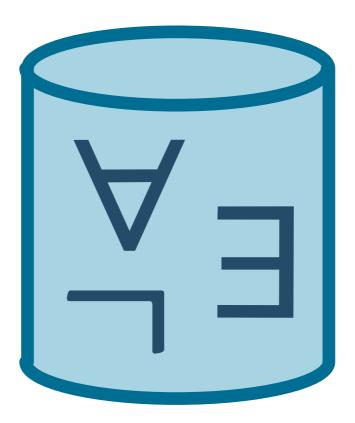
day 5

ESSLLI 2016 Bolzano, Italy



# Logical foundations of databases

Diego Figueira

Gabriele Puppis

CNRS LaBRI



#### Recap

- Acyclic Conjunctive Queries
- Join Trees
- Evaluation of ACQ (LOGCFL-complete)
- Ears, GYO algorithm for testing acyclicity
- Tree decomposition, tree-width of CQ
- Evaluation of bounded tree-width CQs (LOGCFL-complete)
- Bounded variable fragment of FO, evaluation in PTIME
- Acyclic Conjunctive Queries



They play for *n* rounds on the board  $(S_1, S_2)$ . At each round *i*: Spoiler chooses a node  $x_i$  from  $S_1$  (resp.  $y_i$  from  $S_2$ ) Duplicator answers with a node  $y_i$  from  $S_2$  (resp.  $x_i$  from  $S_1$ ) trying to maintain an isomorphism between  $S_1 | \{x_i\}_i$  and  $S_2 | \{y_i\}_i$ 

On non-isomorphic *finite* structures, Spoiler wins eventually... Why?

...and he often wins very quickly:

 $2^n$  nodes  $2^n$  - 1 nodes

But there are non-isomorphic *infinite* structures where Duplicator can survive for *arbitrarily many rounds* (not necessarily forever!)

Given n,  $\mathbb{Z}$  $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in  $S_1$  and  $S_2$ must be either at equal distance or at distance  $\geq 2^{n-i}$ 

**Theorem.**  $S_1$  and  $S_2$  are *n*-equivalent

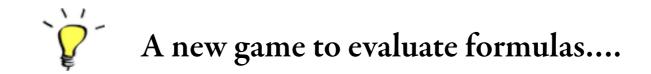
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on  $S_1$  and  $S_2$ .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider  $\phi$  with quantifier rank *n*.

Suppose  $S_1 \vDash \phi$  and Duplicator survives *n* rounds on  $S_1, S_2$ . We need to prove that  $S_2 \vDash \phi$ .



### The semantics game

Assume w.l.o.g. that  $\phi$  is in **negation normal form**.

push negations inside:  $\neg \forall \phi \iff \exists \neg \phi$   $\neg \exists \phi \iff \forall \neg \phi$   $\neg (\phi \land \psi) \iff \neg \phi \lor \neg \psi$ ...

Whether  $S \vDash \phi$  can be decided by a **new game** between two players, **True** and **False**:

- $\phi = E(x,y)$   $\rightarrow$  True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow$  True moves by marking a node x in S, the game continues with  $\phi'$
- $\phi = \forall y \phi'(y) \rightarrow$  False moves by marking a node y in S, the game continues with  $\phi'$
- $\phi = \phi_1 \lor \phi_2 \rightarrow$  True moves by choosing  $\phi_1$  or  $\phi_2$ , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2 \rightarrow$  False moves by choosing  $\phi_1$  or  $\phi_2$ , the game continues with what he chose

**Lemma.**  $S \models \phi$  iff **True** wins the semantics game.

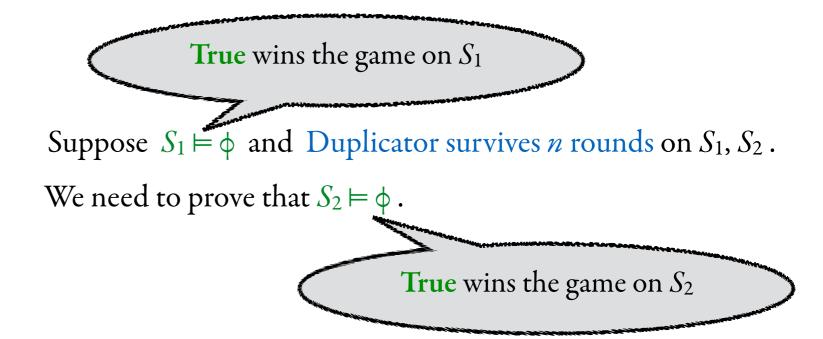
**Theorem.**  $S_1$  and  $S_2$  are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on  $S_1$  and  $S_2$ .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider  $\phi$  with quantifier rank *n*.





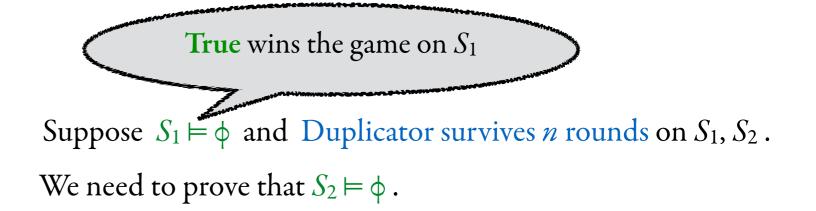
**Theorem.**  $S_1$  and  $S_2$  are *n*-equivalent

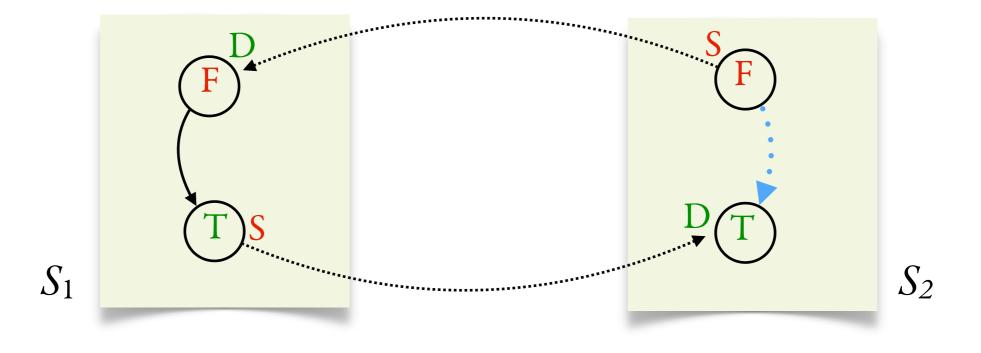
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on  $S_1$  and  $S_2$ .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider  $\phi$  with quantifier rank *n*.





#### Definability in FO

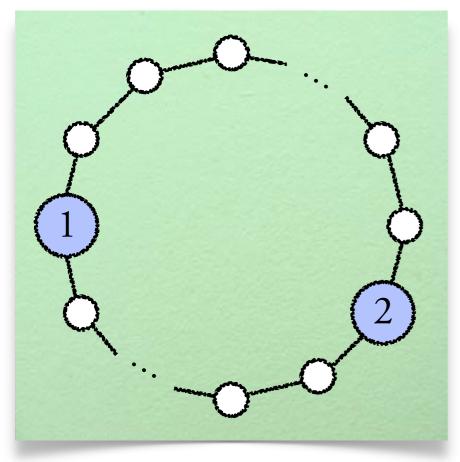
**Theorem.**  $S_1$  and  $S_2$  are *n*-equivalent

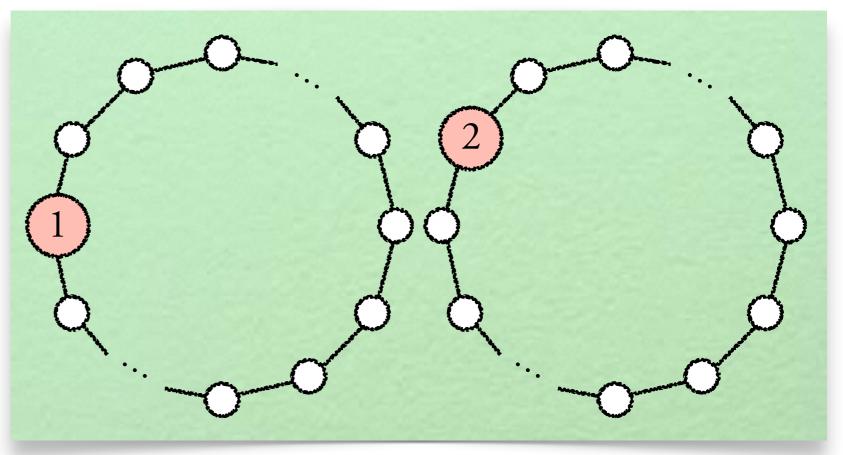
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on  $S_1$  and  $S_2$ .

**Corollary.** A property *P* is *not definable in FO* iff  $\forall n \exists S_1 \in P \exists S_2 \notin P$  Duplicator can survive *n* rounds on  $S_1$  and  $S_2$ .

Example:  $P = \{ \text{ connected graphs } \}$ . Given *n*, take  $S_1 \in P$  large enough and  $S_2 = S_1 \uplus S_1 \notin P$ 





Several properties can be proved to be *not FO-definable*:

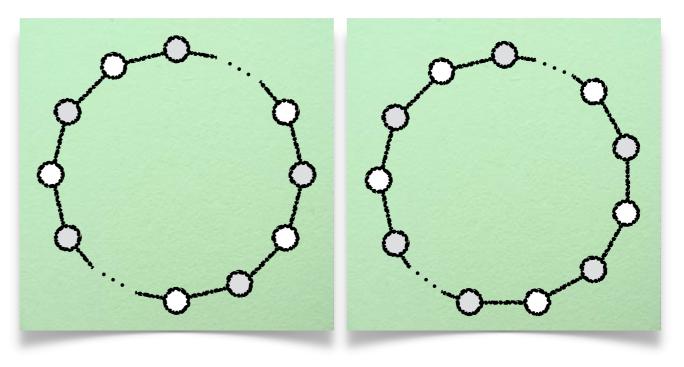
• connectivity ( previous slide )

• even / odd size Your turn now! ...given *n*, take  $S_1 = \text{large even structure}$  $S_2 = \text{large odd structure...}$ 

• 2-colorability Given *n*, take  $S_1 = \text{large even cycle}$   $S_2 = \text{large odd cycle}$ 

• finiteness

• acyclicity



A different perspective: a coarser view on expressiveness...

#### What percentage of graphs verify a given FO sentence?



 $\mu_n(\mathbf{P}) =$  "probability that property **P** holds in a random graph with *n* nodes"

 $C_n = \{ \text{ graphs with } n \text{ nodes } \}$ 

$$\mu_{\mathbf{n}}(\mathbf{P}) = \frac{|\{\mathbf{G} \in \mathbf{C}_n \mid \mathbf{G} \models \mathbf{P}\}|}{|\mathbf{C}_n|}$$

Uniform distribution ( each pair of nodes has an edge with probability ½ )

E.g. for  $\mathbf{P} =$  "the graph is complete"  $\mu_3(\mathbf{P}) = \frac{1}{|\mathbf{C}_3|} = \frac{1}{2^{3^2}}$ 

$$\mu_{\infty}(\mathbf{P}) = \lim_{n \to \infty} \mu_n(\mathbf{P})$$

#### Theorem.

[Glebskii et al. '69, Fagin '76]

For every *FO sentence*  $\phi$ ,  $\mu_{\infty}(\phi)$  is either 0 or 1.

Examples:

- $\phi =$  "there is a triangle"  $\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \ge 1 (1 \frac{1}{|C_3|})^n \Rightarrow 1$
- $\phi_H$  = "there is an occurrence of *H* as induced sub-graph"
- $\phi =$  "there no 5-clique"  $\mu_{\infty}(\phi) = 0$
- $\phi$  = "even number of edges"
- $\phi$  = "even number of nodes"
- $\phi$  = "more edges than nodes"

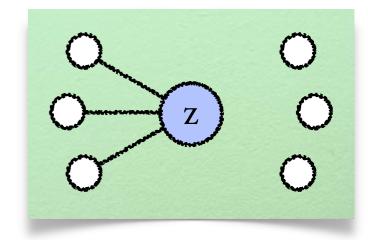
Your turn!  $\mu_{\infty}(\phi) = 1/2$   $\mu_{\infty}(\phi)$  not even defined  $\mu_{\infty}(\phi) = 1$ (yet not FO-definable!)

 $\mu_{\infty}(\phi_H) = 1$ 

For every *FO* sentence  $\phi$ ,  $\mu_{\infty}(\phi)$  is either 0 or 1.

Let  $k = quantifier rank of \phi$ 

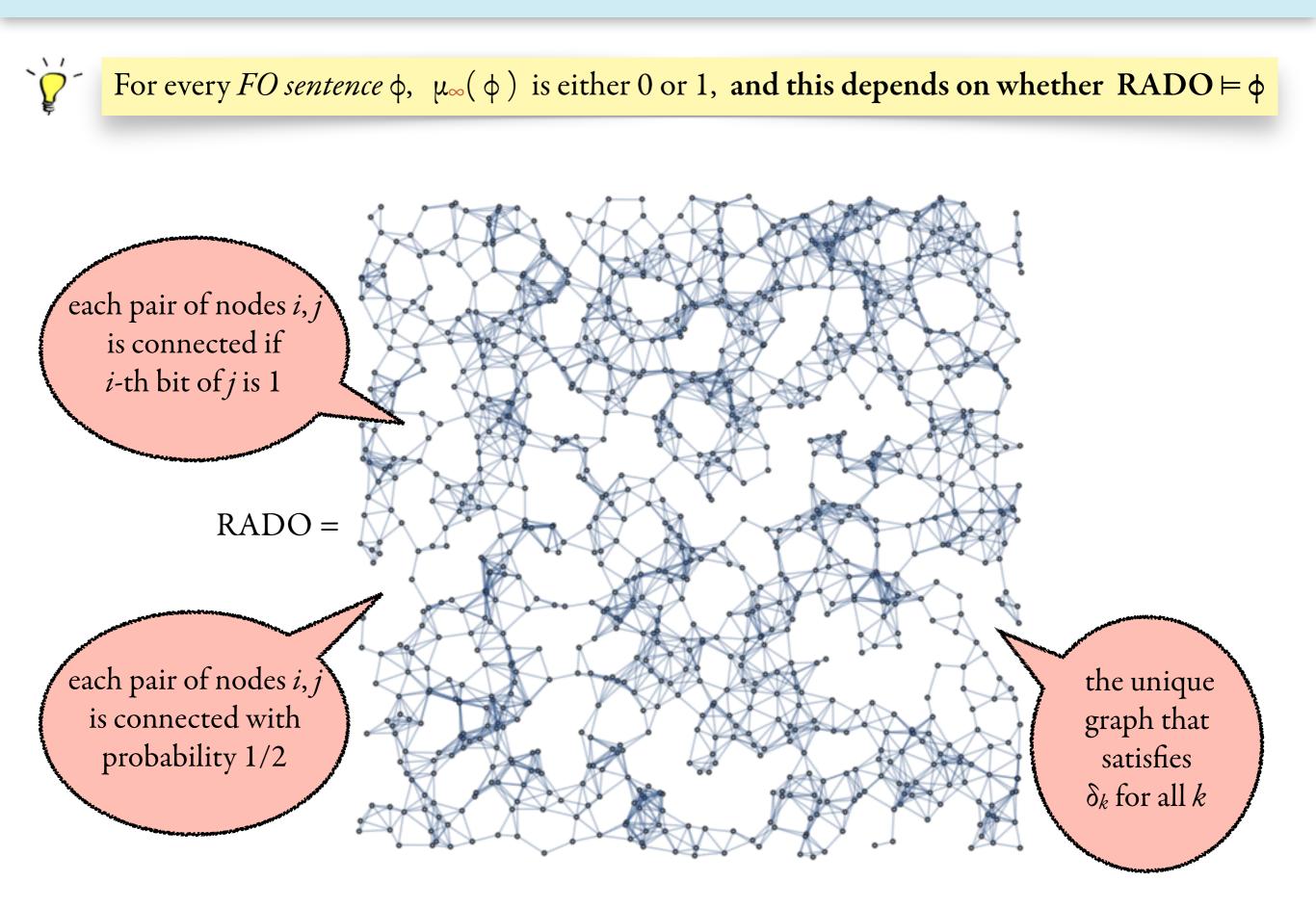
 $\delta_{k} = \forall x_{1}, ..., x_{k} \forall y_{1}, ..., y_{k} \exists z \land_{i,j} x_{i} \neq y_{j} \land E(x_{i}, z) \land \neg E(y_{j}, z)$ (Extension Formula/Axiom)



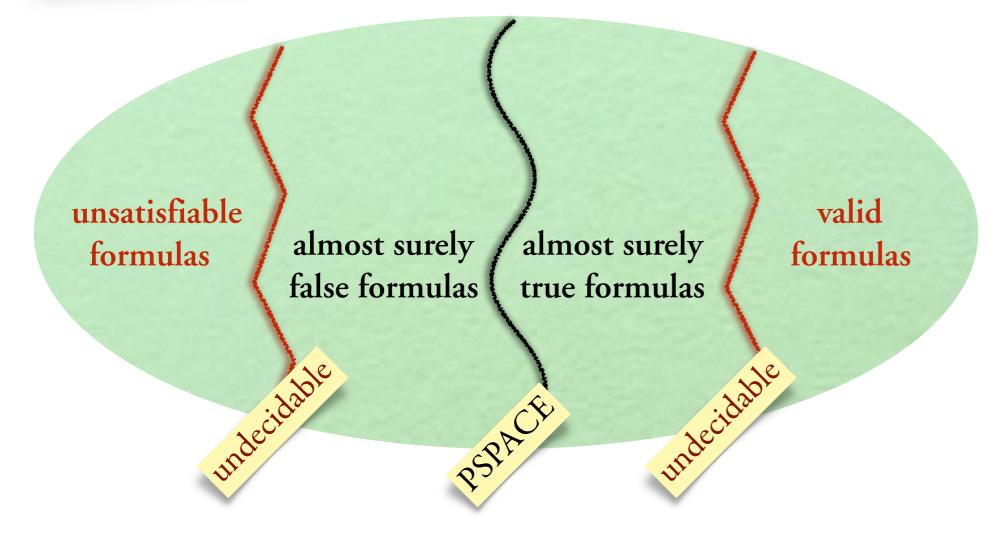
Fact 1: If  $G \models \delta_k \land H \models \delta_k$  then Duplicator survives k rounds on G, H

Fact 2:  $\mu_{\infty}(\delta_k) = 1$ ( $\delta_k$  is almost surely true)

a) There is 
$$G \ G \models \delta_k \land \phi \Rightarrow$$
 (by Fact 1)  $\forall H :$  If  $H \models \delta_k$  then  $H \models \phi$   
Thus,  $\mu_{\infty}(\delta_k) \le \mu_{\infty}(\phi)$   
 $\Rightarrow$  (by Fact 2)  $\mu_{\infty}(\delta_k) = 1$ , hence  $\mu_{\infty}(\phi) = 1$   
b) There is no  $G \models \delta_k \land \phi \Rightarrow$  (by Fact 2) there is  $G \models \delta_k$ ,  
 $\Rightarrow G \models \delta_k \land \neg \phi \Rightarrow$  (by case a)  $\mu_{\infty}(\neg \phi) = 1$ 



Theorem. The problem of deciding whether[Grandjean '83]an FO sentence is almost surely true ( $\mu_{\infty} = 1$ ) is PSPACE-complete.



#### Query evaluation on large databases:

Don't bother evaluating an FO query, it's either *almost surely true* or *almost surely false*!



Does the 0-1 Law apply to real-life databases?

Not quite: database *constraints* easily spoil Extension Axiom.

Consider:

• functional constraint 
$$\forall x, x', y, y'$$
 (  $E(x,y) \land E(x,y') \Rightarrow y = y'$  )  $\land$   
(  $E(x,y) \land E(x',y) \Rightarrow x = x'$  ) (E is a permutation)

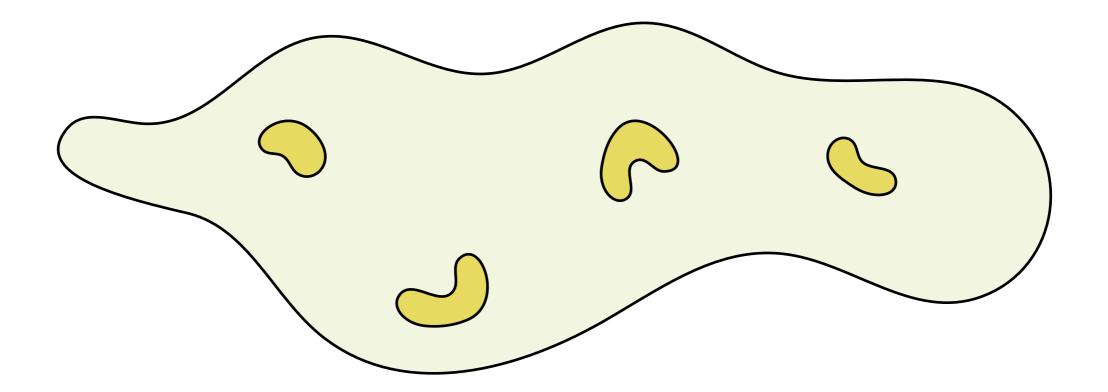
• FO query 
$$\phi = \neg \exists x E(x,x)$$

Probability that a permutation E satisfies  $\phi = \frac{!n}{n!} \rightarrow e^{-1} = 0.3679...$ 

#### 0-1 Law only applies to **unconstrained** databases...

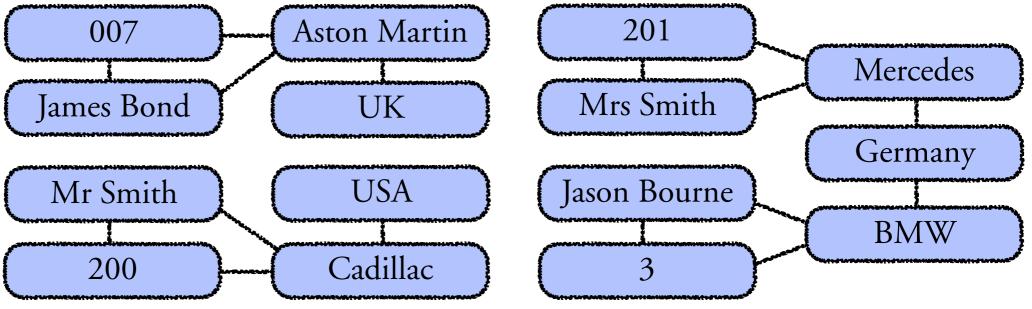
#### Idea: First order logic can only express "local" properties

Local = properties of nodes which are close to one another



Definition. The **Gaifman graph** of a structure  $S = (V, R_1, ..., R_m)$  is the **undirected** graph  $G_S = (V, E)$  where  $E = \{ (u, v) \mid \exists (..., u, ..., v, ...) \in R_i \text{ for some } i \}$ 

| 007James BondAstorThe Gaifman graph of<br>a graph G is the underlyingUK200Mr SmithCaon.undirected graph.USA201Mrs SmithMercedesMercedesGermany | Agent | Name         | Drives   | Car              | Country |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|----------|------------------|---------|
| 201Mrs SmithMercedesMercedesGermany                                                                                                            | 007   | James Bond   |          | e i              | UK      |
|                                                                                                                                                | 200   | Mr Smith     | Cadh, u  | ndirected graph. | USA     |
|                                                                                                                                                | 201   | Mrs Smith    | Mercedes | Mercedes         | Germany |
| 3 Jason Bourne BIVIV BIVIV Germany                                                                                                             | 3     | Jason Bourne | BMW      | BMW              | Germany |

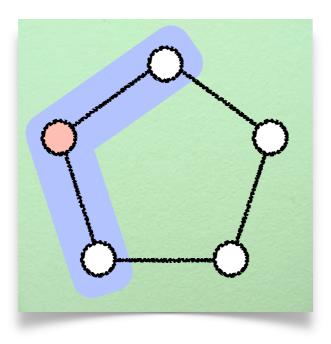


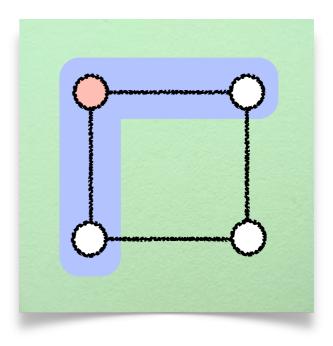
- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$



Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

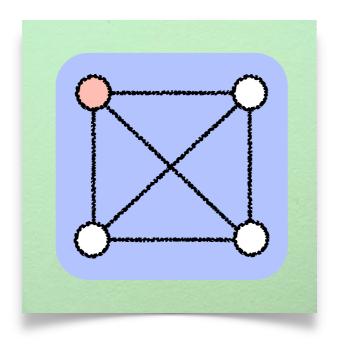
Example.  $S_1$ ,  $S_2$  are Hanf(1, 1) - equivalent iff they have the same balls of radius 1

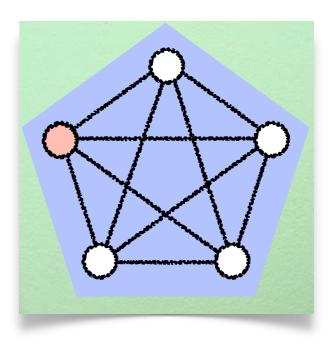




Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

Example.  $K_n$ ,  $K_{n+1}$  are **not** Hanf(1, 1) - equivalent

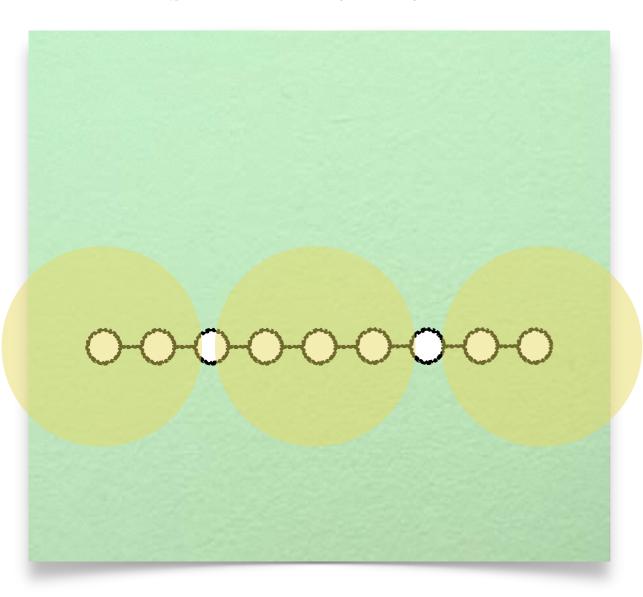


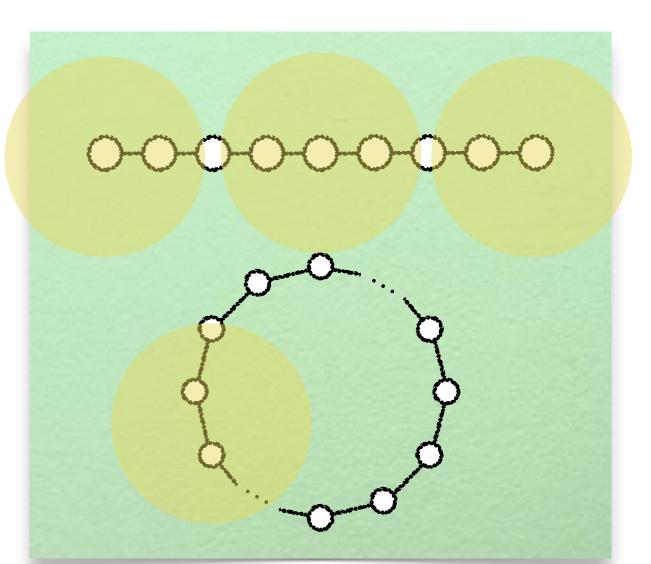


**Theorem.** If  $S_1$ ,  $S_2$  are **Hanf(r,t)** - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are **n** - equivalent (they satisfy the same sentences with quantifier rank n)

[Hanf '60]

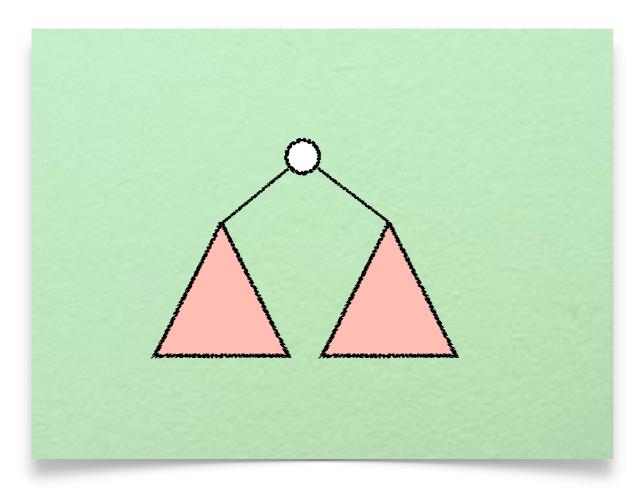
Exercise: prove that *acyclicity* is not FO-definable (on finite structures)

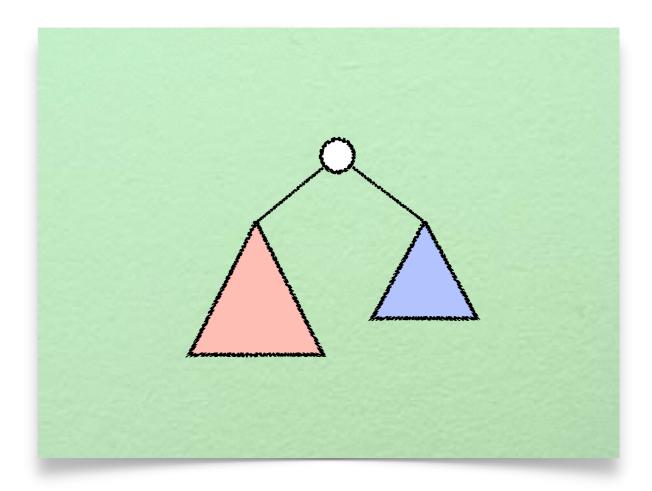




Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

#### Exercise: prove that testing whether a binary tree is *complete* is not FO-definable





Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Remember  $\phi_k(x,y)$  = "there is a path of length 2<sup>k</sup> from x to y"

$$\begin{array}{l} \varphi_{0}(x,y) = E(x,y), \text{ and} \\ \varphi_{k}(x,y) = \exists z \ ( \ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \ ) \\ qr(\varphi_{k}) = k \end{array}$$

Not (n+2)-equivalent yet they have the same  $2^n-1$  balls.

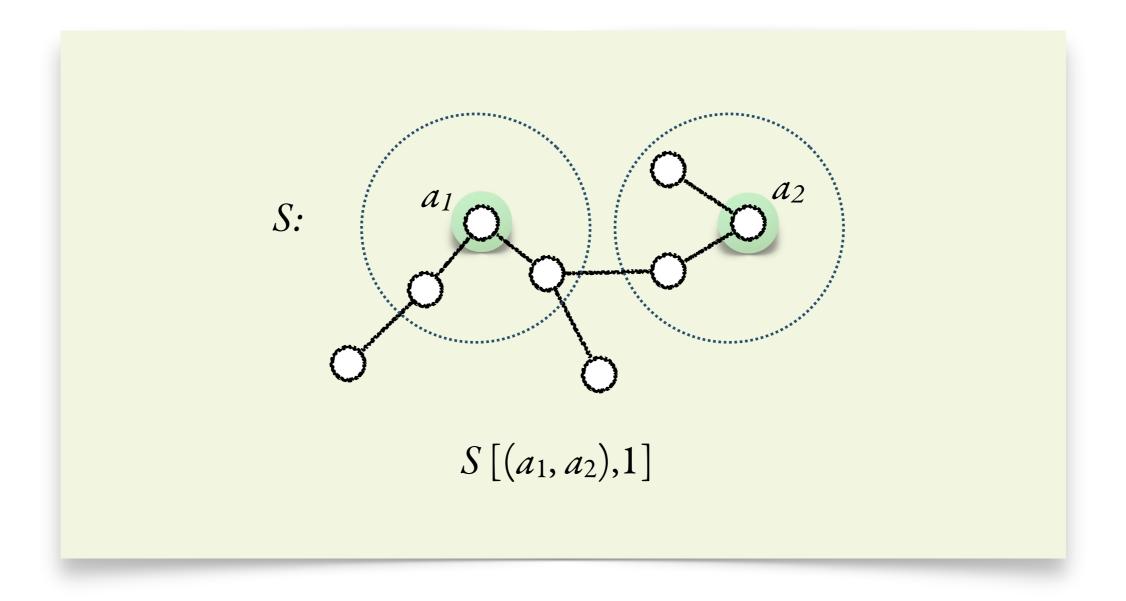
What about queries?

Eg: Is reachability expressible in FO?

What about equivalence on the same structure? When are two points indistinguishable?

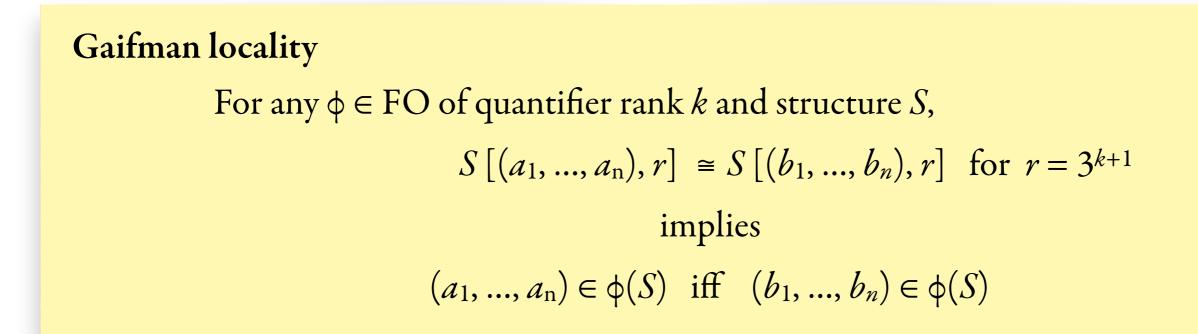
### Gaifman locality

 $S[(a_1, ..., a_n), r] = \text{ induced substructure of } S$ of elements at distance  $\leq r$  of some  $a_i$  in the Gaifman graph.



#### Gaifman locality

 $S[(a_1, ..., a_n), r] = \text{ induced substructure of } S$ of elements at distance  $\leq r$  of some  $a_i$  in the Gaifman graph.



Idea: If the neighbourhoods of two tuples are the same, the formula cannot distinguish them.

#### Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates **two different structures**,

 $S_1$  and  $S_2$  have the same # of balls of radius  $3^k$ , **up to threshold k**  $\downarrow$ They verify the same

sentences of  $qr \le k$ 

Gaifman-locality talks about definability in **one structure** 

Inside *S*,  $3^{k+1}$ -balls of  $(a_1,...,a_n) = 3^{k+1}$ -balls of  $(b_1,...,b_n)$  $\downarrow$ 

 $(a_1,...,a_n)$  indistinguishable from  $(b_1,...,b_n)$ through **formulas** of qr  $\leq k$ 

#### Gaifman locality

Schema to show non-expressibility results is, as usual:

A query  $Q(x_1,...,x_n)$  is not FO-definable if: for every  $\mathbf{k}$  there is a structure  $S_{\mathbf{k}}$  and  $(a_1, ..., a_n)$ ,  $(b_1, ..., b_n)$  such that •  $S_{\mathbf{k}}[(a_1, ..., a_n), 3^{\mathbf{k}+1}] \cong S_{\mathbf{k}}[(b_1, ..., b_n), 3^{\mathbf{k}+1}]$ •  $(a_1, ..., a_n) \in Q(S_{\mathbf{k}}), (b_1, ..., b_n) \notin Q(S_{\mathbf{k}})$ 

Proof: If Q were expressible with a formula of quantifier rank k, then  $(a_1, ..., a_n) \in Q(S_k)$  iff  $(b_1, ..., b_n) \in Q(S_k)$ . Absurd!

#### Gaifman locality

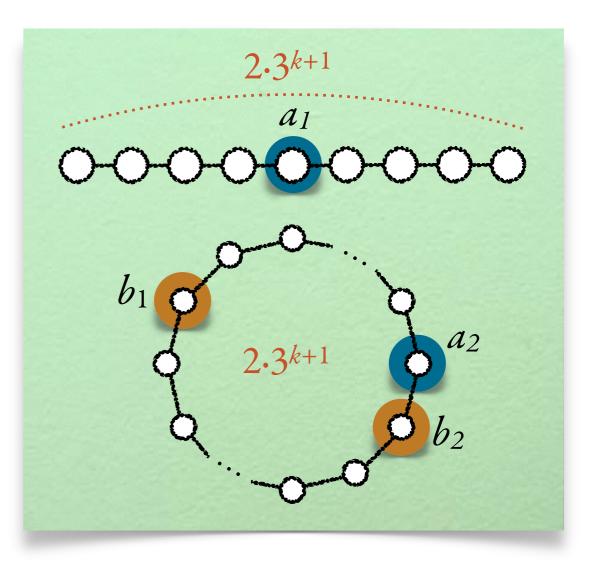
Reachability is not FO definable.

For every k, we build  $S_k$ :

And  $S_k[(a_1, a_2), 3^{k+1}] \cong S_k[(b_1, b_2), 3^{k+1}]$ 

However,

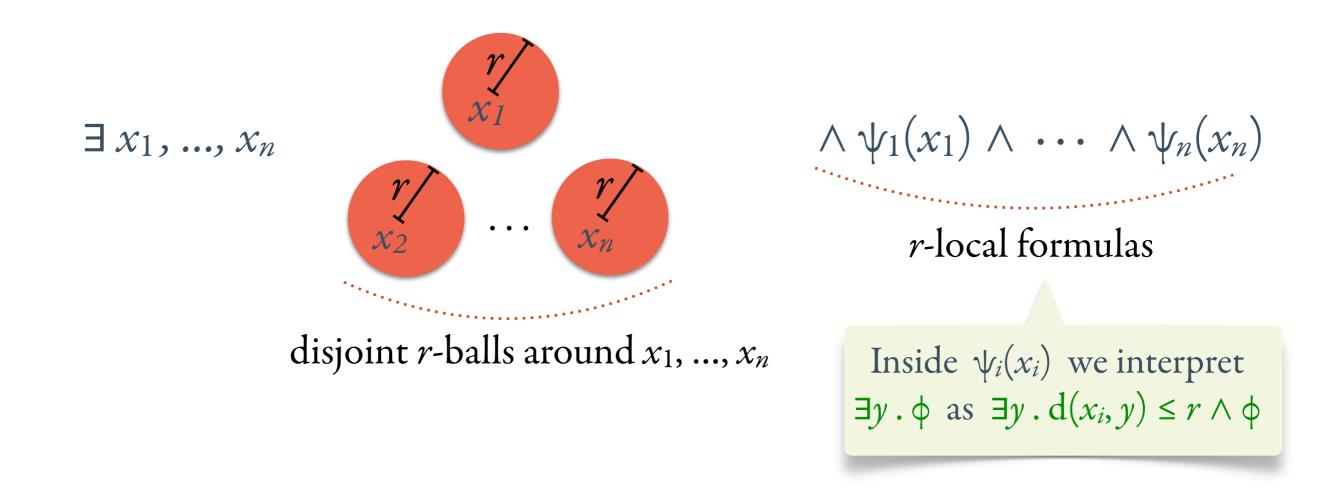
- $b_2$  is reachable from  $b_1$ ,
- $a_2$  is **not** reachable from  $a_1$ .



Your turn! Q(x) = "x is a vertex separator"

#### Gaifman Theorem

Basic local sentence:



#### Gaifman Theorem: Every FO sentence is equivalent to a boolean combination of basic local sentences.

### Recap

| EF games             | FO sentences with quantifier rank n<br>=<br>winning strategies for Spoiler in the n-round EF game                                                                 |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0-1 Law              | FO sentences are almost always true or almost always false                                                                                                        |  |  |  |
| <b>Hanf locality</b> | FO sentences with quantifier rank n<br>=<br>counting 3 <sup>n</sup> sized balls up to n                                                                           |  |  |  |
| Gaifman locality     | Queries of quantifier rank n output tuples closed under 3 <sup>n+1</sup> balls                                                                                    |  |  |  |
| Gaifman Theorem      | An FO sentence can only say<br>"there are some points at distance ≥2r<br>whose r-balls are isomorphic to certain structures"<br>or a boolean combination of that. |  |  |  |

## Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem "A property can be expressed in [insert some logic here] iff it can be checked in [some complexity class here]"

 $\rightsquigarrow$  "A property is FO-definable iff it can be tested in AC<sup>0</sup>"

→ "A property is ∃SO-definable iff it can be tested in NP" [Fagin 73]

---> Open problem: which logic captures PTIME?

## Recursion

Can we enhance query languages with recursion ? E.g. express reachability properties

Datalog (semantics based on least fixpoint) Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y) Ancestor(X,X) :- . ?- Ancestor("Louis XIV",Y)

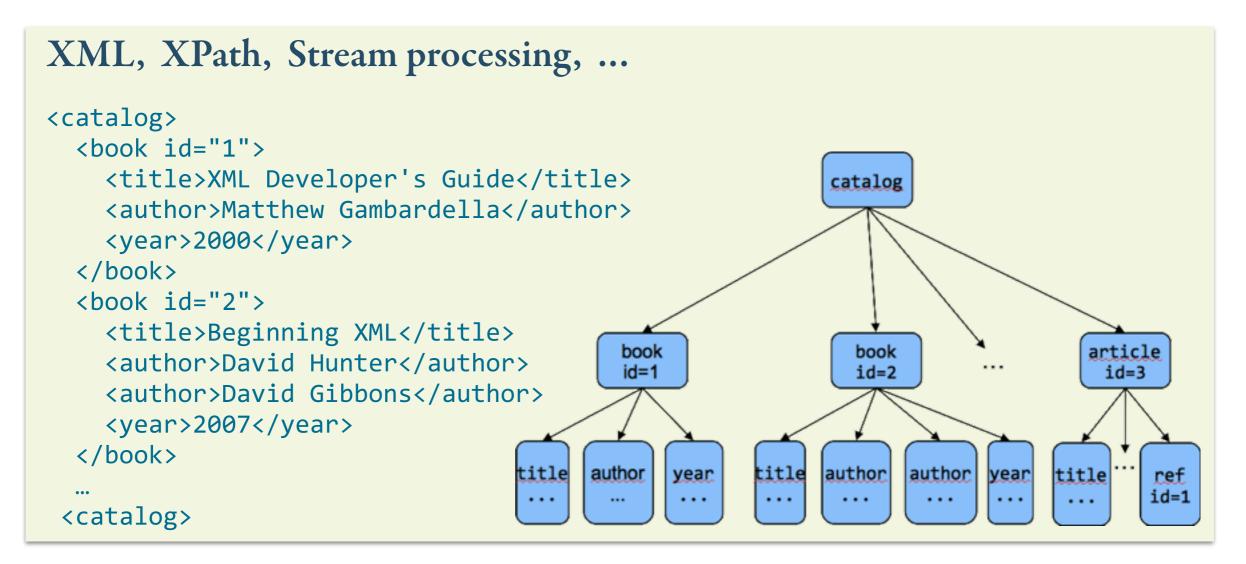
---> Incomparable with FO (has recursion, but is monotone)

---> Evaluation is in PTIME (for data complexity, but also for bounded arity)

### Some more cool stuff...

## Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.

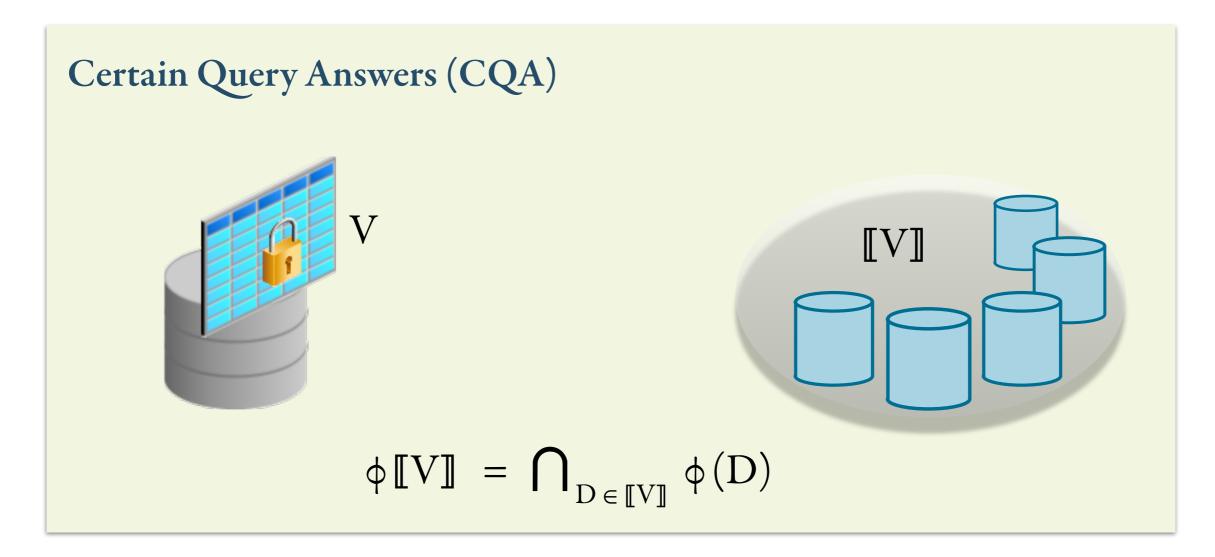


Satisfiability for FO<sup>2</sup>[↓,~] is decidable [Bojanczyk, Muscholl, Schwentick, Segoufin 09]

### Some more cool stuff...

# Incomplete information

How to correctly reason when information is hidden/missing/noisy/...?



----> CQA computable in PTIME w.r.t. view size. [Abiteboul, Kanellakis, Grahne 91]

## Bibliography

- Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley, 1995. (available at <u>http://webdam.inria.fr/Alice/</u>)
- Libkin, "Elements of Finite Model Theory", Springer, 2004.
- Immerman, "Descriptive Complexity", Springer, 1999.
- Otto, "Finite Model Theory", Springer, 2005 (available at <u>www.mathematik.tu-darmstadt.de/~otto/LEHRE/FMT0809.ps</u>)
- Väänänen, "A Short course on Finite Model Theory", 1994. (available at <u>www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf</u>)