

GYO reducts [Graham, Yu, Ozsoyoglu]

An ear of a hypergraph (V,E) is a hyperedge e in E such that one of the following conditions holds:

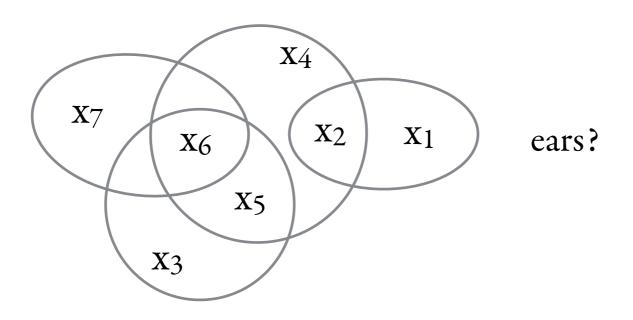
(1) There is a witness e' in E, such that $e' \neq e$ and each

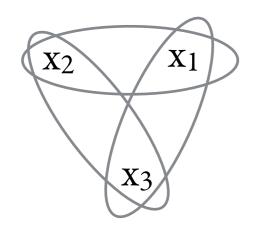
vertex from e is either

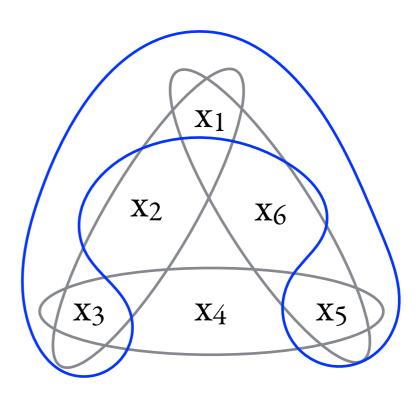
(a) **only** in **e** or

(b) in **e'**; or

(2) e has no intersection with any other hyperedge.







Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Theorem: TFAE

- The GYO reduct of a hyper graph G is empty
- \bullet A CQ φ having G as underlying canonical hyper-graph is acyclic
- The hyper graph **G** is α-acyclic

Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Theorem: TFAE

- The GYO reduct of a hyper graph G is empty
- \bullet A CQ φ having G as underlying canonical hyper-graph is acyclic
- The hyper graph **G** is α-acyclic

We can test acyclicity by computing the GYO reduct!

How to compute a join tree?

How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $\phi = R_1(X_1) \land \cdots \land R_n(X_n)$ Consider its canonical structure G_{ϕ} For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from ϕ . Repeat.

> E.g. R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $\phi = R_1(X_1) \land \cdots \land R_n(X_n)$ Consider its canonical structure G_{ϕ} For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from ϕ . Repeat.

> E.g. R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y) T(x,x) R(x,y,z) R(x,x,y) T(y,y)S(x,y)

How to compute a join tree?

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$ $R(x,x,y)$ $T(y,y)$
 $S(x,y)$

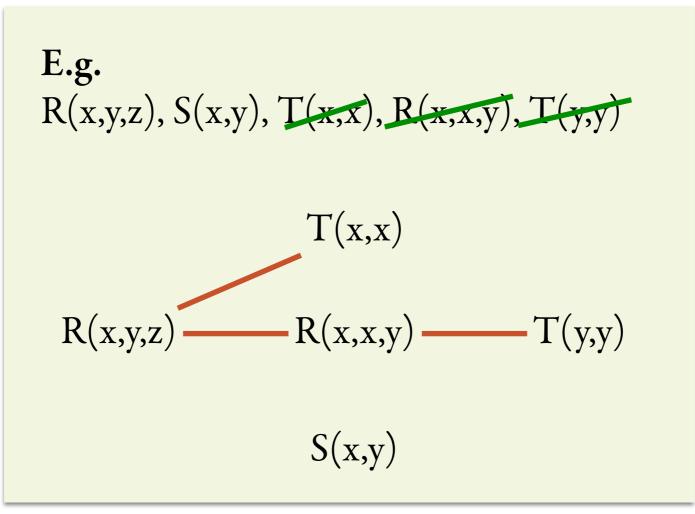
How to compute a join tree?

E.g.

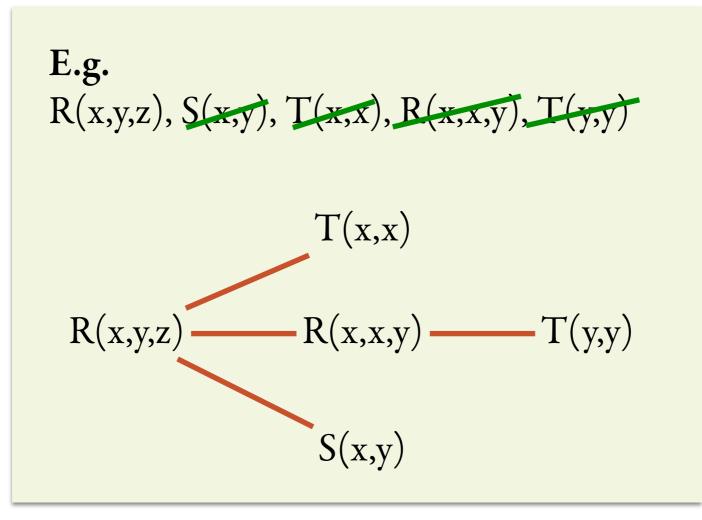
$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$
 $R(x,x,y)$
 $T(y,y)$
 $S(x,y)$

How to compute a join tree?



How to compute a join tree?



How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $\phi = R_1(X_1) \land \cdots \land R_n(X_n)$ Consider its canonical structure G_{ϕ} For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from ϕ . Repeat.

Remove ears until you're left with only one!

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$
 $R(x,y,z)$
 $R(x,x,y)$
 $T(y,y)$

[Gottlob, Leone, Scarcello]

- Evaluation problem for boolean ACQ's is LOGCFL-complete
- $NL \subseteq LOGCFL \subseteq AC^1 \subseteq NC^2 \subseteq P$

the class of problems logspace-reducible to a context-free language

Beyond acyclic CQ's

Treewidth = a measure of the cyclicity of (hyper-)graphs tw : $CQ \longrightarrow N$

For a fixed k,

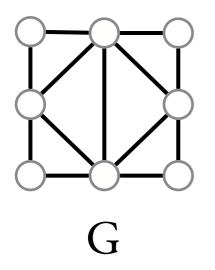
the evaluation pb for queries of tw $\leq k$ can be done in **polynomial time**.

[Chekuri, Rajaraman]

<u>Idea</u>: the lower tw(ϕ), the more ϕ resembles a tree

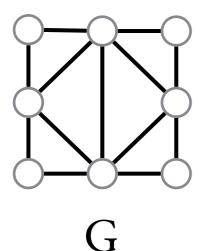
A tree decomposition of a graph G:
A bunch of graphs with a special edge "····" between their nodes so that
1) they have a tree shape and
2) collapsing "····" edges ~ G

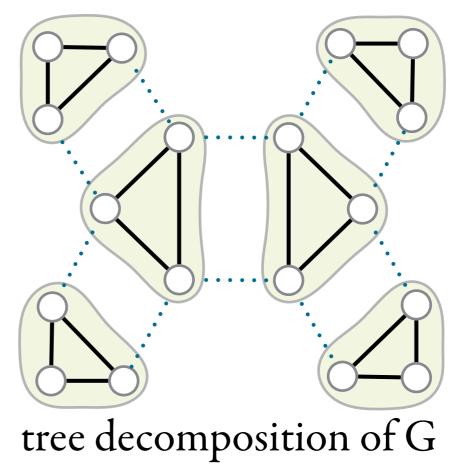
A tree decomposition of a graph G:
A bunch of graphs with a special edge "····" between their nodes so that
1) they have a tree shape and
2) collapsing "····" edges → G



A **tree decomposition** of a graph G: A bunch of graphs with a special edge "••••" between their nodes so that 1) they have a **tree shape** and

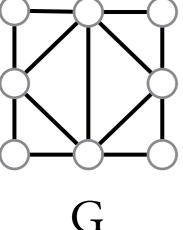
2) collapsing "...." edges $\sim G$

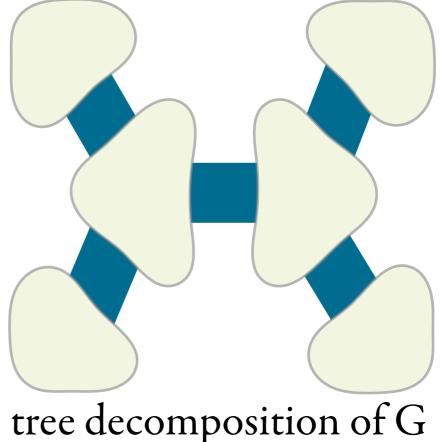




A tree decomposition of a graph G:
A bunch of graphs with a special edge "...." between their nodes so that

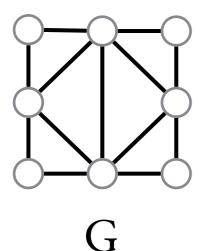
they have a tree shape and
collapsing "...." edges → G

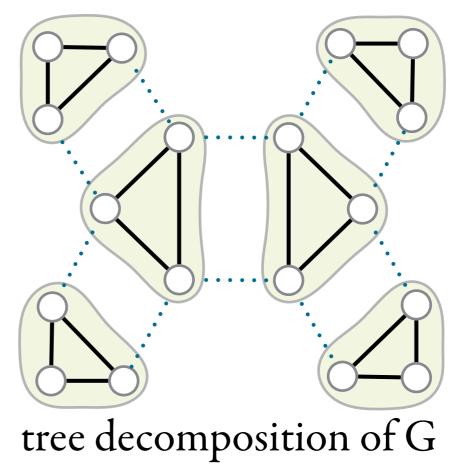




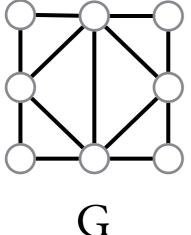
A **tree decomposition** of a graph G: A bunch of graphs with a special edge "••••" between their nodes so that 1) they have a **tree shape** and

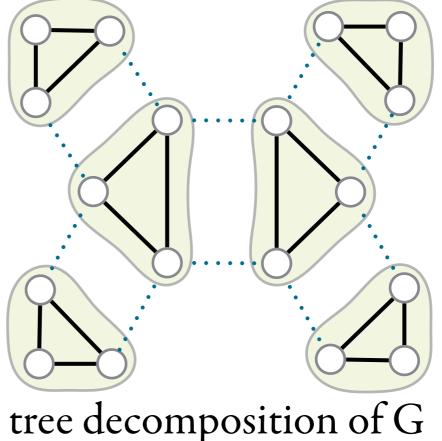
2) collapsing "...." edges $\sim G$





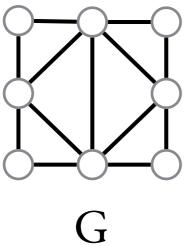
A tree decomposition of a graph G:
A bunch of graphs with a special edge "····" between their nodes so that
1) they have a tree shape and
2) collapsing "····" edges → G

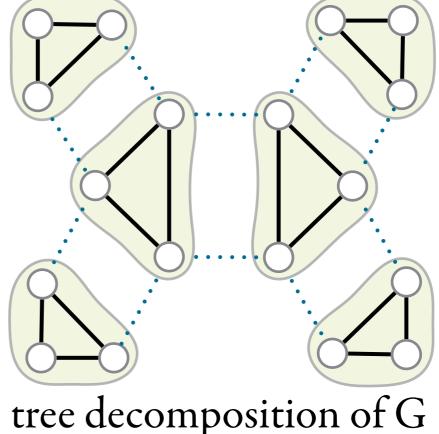




width of decomposition = maximum size of graphs -1

A tree decomposition of a graph G: A bunch of graphs with a special edge " \cdots " between their nodes so that 1) they have a tree shape and 2) collapsing " \cdots " edges \rightarrow G

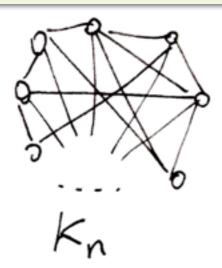




width of decomposition = maximum size of graphs -1tree-width of G = minimum width of decomposition of G

Tree-width, examples

(a tree)

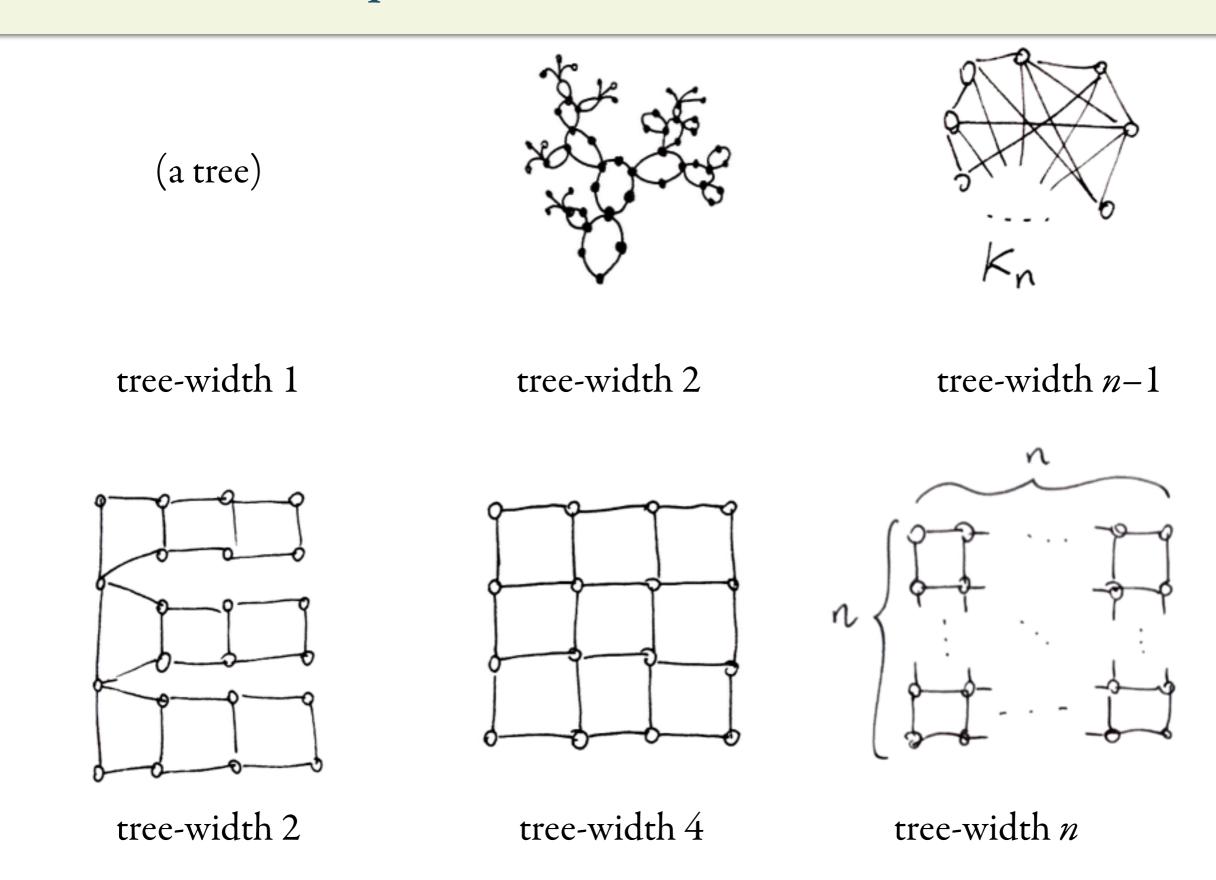


tree-width 1

tree-width 2

tree-width *n*–1

Tree-width, examples

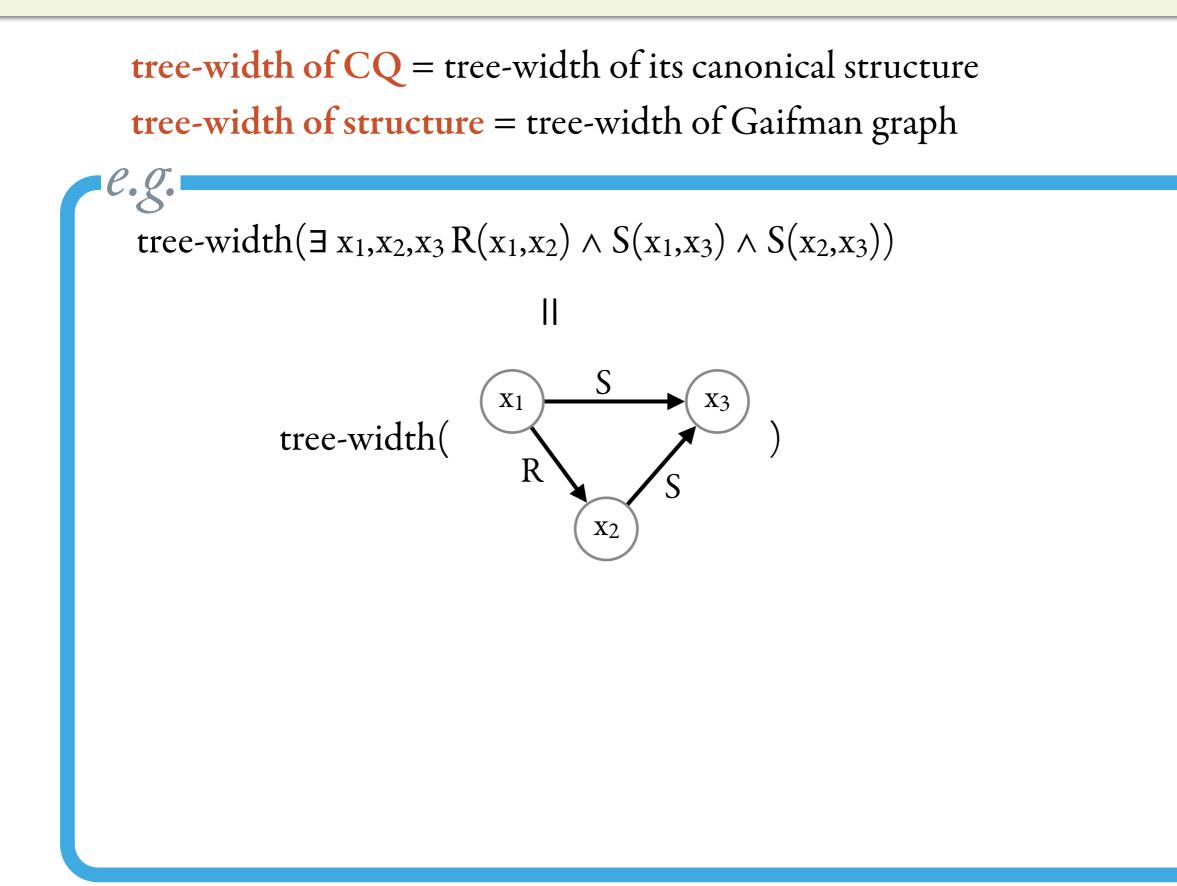


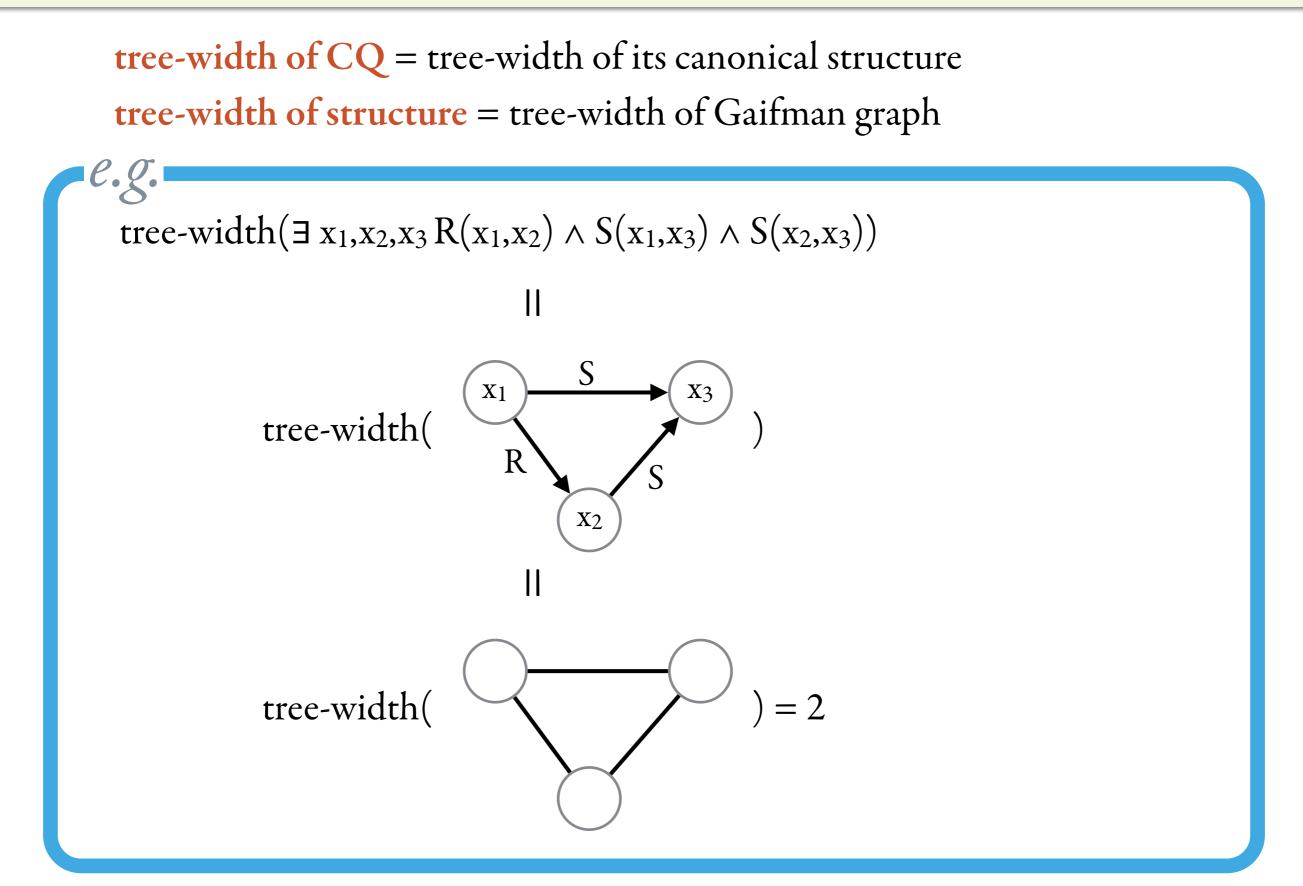
tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

e.g.

tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

tree-width($\exists x_1, x_2, x_3 R(x_1, x_2) \land S(x_1, x_3) \land S(x_2, x_3)$)





For a fixed *k*,

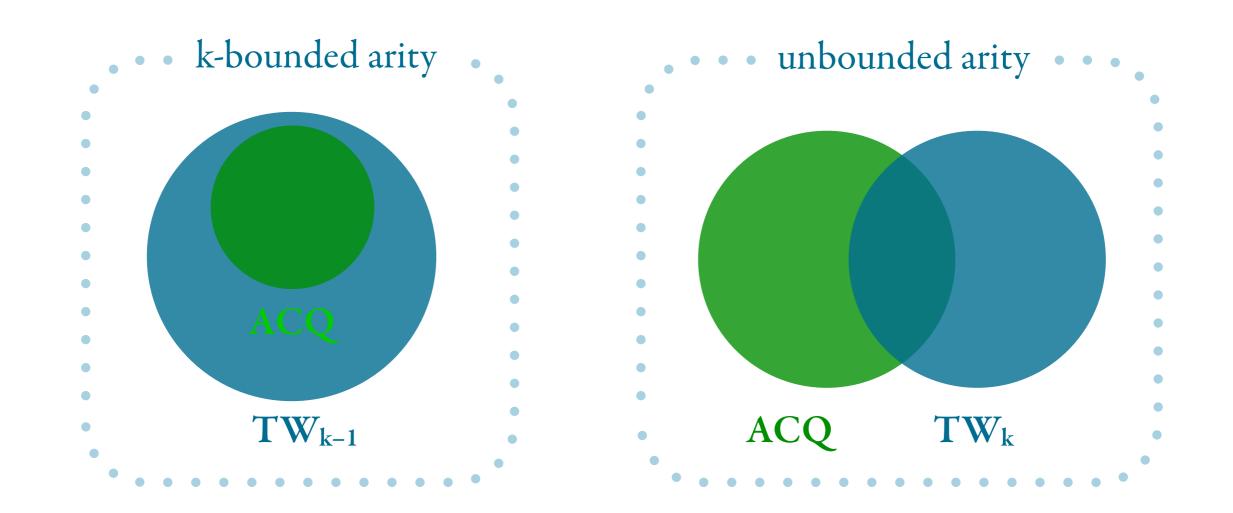
- computing whether $\phi \in CQ$ has tw $\leq k$

- calculating a tree decomposition

can be done in **linear time**.

[Bodlaender]

Tree-width vs. Acyclicity



CQ's with bounded treewidth can be evaluated in PTIME

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]

CQ's with bounded treewidth can be evaluated in PTIME

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]

CQ's can be evaluated in PTIME iff they have bounded tree width!

[Grohe, Schwentick, Segoufin]

Querying with semi-joins

The semi-join $R \ltimes_{\{i_1=j_1,...,i_n=j_n\}} S = \{ (x_1,...,x_n) \in R \mid \text{there is } (y_1,...,y_m) \in S$ where $x_{i_k} = y_{j_k}$ for all k}

The semi-join algebra (SA): variant of RA with operations:

 \ltimes , \cup , π , σ , \setminus , *dupcol*

Output at most linear in the database. Further,

The evaluation problem for SA is in $O(|\phi|.|D|)$

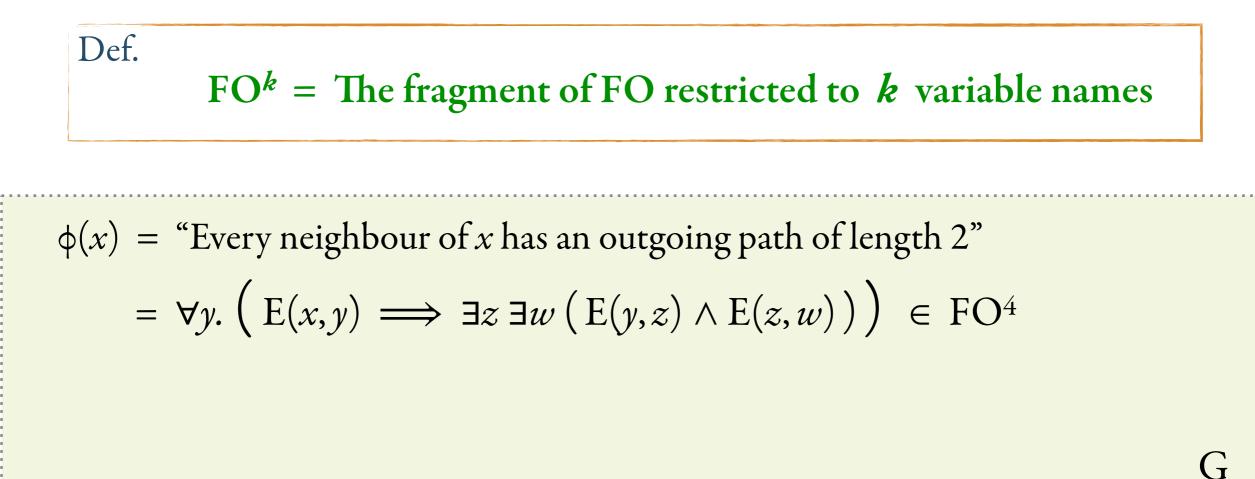
Logical characterisation: "stored-tuples guarded fragment of FO"

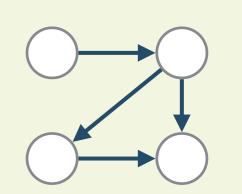
- every intermediate relation is **linear** in **D**
- we apply $|\phi|$ semi-joins

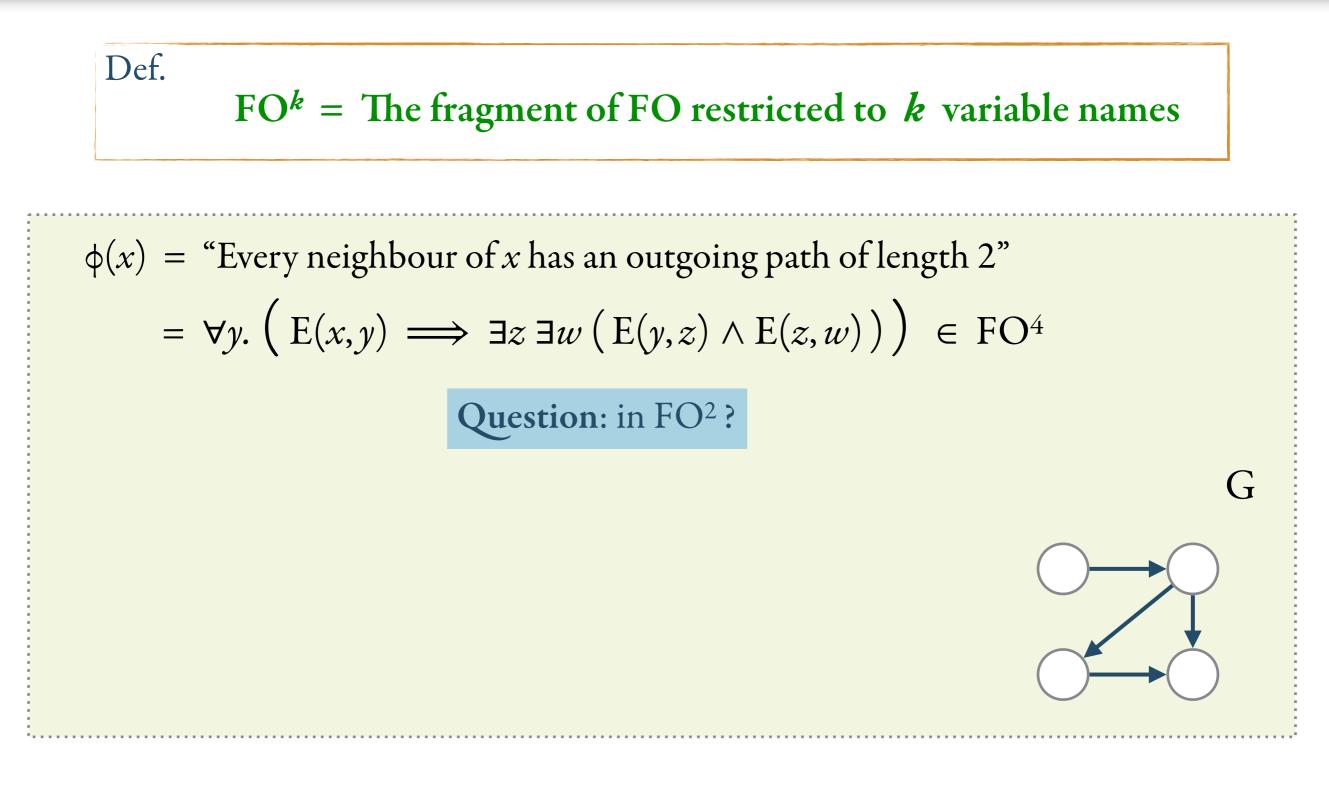
 \rightarrow What if we allow intermediate relations to be **polynomial** in |D|?

Def.

$FO^k =$ The fragment of FO restricted to k variable names

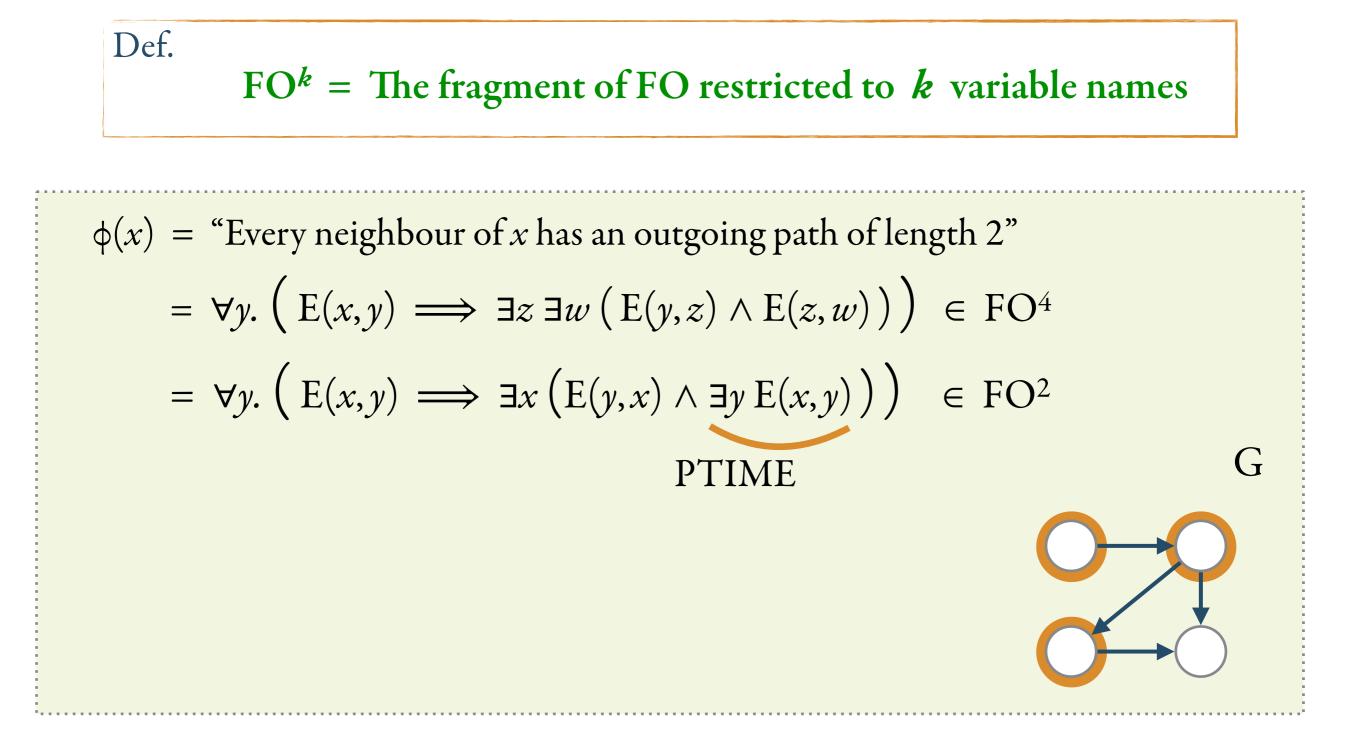


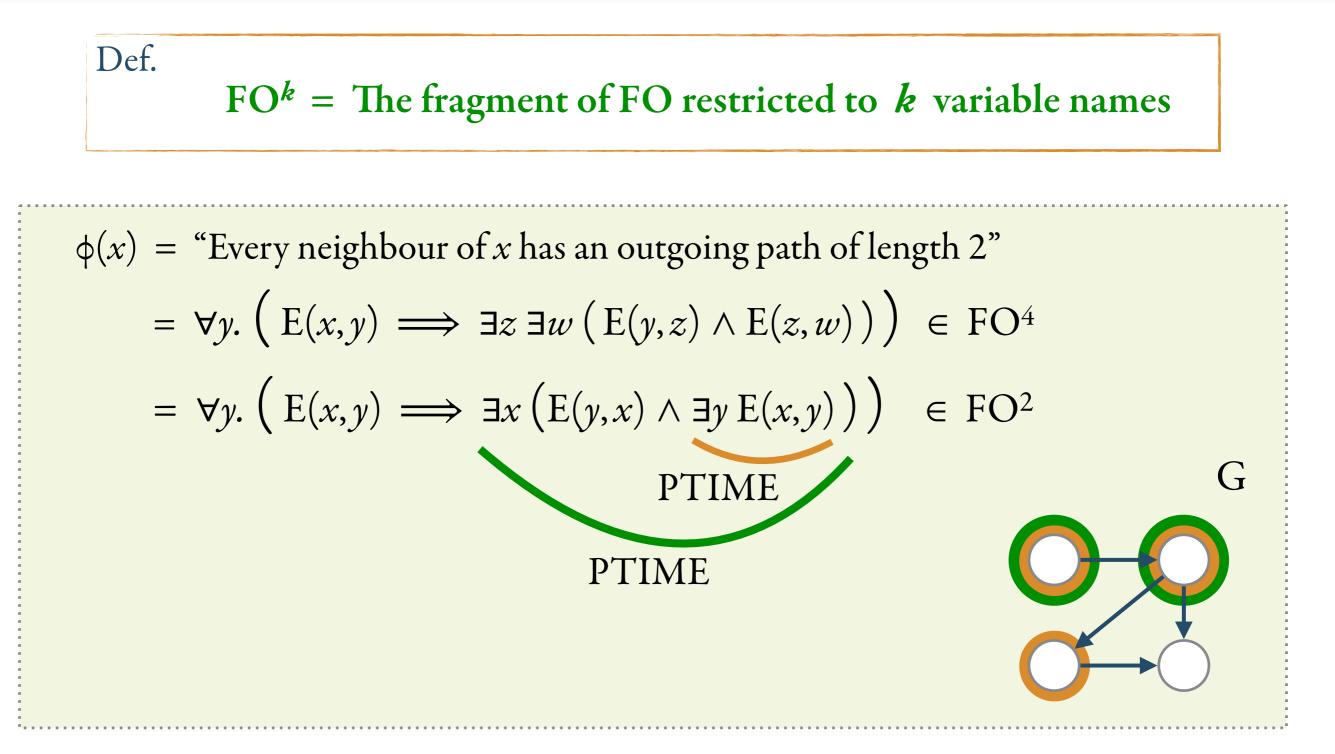


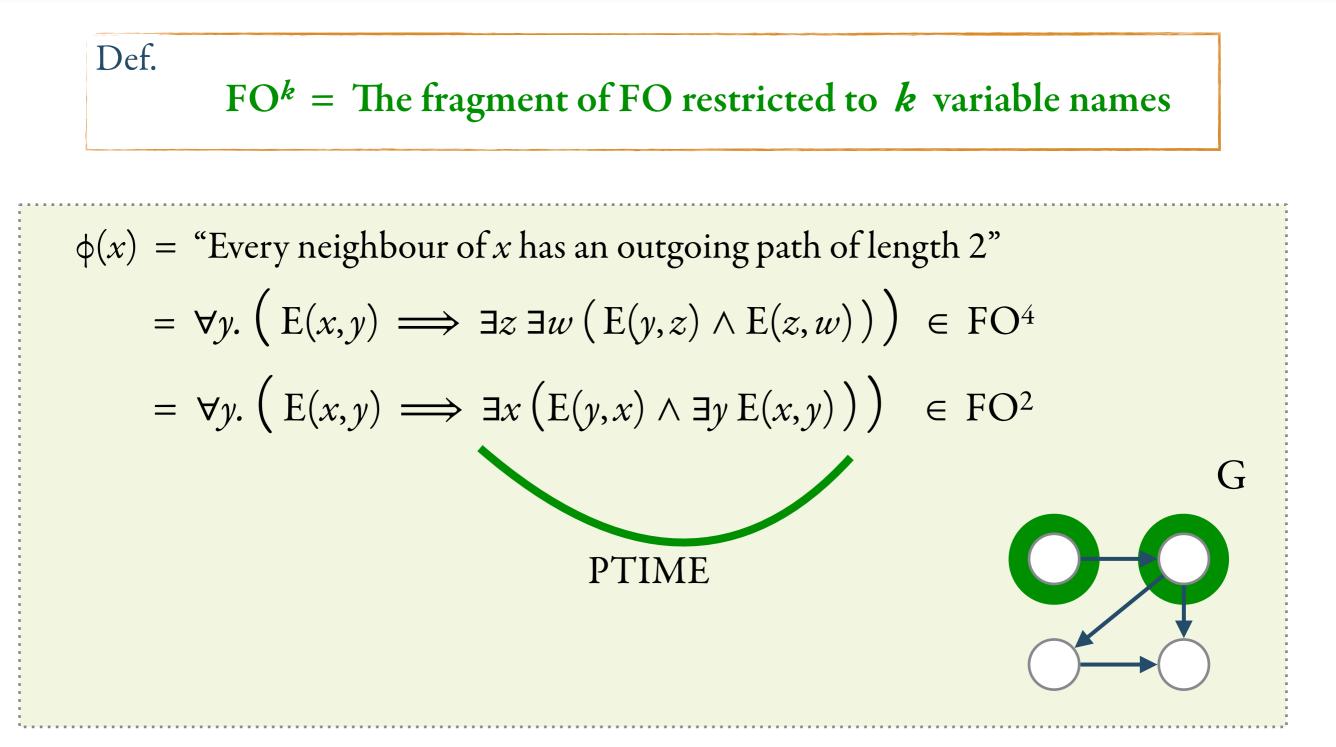


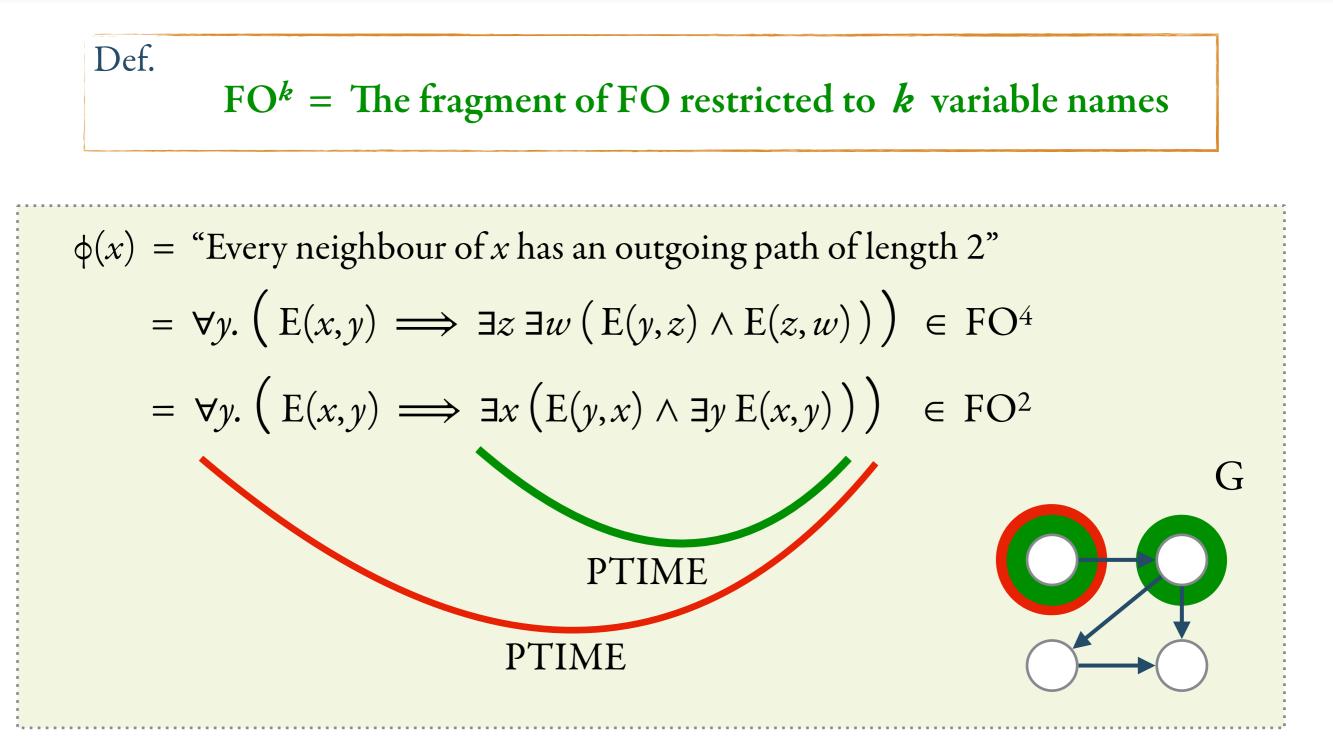
Def. FO^k = The fragment of FO restricted to k variable names

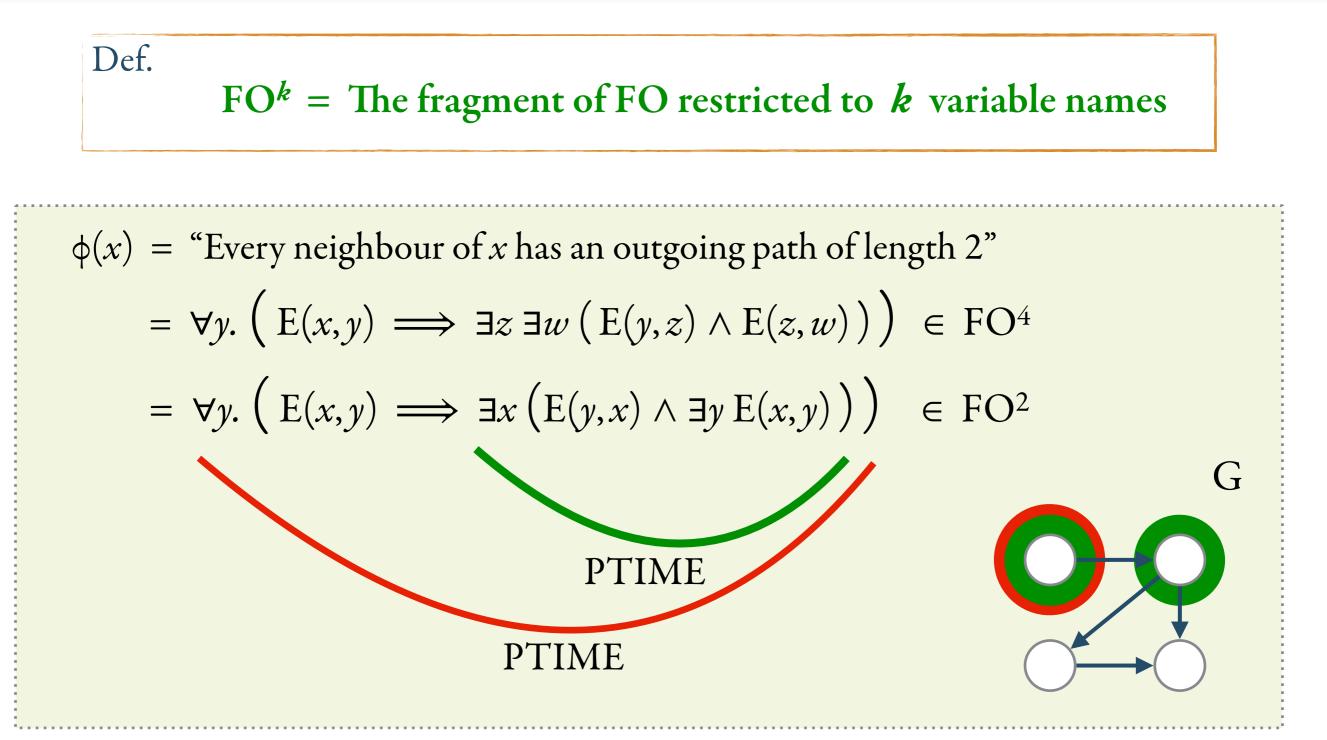
 $\begin{aligned} \varphi(x) &= \text{``Every neighbour of } x \text{ has an outgoing path of length 2''} \\ &= \forall y. \left(E(x, y) \Longrightarrow \exists z \exists w \left(E(y, z) \land E(z, w) \right) \right) \in FO^4 \\ &= \forall y. \left(E(x, y) \Longrightarrow \exists x \left(E(y, x) \land \exists y E(x, y) \right) \right) \in FO^2 \end{aligned}$ G











The evaluation problem for FO^k is in PTIME (combined c.)

The evaluation problem for FO^k is in PTIME (combined c.)

Algorithm for a FO^k formula ψ of **quantifier rank r**:

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of **quantifier rank r**:

qr 1

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

- 1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$
- 2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$
- 3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$
- 4. ... : r. ...

qr 1

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

- 1. Evaluate qr=0 subformulas α and output result in relations $\mathbb{R}_{0,\alpha}$ $\rightsquigarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$
- 2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$
- 3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$
- 4. ... : r. ...

qr 1

The evaluation problem for FO^k is in PTIME (combined c.)

→ Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...))))$ " qr 0)

Algorithm for a FO^k formula ψ of quantifier rank r:

1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$ $\longrightarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$

2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$ $\rightsquigarrow |\mathbf{V}|^k \cdot (|\boldsymbol{\beta}| \cdot (|\mathbf{G}| + |\mathbf{R}_1|))^p$ $<|V|^k$

3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$

qr 1

gr 2

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

1. Evaluate qr=0 subformulas α and output result in relations $\mathbb{R}_{0,\alpha}$ $\rightsquigarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$

2. Evaluate qr=1 subformulas β based on $\mathbf{R}_{0,\alpha}$ and output in $\mathbf{R}_{1,\beta}$ $\rightsquigarrow |\mathbf{V}|^k \cdot (|\beta| \cdot (|G| + |\mathbf{R}_1|))^p$

3. Evaluate **qr=2** subformulas γ based on $\mathbf{R}_{1,\beta}$ and output in $\mathbf{R}_{1,\gamma} \leq |\mathbf{V}|^k$ $\Rightarrow |\mathbf{V}|^k \cdot (|\gamma| \cdot (|\mathbf{G}| + |\mathbf{R}_2|))^p \leq |\mathbf{V}|^k$

qr 1

gr 2

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

• Given k and a CQ query ϕ , is ϕ in FO^k? \longrightarrow NP-complete

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

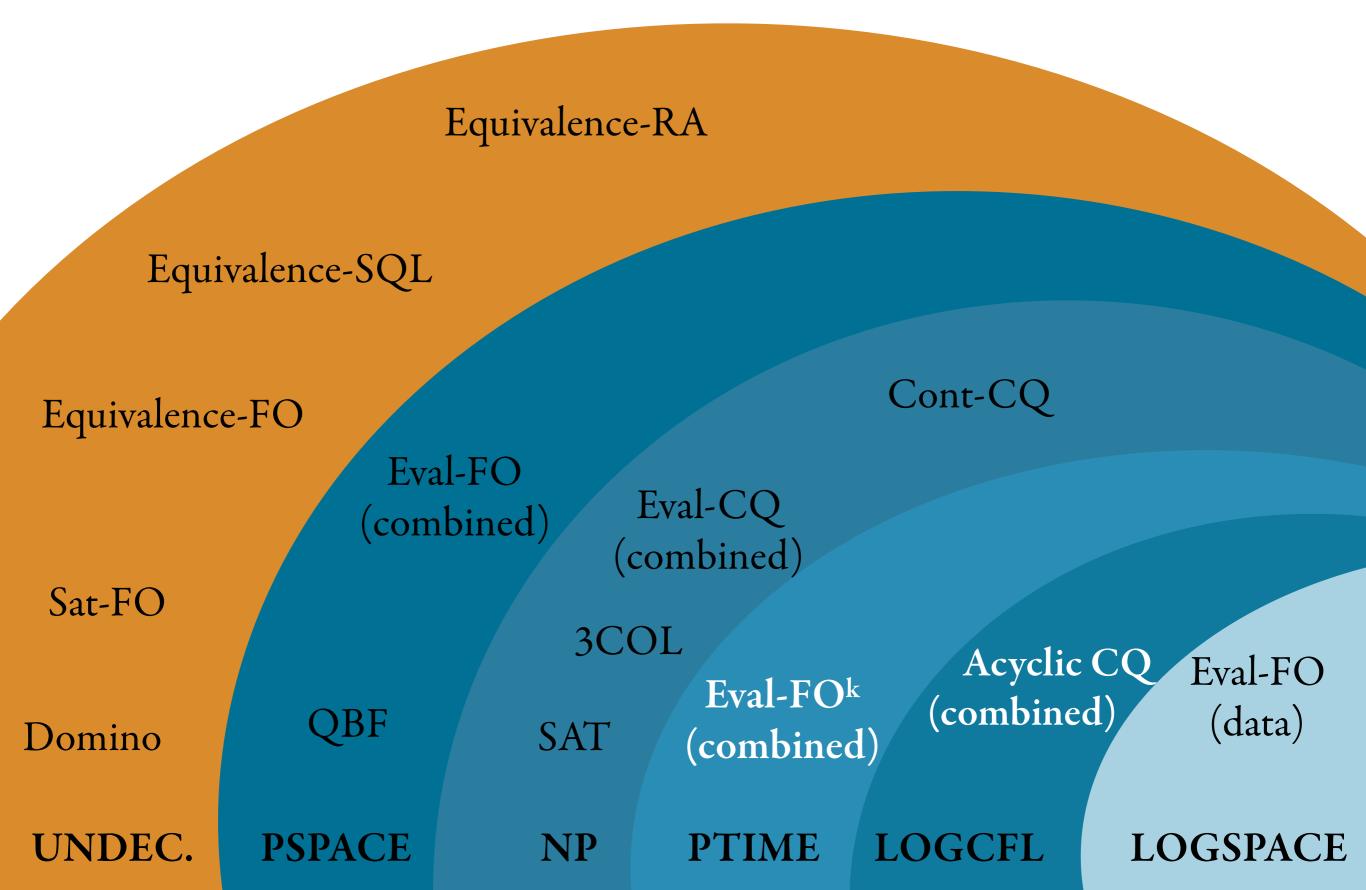
• Given k and a CQ query ϕ , is ϕ in FO^k? \longrightarrow NP-complete

• Satisfiability for FO^k

→ Undecidable if $k \ge 3$ (Domino)

••• NEXPTIME-complete if k=2

Recap



Goal: check which properties / queries are expressible in FO

Goal: check which properties / queries are expressible in FO

Example. $Q(G) = \{ (u, v) \mid G \text{ contains a path from } u \text{ to } v \}$

Is Q expressible as a first-order formula?

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $\phi_0(x, y) = E(x, y)$, and $\phi_k(x, y) = \exists z (\phi_{k-1}(x, z) \land \phi_{k-1}(z, y))$ $qr(\phi_k) = k$ but # quantifiers of ϕ_k is 2^k

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example. $\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$ has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $\phi_0(x, y) = E(x, y)$, and $\phi_k(x,y) = \exists z (\phi_{k-1}(x, z) \land \phi_{k-1}(z, y))$ $qr(\phi_k) = k$ but # quantifiers of ϕ_k is 2^k What does it define?

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example. $\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left((E(x,z) \lor E(z,x)) \land (E(y,z) \lor E(z,y)) \right) \right)$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $\phi_0(x, y) = E(x, y)$, and $\phi_k(x,y) = \exists z (\phi_{k-1}(x, z) \land \phi_{k-1}(z, y))$ $qr(\phi_k) = k$ but # quantifiers of ϕ_k is 2^k What does it define?

Quantifier rank is a measure of complexity of a formula

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example. $\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$ has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $\phi_0(x, y) = E(x, y)$, and $\phi_k(x,y) = \exists z (\phi_{k-1}(x, z) \land \phi_{k-1}(z, y))$ $qr(\phi_k) = k$ but # quantifiers of ϕ_k is 2^k

What does it define?

Quantifier rank is a measure of complexity of a formula

Sub-goal: Given a property P and a number *n*, tell whether P is expressible by a sentence of quantifier rank at most *n*.

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$)

[Tarski '30]

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$) [Tarski '30]

Consider a property (i.e. a set of structures) P.

Suppose that there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ *s.t.*

 S_1 and S_2 are *n*-equivalent.

Then **P** is *not expressible* by any sentence of quantifier rank n.

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$)

Consider a property (i.e. a set of structures) P.

Suppose that there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ *s.t.*

 S_1 and S_2 are *n*-equivalent.

Then **P** is *not expressible* by any sentence of quantifier rank *n*.

Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

[Tarski '30]

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$)

Consider a property (i.e. a set of structures) P.

Suppose that there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ *s.t.*

 S_1 and S_2 are *n*-equivalent.

Then **P** is *not expressible* by any sentence of quantifier rank n.

Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

[Tarski '30]

Example. $\mathbf{P} = \{$ structures of even size $\}$ seems to be not FO-definable. One could then aim at proving that for all *n* there are $S_1 \in P$ and $S_2 \notin P$ s.t. S_1, S_2 *n*-equivalent...

Expressive power via games

Characterisation of the expressive power of FO in terms of Games

Characterisation of the expressive power of FO in terms of Games

<u>Idea</u>: For every two structures (S,S') there is a game where

a player of the game has a <mark>winning strategy</mark> iff S,S' are <mark>indistinguishable</mark>

A game between two players

Board: (S_1, S_2)

One player plays in one structure, the other player answers in the other structure.

If Duplicator can ensure not losing after n rounds: S_1 , S_2 are n-equivalent

Definition. Partial isomorphism between S_1 and S_2 = injective partial map **f**: nodes of $S_1 \longrightarrow$ nodes of S_2 so that E(x,y) iff $E(\mathbf{f}(x), \mathbf{f}(y))$

Definition. Partial isomorphism between S_1 and S_2 = injective partial map **f**: nodes of $S_1 \longrightarrow$ nodes of S_2 E(x,y) iff $E(\mathbf{f}(x),\mathbf{f}(y))$ so that

Spoiler

and

Duplicator play for n rounds on the board S_1, S_2

Definition. Partial	Partial isomorphism between S_1 and S_2 = injective partial map	
	f : nodes of $S_1 \longrightarrow$ nodes of S_2	
so that	$E(x,y)$ iff $E(\mathbf{f}(x),\mathbf{f}(y))$	

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

At each round i:

1. **Spoiler** chooses a node x_i from S_1 and **Duplicator** answers with a node y_i from $S_{2,}$

Definition.	Partial isomorphism between S_1 and S_2 = injective partial map	
		f : nodes of $S_1 \longrightarrow$ nodes of S_2
	so that	$E(x,y)$ iff $E(\mathbf{f}(x),\mathbf{f}(y))$

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

At each round i:

1. Spoiler chooses a node x_i from S_1 and Duplicator answers with a node y_i from $S_{2,}$

or

2. Spoiler chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,

Definition.	Partial isomorphism between S_1 and S_2 = injective partial map	
		f : nodes of $S_1 \longrightarrow$ nodes of S_2
	so that	$E(x,y)$ iff $E(\mathbf{f}(x),\mathbf{f}(y))$

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

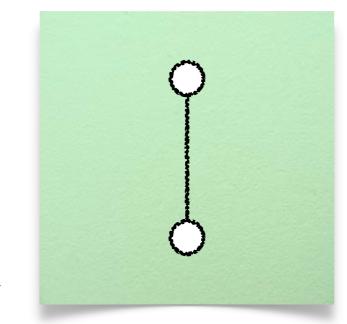
At each round i:

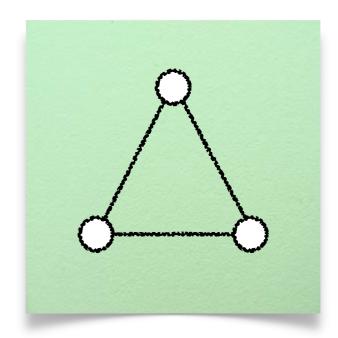
1. Spoiler chooses a node x_i from S_1 and Duplicator answers with a node y_i from $S_{2,}$

or

2. Spoiler chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,

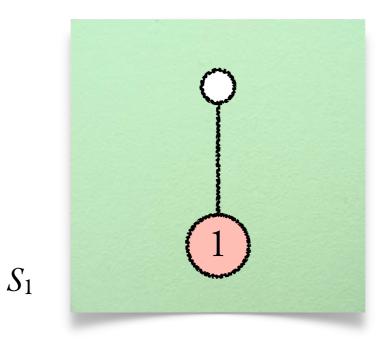
or **Spoiler** wins if $\{x_i \mapsto y_i \mid 1 \le i \le n\}$ is **not a partial isomorphism** between S_1 and S_2 .

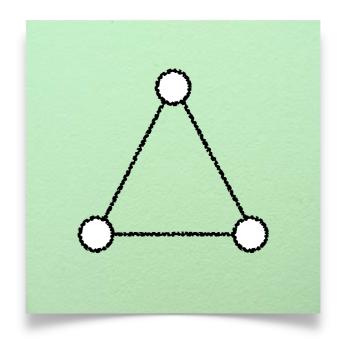


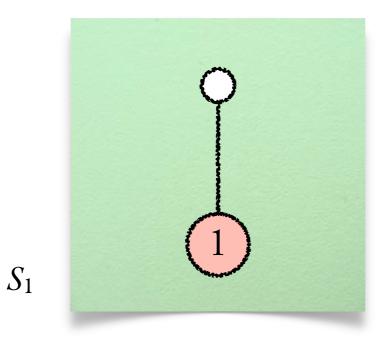


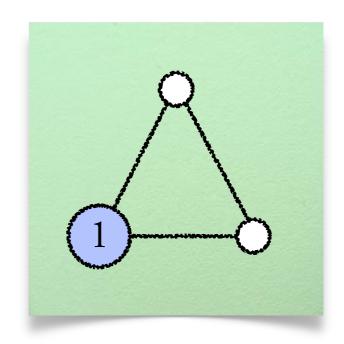
 S_2

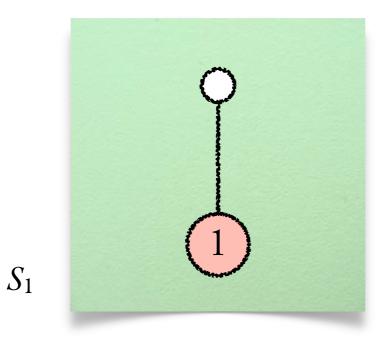
) = Spoiler = Duplicator

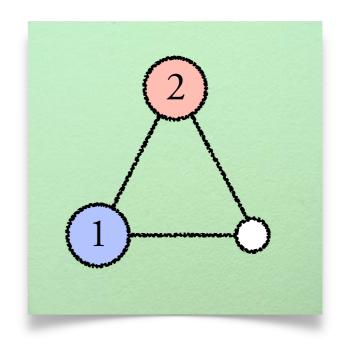




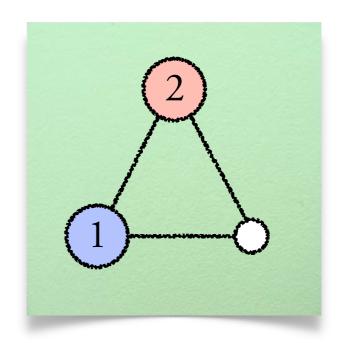




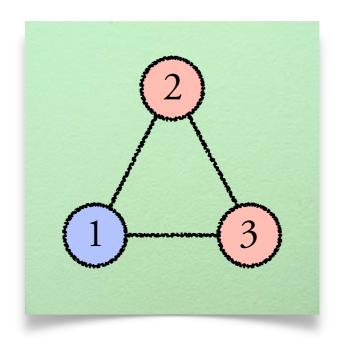




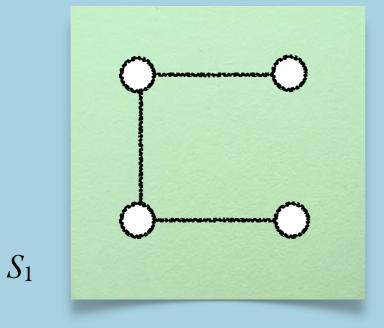
 S_1

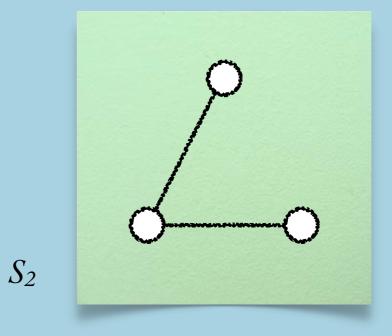


 S_1

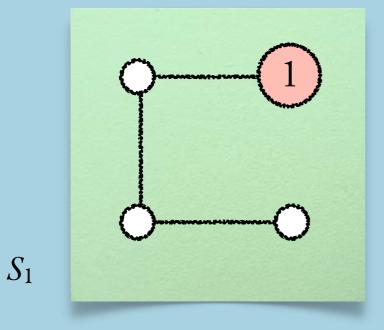


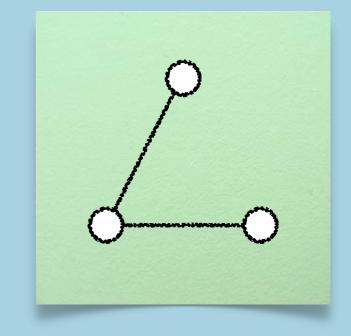
Question: Can Spoiler win in 3 rounds ?



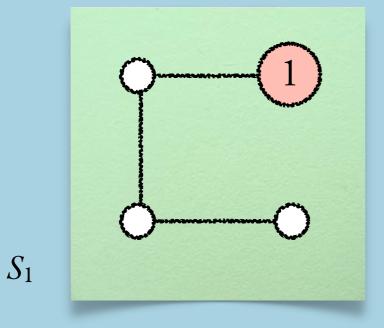


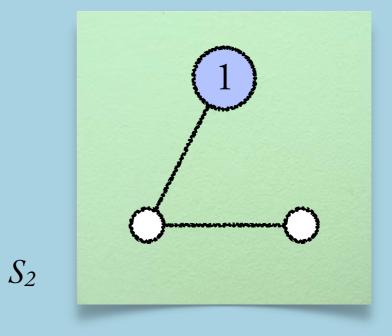
Question: Can Spoiler win in 3 rounds ?



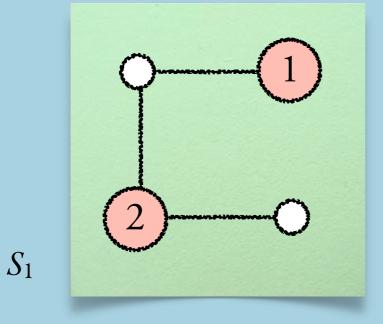


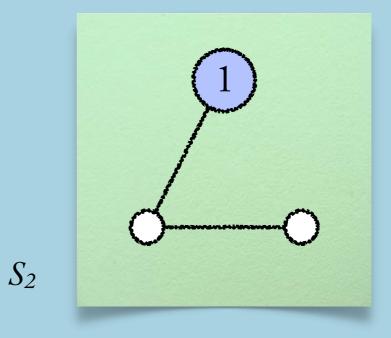
Question: Can Spoiler win in 3 rounds ?



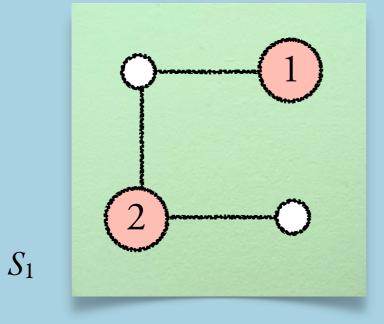


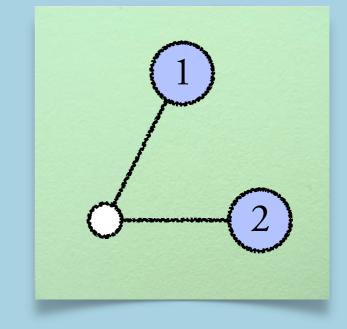
Question: Can Spoiler win in 3 rounds ?





Question: Can Spoiler win in 3 rounds ?





Question: Can Spoiler win in 3 rounds ?

