
day 5

ESSLLI 2016 Bolzano, Italy

Logical foundations of databases

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Recap

- Acyclic Conjunctive Queries
- Join Trees
- Evaluation of ACQ (LOGCFL-complete)
- Ears, GYO algorithm for testing acyclicity
- Tree decomposition, tree-width of CQ
- Evaluation of bounded tree-width CQs (LOGCFL-complete)
- Bounded variable fragment of FO, evaluation in PTIME
- Acyclic Conjunctive Queries

They play for *n* rounds on the board (S_1, S_2) . At each round *i*: Spoiler chooses a node x_i from S_1 (resp. y_i from S_2) Duplicator answers with a node y_i from S_2 (resp. x_i from S_1) trying to maintain an isomorphism between $S_1 | \{x_i\}_i$ and $S_2 | \{y_i\}_i$

On non-isomorphic *finite* structures, Spoiler wins eventually... Why?

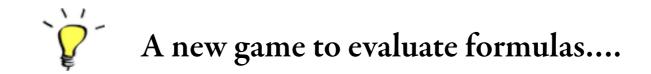
...and he often wins very quickly:

 2^n nodes 2^n - 1 nodes

But there are non-isomorphic *infinite* structures where Duplicator can survive for *arbitrarily many rounds* (not necessarily forever!)

Given n, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

Theorem. S_1 and S_2 are *n*-equivalent


[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1, S_2 . We need to prove that $S_2 \vDash \phi$.

The semantics game

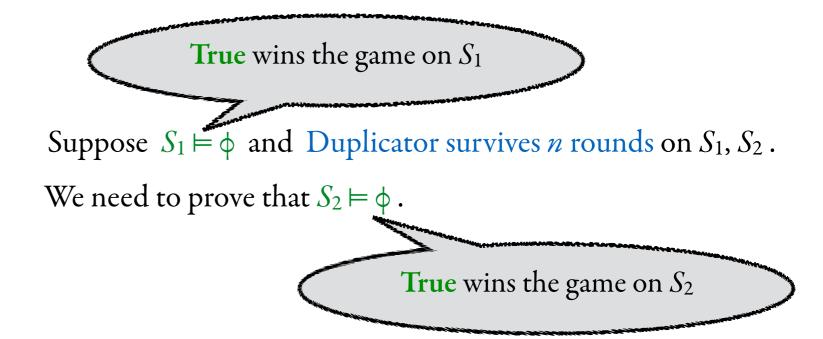
Assume w.l.o.g. that ϕ is in **negation normal form**.

push negations inside: $\neg \forall \phi \iff \exists \neg \phi$ $\neg \exists \phi \iff \forall \neg \phi$ $\neg (\phi \land \psi) \iff \neg \phi \lor \neg \psi$...

Whether $S \vDash \phi$ can be decided by a **new game** between two players, **True** and **False**:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow$ True moves by marking a node x in S, the game continues with ϕ'
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2 \rightarrow$ True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2 \rightarrow$ False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

Lemma. $S \models \phi$ iff **True** wins the semantics game.

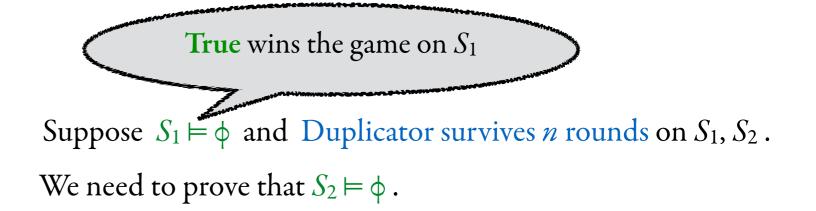

Theorem. S_1 and S_2 are *n*-equivalent

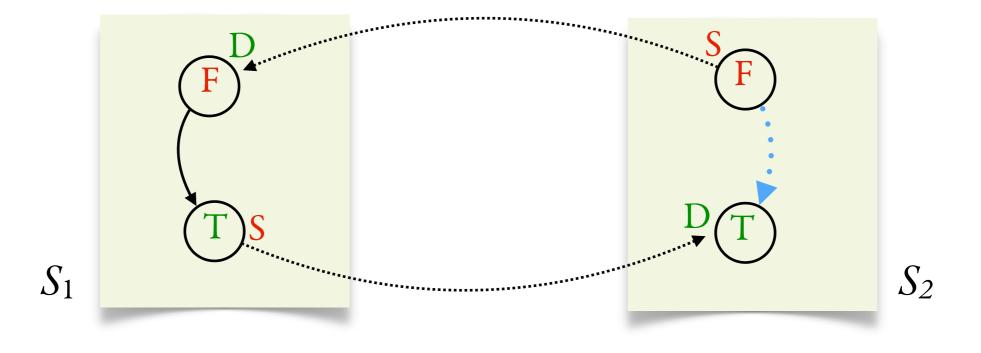
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.


Theorem. S_1 and S_2 are *n*-equivalent

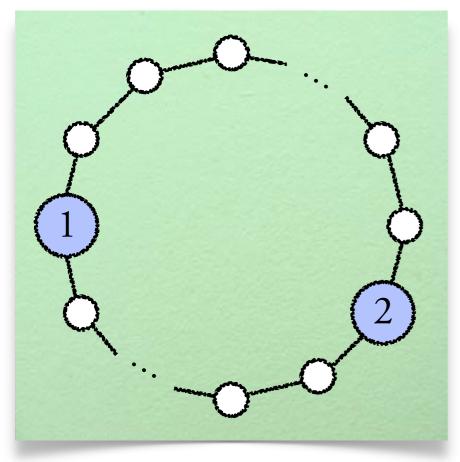

[Fraïssé '50, Ehrenfeucht '60]

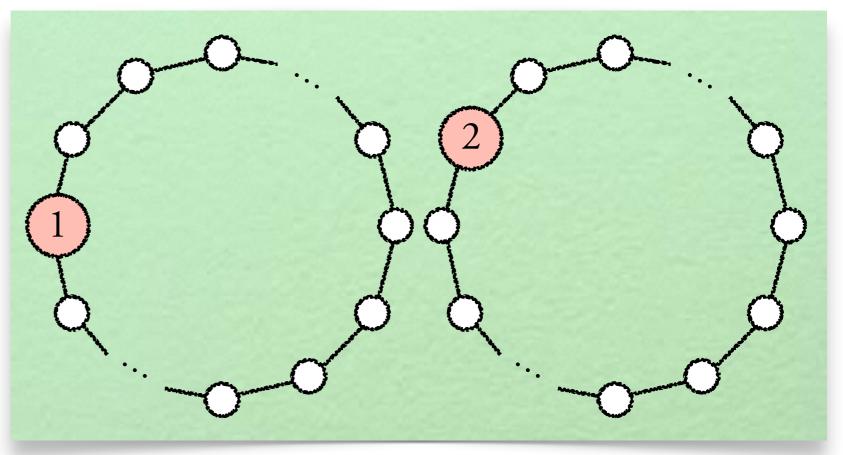
iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.

Definability in FO


Theorem. S_1 and S_2 are *n*-equivalent

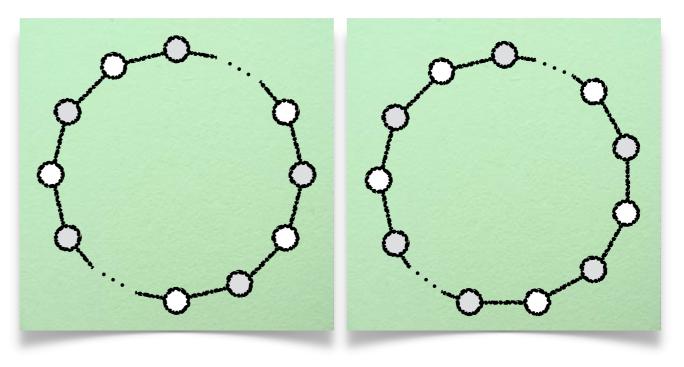

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs } \}$. Given *n*, take $S_1 \in P$ large enough and $S_2 = S_1 \uplus S_1 \notin P$

Several properties can be proved to be *not FO-definable*:


• connectivity (previous slide)

• even / odd size Your turn now! ...given *n*, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

• 2-colorability Given *n*, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$

• finiteness

• acyclicity

A different perspective: a coarser view on expressiveness...

What percentage of graphs verify a given FO sentence?

 $\mu_n(\mathbf{P}) =$ "probability that property **P** holds in a random graph with *n* nodes"

 $C_n = \{ \text{ graphs with } n \text{ nodes } \}$

$$\mu_{\mathbf{n}}(\mathbf{P}) = \frac{|\{\mathbf{G} \in \mathbf{C}_n \mid \mathbf{G} \models \mathbf{P}\}|}{|\mathbf{C}_n|}$$

Uniform distribution (each pair of nodes has an edge with probability ½)

E.g. for $\mathbf{P} =$ "the graph is complete" $\mu_3(\mathbf{P}) = \frac{1}{|\mathbf{C}_3|} = \frac{1}{2^{3^2}}$

$$\mu_{\infty}(\mathbf{P}) = \lim_{n \to \infty} \mu_n(\mathbf{P})$$

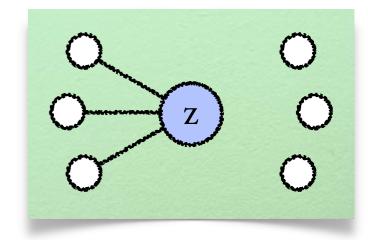
Theorem.

[Glebskii et al. '69, Fagin '76]

For every *FO sentence* ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

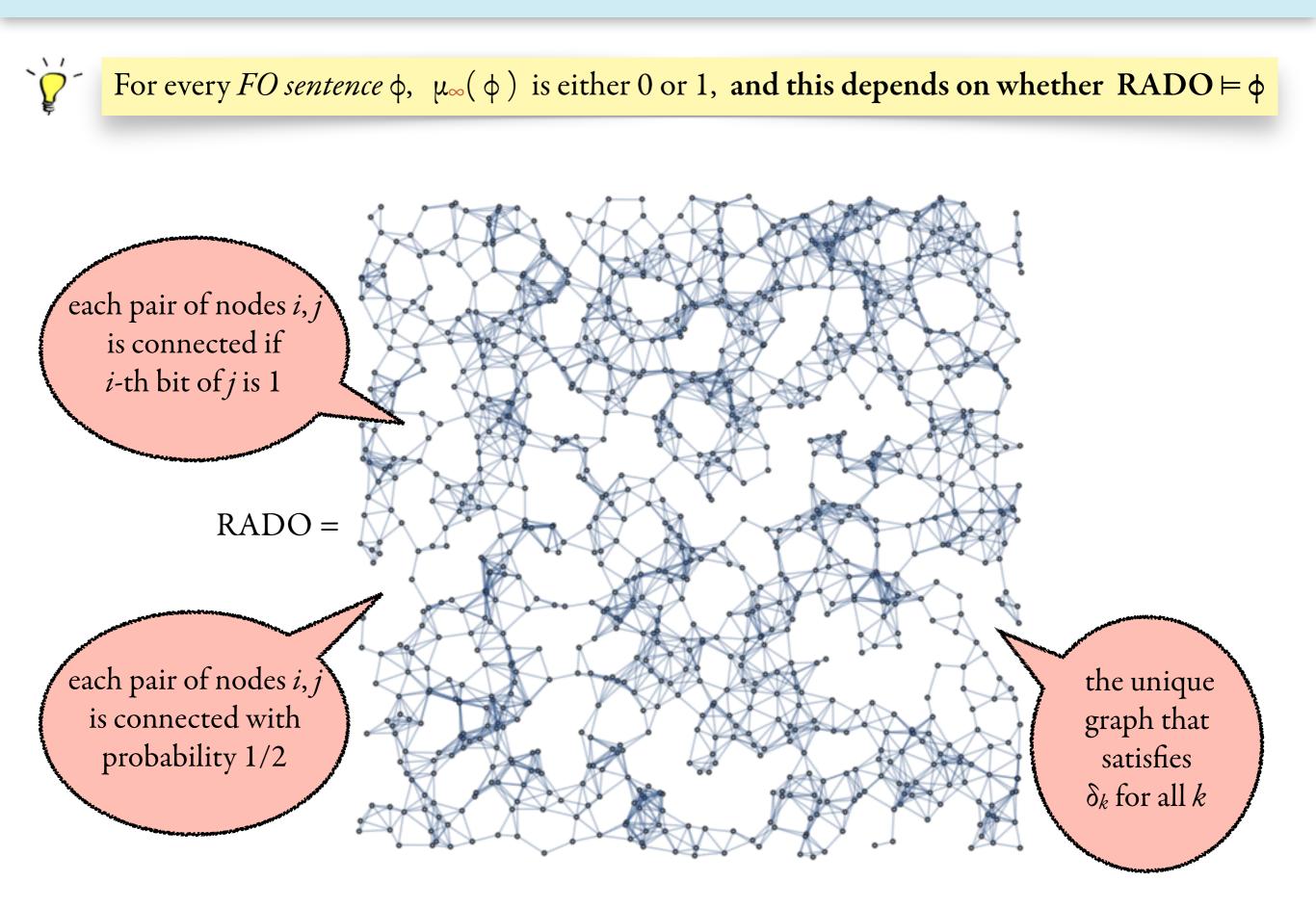
- $\phi =$ "there is a triangle" $\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \ge 1 (1 \frac{1}{|C_3|})^n \Rightarrow 1$
- ϕ_H = "there is an occurrence of *H* as induced sub-graph"
- $\phi =$ "there no 5-clique" $\mu_{\infty}(\phi) = 0$
- ϕ = "even number of edges"
- ϕ = "even number of nodes"
- ϕ = "more edges than nodes"


Your turn! $\mu_{\infty}(\phi) = 1/2$ $\mu_{\infty}(\phi)$ not even defined $\mu_{\infty}(\phi) = 1$ (yet not FO-definable!)

 $\mu_{\infty}(\phi_H) = 1$

For every *FO* sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Let $k = quantifier rank of \phi$


 $\delta_{k} = \forall x_{1}, ..., x_{k} \forall y_{1}, ..., y_{k} \exists z \land_{i,j} x_{i} \neq y_{j} \land E(x_{i}, z) \land \neg E(y_{j}, z)$ (Extension Formula/Axiom)

Fact 1: If $G \models \delta_k \land H \models \delta_k$ then Duplicator survives k rounds on G, H

Fact 2: $\mu_{\infty}(\delta_k) = 1$ (δ_k is almost surely true)

a) There is
$$G \ G \models \delta_k \land \phi \Rightarrow$$
 (by Fact 1) $\forall H :$ If $H \models \delta_k$ then $H \models \phi$
Thus, $\mu_{\infty}(\delta_k) \le \mu_{\infty}(\phi)$
 \Rightarrow (by Fact 2) $\mu_{\infty}(\delta_k) = 1$, hence $\mu_{\infty}(\phi) = 1$
b) There is no $G \models \delta_k \land \phi \Rightarrow$ (by Fact 2) there is $G \models \delta_k$,
 $\Rightarrow G \models \delta_k \land \neg \phi \Rightarrow$ (by case a) $\mu_{\infty}(\neg \phi) = 1$

Theorem. The problem of deciding whether[Grandjean '83]an FO sentence is almost surely true ($\mu_{\infty} = 1$) is PSPACE-complete.

Query evaluation on large databases:

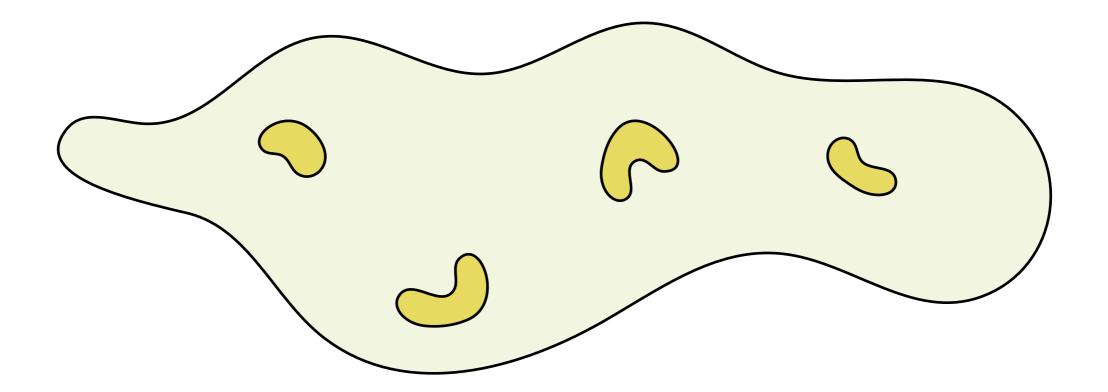
Don't bother evaluating an FO query, it's either *almost surely true* or *almost surely false*!

Does the 0-1 Law apply to real-life databases?

Not quite: database *constraints* easily spoil Extension Axiom.

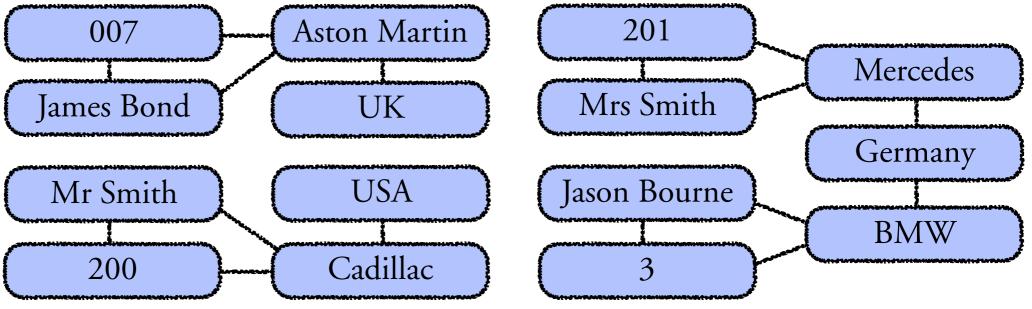
Consider:

• functional constraint
$$\forall x, x', y, y'$$
 ($E(x,y) \land E(x,y') \Rightarrow y = y'$) \land
($E(x,y) \land E(x',y) \Rightarrow x = x'$) (E is a permutation)

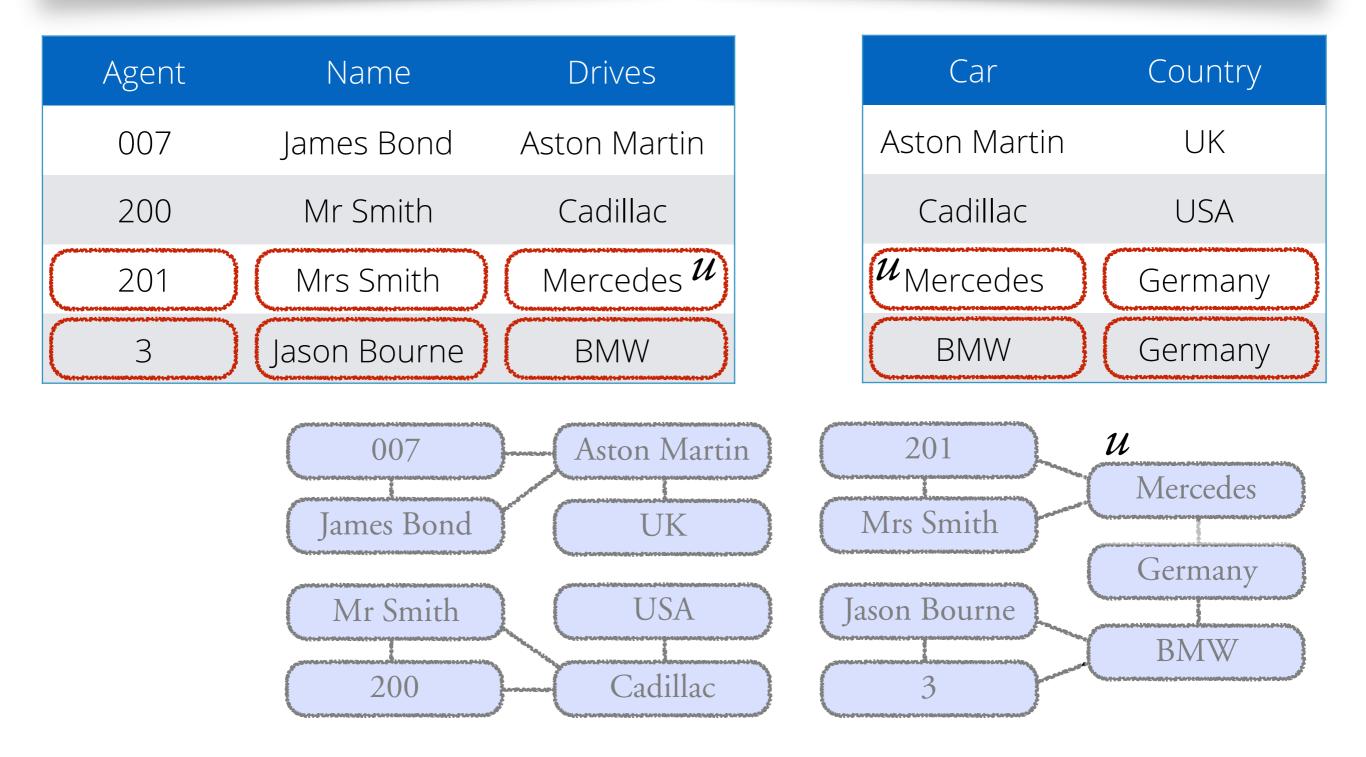

• FO query
$$\phi = \neg \exists x E(x,x)$$

Probability that a permutation E satisfies $\phi = \frac{!n}{n!} \rightarrow e^{-1} = 0.3679...$

0-1 Law only applies to **unconstrained** databases...

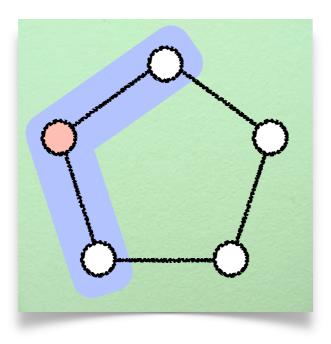

Idea: First order logic can only express "local" properties

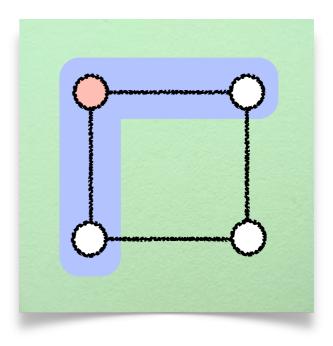
Local = properties of nodes which are close to one another



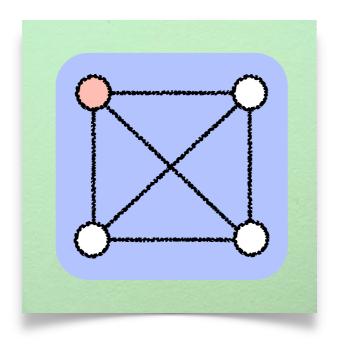
Definition. The **Gaifman graph** of a structure $S = (V, R_1, ..., R_m)$ is the **undirected** graph $G_S = (V, E)$ where $E = \{ (u, v) \mid \exists (..., u, ..., v, ...) \in R_i \text{ for some } i \}$

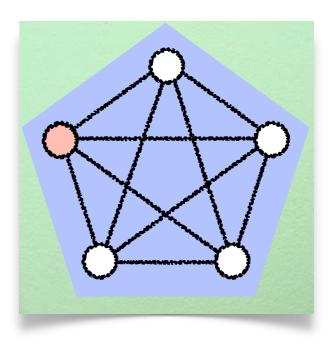
007James BondAstorThe Gaifman graph of a graph G is the underlyingUK200Mr SmithCaon.undirected graph.USA201Mrs SmithMercedesMercedesGermany	Agent	Name	Drives	Car	Country
201Mrs SmithMercedesMercedesGermany	007	James Bond		e i	UK
	200	Mr Smith	Cadh, u	ndirected graph.	USA
	201	Mrs Smith	Mercedes	Mercedes	Germany
3 Jason Bourne BIVIV BIVIV Germany	3	Jason Bourne	BMW	BMW	Germany




- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

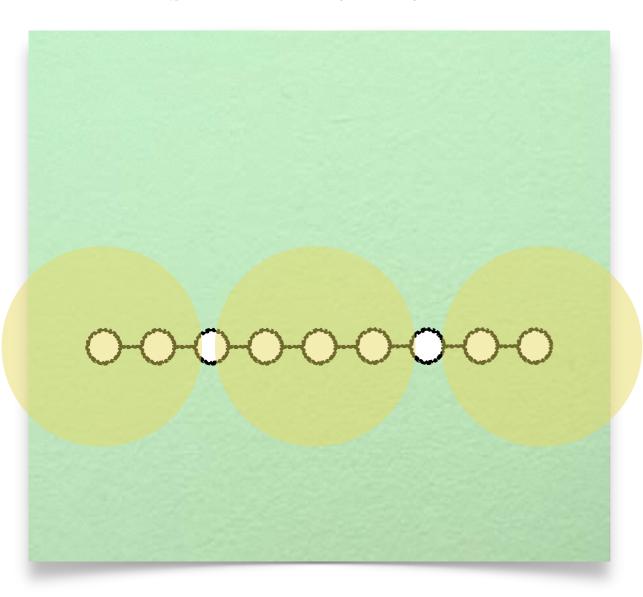
Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t. $S_1[u,r] \cong B$ #v s.t. $S_2[v,r] \cong B$ are either the same or both $\ge t$.

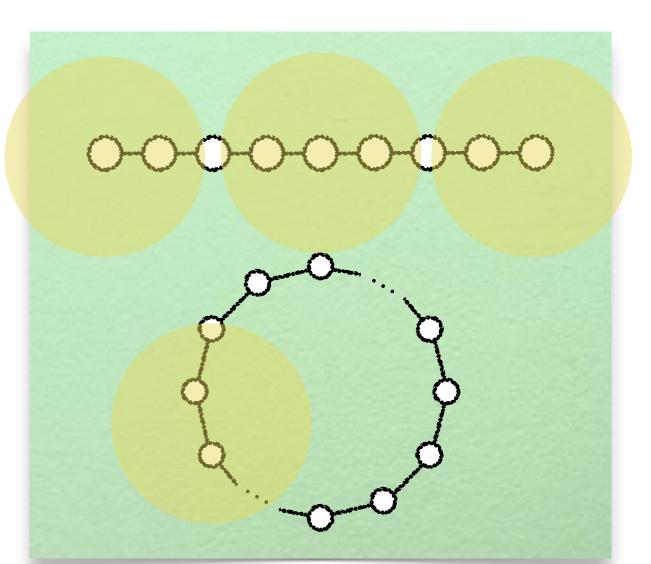

Example. S_1 , S_2 are Hanf(1, 1) - equivalent iff they have the same balls of radius 1



Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t. $S_1[u,r] \cong B$ #v s.t. $S_2[v,r] \cong B$ are either the same or both $\ge t$.

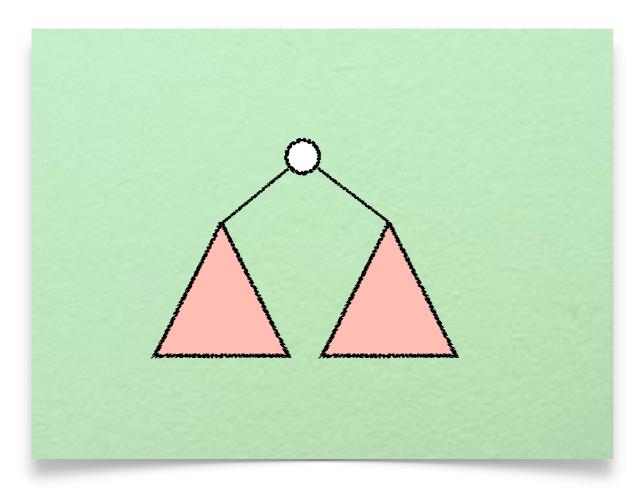
Example. K_n , K_{n+1} are **not** Hanf(1, 1) - equivalent





Theorem. If S_1 , S_2 are **Hanf(r,t)** - equivalent, with $r = 3^n$ and t = nthen S_1 , S_2 are **n** - equivalent (they satisfy the same sentences with quantifier rank n)

[Hanf '60]


Exercise: prove that *acyclicity* is not FO-definable (on finite structures)

Theorem. S_1 , S_2 are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever S_1 , S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and t = n. [Hanf '60]

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable

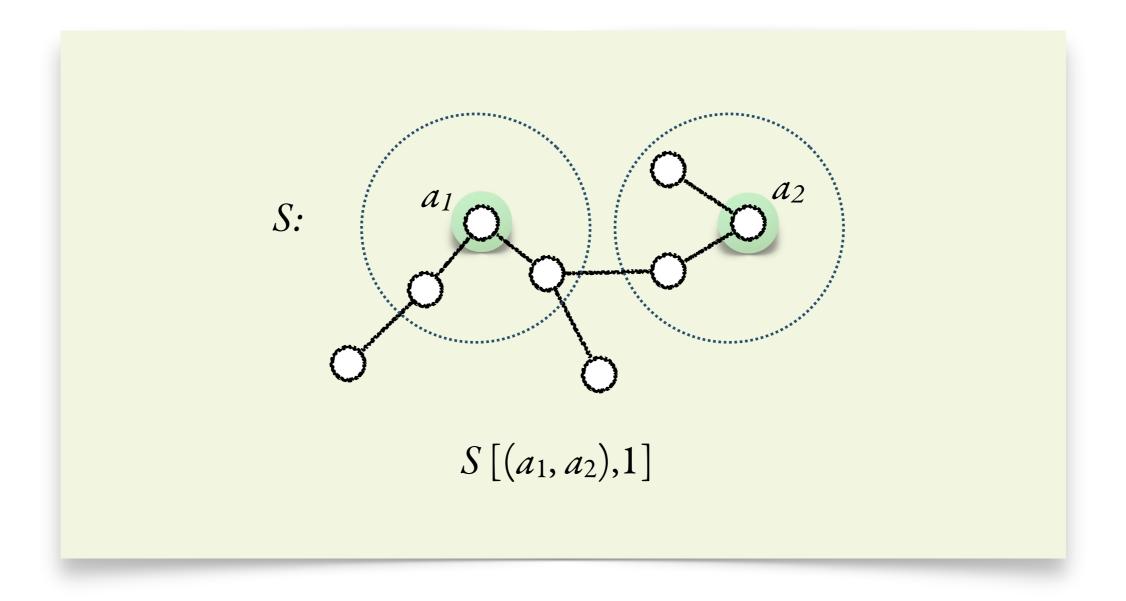
Theorem. S_1 , S_2 are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever S_1 , S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and t = n. [Hanf '60]

Why so **BIG**?

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

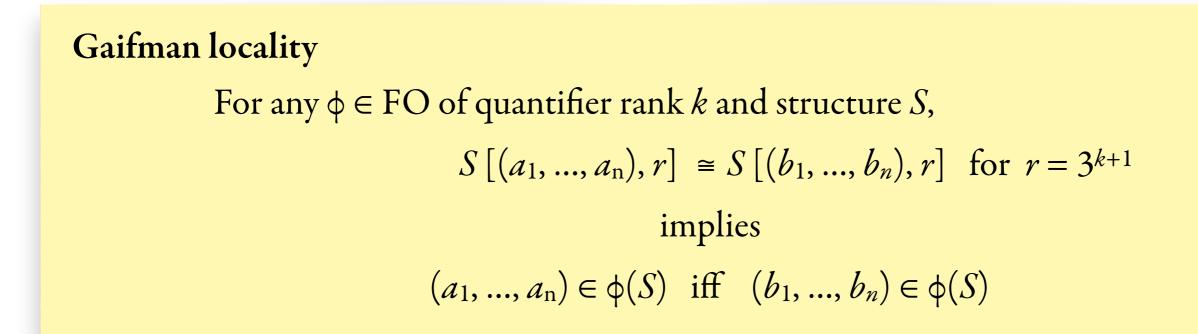
$$\begin{array}{l} \varphi_{0}(x,y) = E(x,y), \text{ and} \\ \varphi_{k}(x,y) = \exists z \ (\ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \) \\ qr(\varphi_{k}) = k \end{array}$$

Not (n+2)-equivalent yet they have the same 2^n-1 balls.


What about queries?

Eg: Is reachability expressible in FO?

What about equivalence on the same structure? When are two points indistinguishable?


Gaifman locality

 $S[(a_1, ..., a_n), r] = \text{ induced substructure of } S$ of elements at distance $\leq r$ of some a_i in the Gaifman graph.

Gaifman locality

 $S[(a_1, ..., a_n), r] = \text{ induced substructure of } S$ of elements at distance $\leq r$ of some a_i in the Gaifman graph.

Idea: If the neighbourhoods of two tuples are the same, the formula cannot distinguish them.

Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates **two different structures**,

 S_1 and S_2 have the same # of balls of radius 3^k , **up to threshold k** \downarrow They verify the same

sentences of $qr \le k$

Gaifman-locality talks about definability in **one structure**

Inside *S*, 3^{k+1} -balls of $(a_1,...,a_n) = 3^{k+1}$ -balls of $(b_1,...,b_n)$ \downarrow

 $(a_1,...,a_n)$ indistinguishable from $(b_1,...,b_n)$ through **formulas** of qr $\leq k$

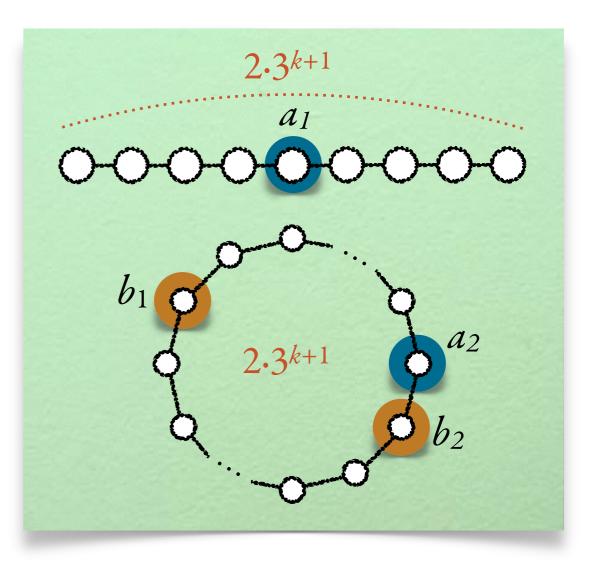
Gaifman locality

Schema to show non-expressibility results is, as usual:

A query $Q(x_1,...,x_n)$ is not FO-definable if: for every \mathbf{k} there is a structure $S_{\mathbf{k}}$ and $(a_1, ..., a_n)$, $(b_1, ..., b_n)$ such that • $S_{\mathbf{k}}[(a_1, ..., a_n), 3^{\mathbf{k}+1}] \cong S_{\mathbf{k}}[(b_1, ..., b_n), 3^{\mathbf{k}+1}]$ • $(a_1, ..., a_n) \in Q(S_{\mathbf{k}}), (b_1, ..., b_n) \notin Q(S_{\mathbf{k}})$

Proof: If Q were expressible with a formula of quantifier rank k, then $(a_1, ..., a_n) \in Q(S_k)$ iff $(b_1, ..., b_n) \in Q(S_k)$. Absurd!

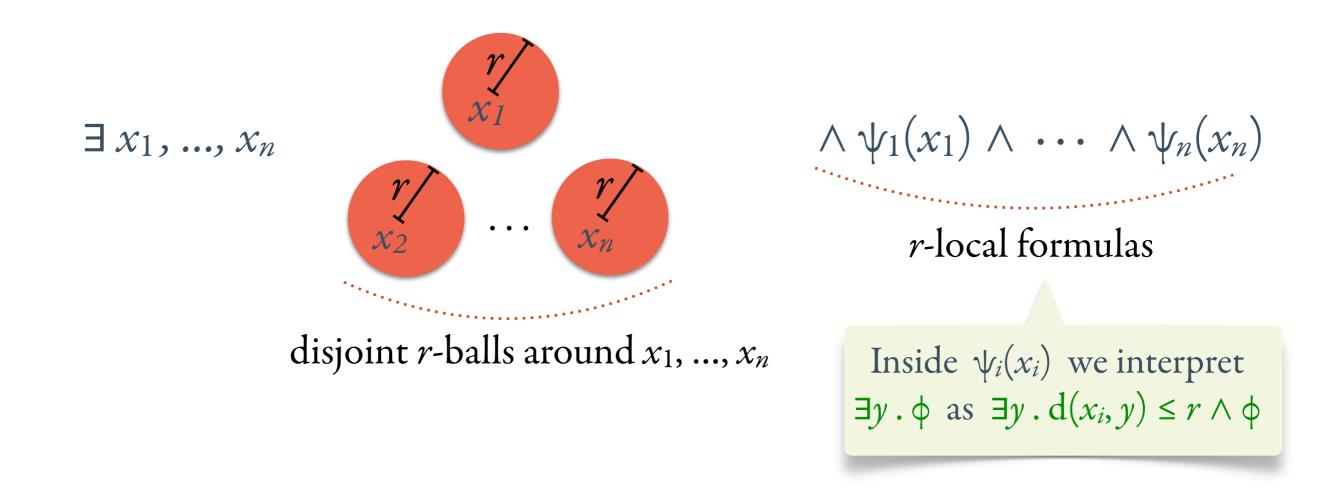
Gaifman locality


Reachability is not FO definable.

For every k, we build S_k :

And $S_k[(a_1, a_2), 3^{k+1}] \cong S_k[(b_1, b_2), 3^{k+1}]$

However,


- b_2 is reachable from b_1 ,
- a_2 is **not** reachable from a_1 .

Your turn! Q(x) = "x is a vertex separator"

Gaifman Theorem

Basic local sentence:

Gaifman Theorem: Every FO sentence is equivalent to a boolean combination of basic local sentences.

Recap

EF games	FO sentences with quantifier rank n = winning strategies for Spoiler in the n-round EF game			
0-1 Law	FO sentences are almost always true or almost always false			
Hanf locality	FO sentences with quantifier rank n = counting 3 ⁿ sized balls up to n			
Gaifman locality	Queries of quantifier rank n output tuples closed under 3 ⁿ⁺¹ balls			
Gaifman Theorem	An FO sentence can only say "there are some points at distance ≥2r whose r-balls are isomorphic to certain structures" or a boolean combination of that.			

Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem "A property can be expressed in [insert some logic here] iff it can be checked in [some complexity class here]"

 \rightsquigarrow "A property is FO-definable iff it can be tested in AC⁰"

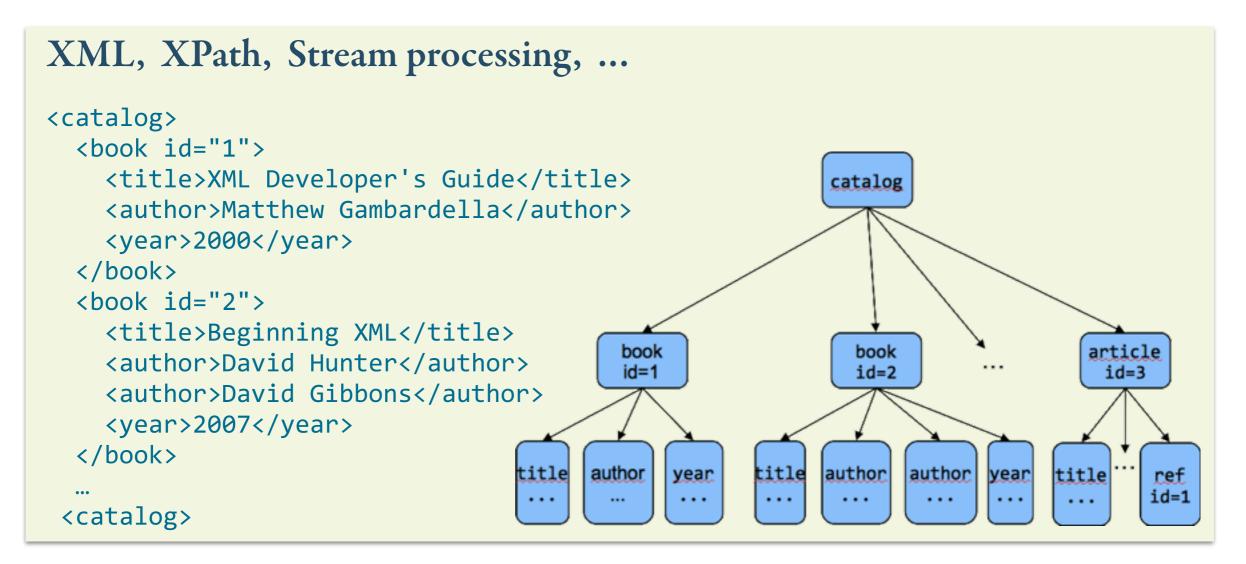
→ "A property is ∃SO-definable iff it can be tested in NP" [Fagin 73]

---> Open problem: which logic captures PTIME?

Recursion

Can we enhance query languages with recursion ? E.g. express reachability properties

Datalog (semantics based on least fixpoint) Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y) Ancestor(X,X) :- . ?- Ancestor("Louis XIV",Y)

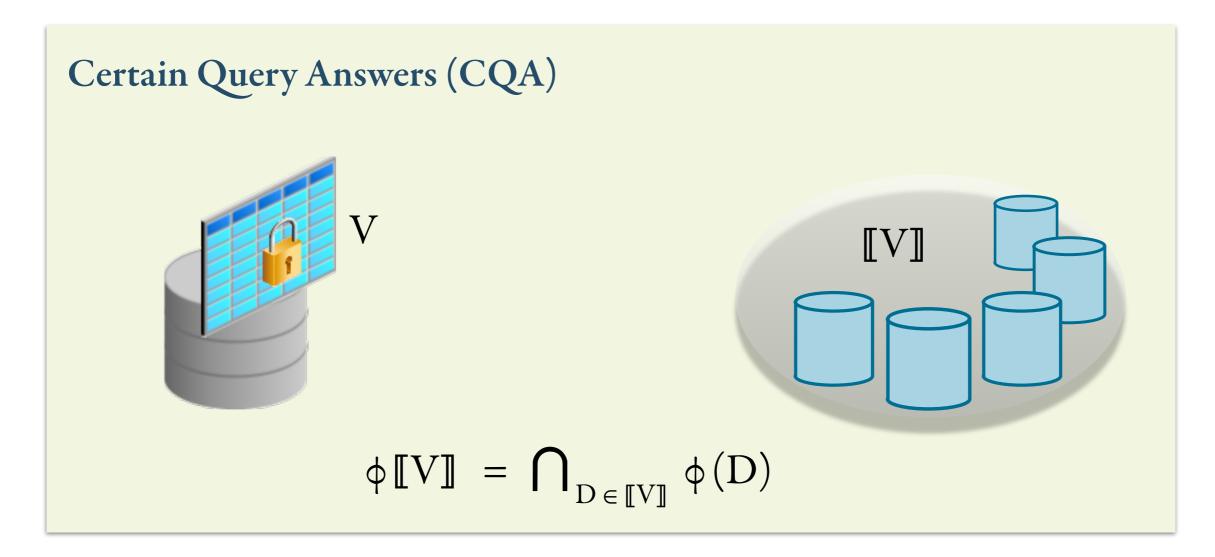

---> Incomparable with FO (has recursion, but is monotone)

---> Evaluation is in PTIME (for data complexity, but also for bounded arity)

Some more cool stuff...

Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.



Satisfiability for FO²[↓,~] is decidable [Bojanczyk, Muscholl, Schwentick, Segoufin 09]

Some more cool stuff...

Incomplete information

How to correctly reason when information is hidden/missing/noisy/...?

----> CQA computable in PTIME w.r.t. view size. [Abiteboul, Kanellakis, Grahne 91]

Bibliography

- Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley, 1995. (available at <u>http://webdam.inria.fr/Alice/</u>)
- Libkin, "Elements of Finite Model Theory", Springer, 2004.
- Immerman, "Descriptive Complexity", Springer, 1999.
- Otto, "Finite Model Theory", Springer, 2005 (available at <u>www.mathematik.tu-darmstadt.de/~otto/LEHRE/FMT0809.ps</u>)
- Väänänen, "A Short course on Finite Model Theory", 1994. (available at <u>www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf</u>)