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Solution to the exercises
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Exercises

Implement factorial(𝑛) = 𝑛!

Implement fib(𝑛), 𝑛-th Fibonacci number, where fib(0) = 0,
fib(1) = 1, and fib(𝑛) = fib(𝑛− 2) + fib(𝑛− 1) otherwise

Algebraic specification and verification with CafeOBJ [5pt]Part 2 – Advanced topics 3/81



Modules

modules are the basic building blocks of CafeOBJ specifications,
corresponding to (order-sorted) algebras

the are declared by either one of mod! mod* mod
difference of the three are the models that are considered:

mod!: initial models
mod*: all models
mod: undecided

body of a module contains a specification of the algebra with
axioms:

sorts and order on sorts
operators and their arity
variables and their sorts
equations (with or without conditions)
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Anatomy of a module

start of a module and name
definition of sorts and order

operator constant 0
normal prefix operator

infix operator
variable declaration

equation/axioms
another equation

end of the module

mod! PNAT {
[Nat]
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat
eq 0 + Y = Y .
eq s(X) + Y = s(X + Y) .

}
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Defining the first module

CafeOBJ> mod! PNAT {
[Nat]
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat
eq 0 + Y = Y .
eq s(X) + Y = s(X + Y) .

}

-- defining module! PNAT
[....]
CafeOBJ>
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Reducing a term

CafeOBJ> open PNAT .
-- opening module PNAT.. done.
%PNAT> red s(s(s(0))) + s(s(0)) .
-- reduce in %PNAT : (s(s(s(0))) + s(s(0))):Nat
(s(s(s(s(s(0)))))):Nat
(0.000 sec for parse, 4 rewrites(0.000 sec), 7 matches)
%PNAT> close
CafeOBJ>

Q How did this happen?
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Trace a reduction

CafeOBJ> set trace whole on
CafeOBJ> open PNAT .
-- opening module PNAT.. done.
%PNAT> red s(s(s(0))) + s(s(0)) .
-- reduce in %PNAT : (s(s(s(0))) + s(s(0))):Nat
[1]: (s(s(s(0))) + s(s(0))):Nat
---> (s((s(s(0)) + s(s(0))))):Nat
[2]: (s((s(s(0)) + s(s(0))))):Nat
---> (s(s((s(0) + s(s(0)))))):Nat
[3]: (s(s((s(0) + s(s(0)))))):Nat
---> (s(s(s((0 + s(s(0))))))):Nat
[4]: (s(s(s((0 + s(s(0))))))):Nat
---> (s(s(s(s(s(0)))))):Nat
(s(s(s(s(s(0)))))):Nat
(0.000 sec for parse, 4 rewrites(0.000 sec), 7 matches)
%PNAT> close
CafeOBJ>

Algebraic specification and verification with CafeOBJ [5pt]Part 2 – Advanced topics 8/81



More on rewriting

Rewriting can be used in funny ways:

MOD! FOO {
[ Elem ]
op f : Elem -> Elem .
var x : Elem
eq f(x) = f(f(x)) .

}

Q What will happen?
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Rewriting FOO

CafeOBJ> open FOO .
%FOO> set trace whole on
%FOO> red f(3) .
-- reduce in %FOO : (f(3)):Nat
[1]: (f(3)):Nat
---> (f(f(3))):Nat
[2]: (f(f(3))):Nat
---> (f(f(f(3)))):Nat
[3]: (f(f(f(3)))):Nat
---> (f(f(f(f(3))))):Nat
[4]: (f(f(f(f(3))))):Nat
---> (f(f(f(f(f(3)))))):Nat
...
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Term Rewriting & Termination
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Term Rewrite System (TRS)

Definition
pair of terms ℓ → 𝑟 is rewrite rule if ℓ ∉ V & Var(𝑟) ⊆ Var(ℓ)
term rewrite system (TRS) R is set of rewrite rules

rewrite step: 𝑠 →R 𝑡 if
𝑠 = 𝐶[ℓ𝜎] and 𝑡 = 𝐶[𝑟𝜎]

for some substitution 𝜎, context 𝐶, and rule ℓ → 𝑟 ∈ R

NOTATIONS

V stands for set of all variables and Var(𝑡) for variables in 𝑡
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Example of TRS

TRS R

add(0,𝑦) → 𝑦 mul(0,𝑦) → 0

add(s(𝑥),𝑦) → s(add(𝑥,𝑦)) mul(s(𝑥),𝑦) → add(𝑦,mul(𝑥,𝑦))

rewrite sequence

mul(s(0), s(0)) →R add(s(0),mul(s(0),0))
→R add(s(0),0)
→R s(add(0,0))
→R s(0)

Definition
𝑡 is normal form if 𝑡 →R 𝑢 for no 𝑢

Definition
R is terminating if there is no infinite sequence 𝑡1 →R 𝑡2 →R ⋯
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Uniqueness of Normal Forms
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Uniqueness of Normal Forms

Definition
𝑡 →∗

R 𝑢 if 𝑡 →R ⋯ →R 𝑢 (possibly no step)
𝑡 →!

R 𝑢 if 𝑡 →∗
R 𝑢 and 𝑢 is normal form

𝑡↓R denotes normal form of 𝑡 if there is exactly one normal form
of 𝑡

(conditional) TRS R

f(𝑥,𝑦) → 𝑥+𝑦 if 𝑥 ⩾ 50
f(𝑥,𝑦) → 0 if 𝑦 < 50

f(70, 30)↓ is not well-defined:

100 !
R← f(70, 30) →!

R 0

REMARK

well-definedness requires uniqueness of normal forms
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Two warnings

Termination
CafeOBJ does not check whether the generated rewrite system is
terminating.

Confluence
CafeOBJ does not check for confluence.
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Quiz

TRS R

append(nil,ys) → ys

append(𝑥 ∶ xs,ys) → 𝑥 ∶ append(xs,ys)

e.g.

append(1 ∶ 2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil) → 1 ∶ append(2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ append(3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ append(nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ 4 ∶ 5 ∶ nil

Q is R terminating?
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More on CafeOBJ
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Built-in data types

[ NzNat < Nat < NzInt < Int < NzRat < Rat ]

[ Triv Bool Float Char String ]

[ 2Tuple 3Tuple 4Tuple ]

plus records
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Number tower examples

open NAT .
red 10 + 20 .
red 32 * 57 .
-- operator precedence, see later
red 2 + 3 * 4 .
-- what will we get here?
red 7 - 3 .

close
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Number tower examples

open INT .
red 7 - 3 .
red 3 - 9 .
-- operator precedence (see later)
red 3 + 5 * 7 .
-- what will we get here?
red 3 / 5 .

close
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Number tower examples

open RAT .
parse 3 / 5 .
red 3 / 5 + 1 / 2 .
-- what will we get here?
red sqrt(2) .

close
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Operator definitions

prefix (default)
op f : Nat NzNat -> Nat .

mixfix (useful, but can be dangerous)
op _+_ : Int Int -> Int .
op <<___>> : Nat Nat Nat -> Nat .
op if_then_else_fi : Bool Nat Nat -> Nat .
eq if ... = ?

Warning

mixfix operators can create difficult to parse terms, sometimes
proper qualification of terms is necessary
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Equational theory attributes

associativity, commutativity, identity, idempotence

op _&_ : Bool Bool -> Bool { assoc comm idem id: true }

mod* GROUP {
[ G ]
op 0 : -> G .
op _+_ : G G -> G { assoc } .
op -_ : G -> G .
var X : G .
eq[0left] : 0 + X = X .
eq[neginv] : (- X) + X = 0 .

}

!!! inherited
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Parsing attributes

precedence, associativity

op _+_ : Int Int -> Int { prec: 33 } .
op _*_ : Int Int -> Int { prec: 31 } .

effect: ∗ binds stronger than +.

op _+_ : S S -> S { l-assoc } .

reduces X + X + X to (X + X) + X.
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Modules import

Importing modules imports the declarations.
Three different modes:
protecting (pr) pr(NAT)

all intended models are preserved as they are
extending (ex) ex(BOOL)

models can be inflated, but cannot collapse
including (inc) inc(INT)

no restrictions on models
using (us) us(FLOAT)

allows for total destruction (redefinition)

Most use cases: pr(NAT) or ex(NAT).
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Lists
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Lists

lists over ℕ are terms given by BNF

𝐿 ∶∶= nil⏟
empty list

| 𝑥 ∣ 𝐿⏟
cons

(𝑥 ∈ ℕ)

we assume right associativity of ∣

Example
nil — list

1 ∣ (3 ∣ (2 ∣ nil)) — list
1 ∣ 3 ∣ 2 ∣ nil — list
1 ∣ 3 ∣ 2 — not list
(1 ∣ 3) ∣ 2 ∣ nil — not list
1 ∣ true ∣ 3 ∣ nil — not list
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Lists in CafeOBJ

lists can be defined as sorted terms over

functions as values

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞constructor symbols:

nil ∶ NatList and _|_ ∶ Nat× NatList → NatList

mod! NATLIST {
pr(NAT)
[ NatList ]
op nil : -> NatList {constr} .
op _|_ : Nat NatList -> NatList {constr} .

}

open NATLIST .
red 1 | 2 | 3 | 4 | nil .

close
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Length

len(nil) = 0
len(3 ∣ nil) = 1

len(2 ∣ 3 ∣ nil) = 2
len(1 ∣ 2 ∣ 3 ∣ nil) = 3

op len : NatList -> Nat

eq len(nil) = ?
eq len(E:Nat | L:NatList) = ?
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Append

nil@(3 ∣ 4 ∣ nil) = 3 ∣ 4 ∣ nil
(2 ∣ nil)@(3 ∣ 4 ∣ nil) = 2 ∣ 3 ∣ 4 ∣ nil

(1 ∣ 2 ∣ nil)@(3 ∣ 4 ∣ nil) = 1 ∣ 2 ∣ 3 ∣ 4 ∣ nil

mod* NATLIST@ {
pr(NATLIST)
var E : Nat
vars L1 L2 : NatList
op _@_ : NatList NatList -> NatList

eq nil @ L2 = ?
eq (E | L1) @ L2 = ?

}
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Reusing data
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Association Lists

association lists are
lists of pairs: (𝑥1, 𝑦1) ∣ ⋯ ∣ (𝑥𝑛, 𝑦𝑛) ∣ nil

equipped with lookup function

l = (”Kanazawa”, 921) ∣ (”Nomi”, 923) ∣ nil

lookup(”Kanazawa”, l) = 921
lookup(”Nomi”, l) = 923
lookup(”Hakusan”, l) = not-found

Q

what would be the signature of data constructors and lookup?
how would one define lookup?
implementation?
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Parametrized Modules

mod! 𝑀(
variable

⏞𝑋 ∶∶
module constraint

⏞𝐶,…) {⋯ 𝑓.𝑋 ⋯} parametrized module

𝑀(𝑁
view

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞{sort A -> B,op f -> g,…}) module instantiation

mod* C {
[A]
op add : A A -> A .

}

mod! TWICE(X :: C) {
op twice : A.X -> A.X .
eq twice(E:A.X) = add.X(E,E) .

}

open TWICE(NAT { sort A -> Nat, op add -> _+_ })
red twice(10) . – -> 10 + 10 -> 20

close
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Views and Module Instantiations

all are same:
open TWICE(NAT { sort A -> Nat, op add -> _+_ })

view C2NAT from C to NAT {
sort A -> Nat
op add -> _+_

}

open TWICE(C2NAT)

open TWICE(X <= C2NAT)

All describe a homomorphism from the parameter algebra to the
instantiation algebra

Warning That is a homomorphism of multi-sorted algebra, thus
sorts and operators have to be translated.
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Parametrized Lists

TRIV consists of only sort Elt; see show TRIV

mod! LIST(X :: TRIV) {
[List]
op nil : -> List {constr}
op _|_ : Elt.X List -> List {constr}
op _@_ : List List -> List

var E : Elt.X
vars L1 L2 : List

eq nil @ L2 = L2 .
eq (E | L1) @ L2 = E | (L1 @ L2) .

}

USAGE

mod! NATLIST { pr(LIST(NAT {sort Elt -> Nat})) }, or
mod! NATLIST { pr(LIST(NAT)) }

+ Elt is automatically identified if module contains only one sort
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Renaming of instances

Assume

mod! SUPERMODULE {
pr(LIST(NAT {sort Elt -> Nat}))
pr(LIST(INT {sort Elt -> Int}))

}
open SUPERMODULE .
check regularity

...

Why? – Instantiation is a homomorphism from C to target module.
But the “generated module” is called in both cases LIST.
Solution: Add another “renaming” isomorphism at the end.
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Renaming of instances cont.

mod! SUPERMODULE {
pr(LIST(NAT {sort Elt -> Nat})

* { sort List -> NatList,
op nil -> natnil,
op _|_ -> _||_ })

pr(LIST(INT {sort Elt -> Int})
* { sort List -> IntList })

}

The isomorphism renames
<List, nil, |> ↦ <NatList, natnil, ||>:

%SUPERMODULE> parse 3 || 4 || 7 || 1 || natnil .
(3 || (4 || (7 || (1 || natnil)))):NatList
%SUPERMODULE> parse 3 | 4 | 7 | 1 | nil .
(3 | (4 | (7 | (1 | nil)))):IntList
%SUPERMODULE> parse 3 | 4 | 7 | 1 | natnil .
[Error] no successful parse
...
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Association Lists Revisited

2TUPLE(X1 :: TRIV, X2 :: TRIV) is parametrized module for
pairs

Quiz

mod! ALIST(K :: TRIV, V :: TRIV) {
pr(LIST(2TUPLE(K, V) {sort Elt -> 2Tuple}))

[ ? ]

op not-found : -> NotFound .
op lookup : Elt.K List -> Value&NotFound .

vars X1 X2 : ? .
var Y : Elt.V .
var L : List .
eq lookup(X1, nil) = not-found .
eq lookup(X1, « X2 ; Y » | L) =

if X1 == X2 then Y else lookup(X1, L) fi .
}
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Proving
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Proof scores

proofs of properties by reducing them to true (e.g.)
usually written between open and close
statements between the two are temporary and are lost after the
close (temporary module)
usually several modules plus several blocks of open-close

Examples
𝑥+ (−𝑥) = 0 in group theory
Associativity of + in PNAT
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Group theory

group-theory1.cafe
mod* GROUP {
[ G ]
op 0 : -> G .
op _+_ : G G -> G { assoc } .
op -_ : G -> G .
var X : G .
eq[0left] : 0 + X = X .
eq[neginv] : (- X) + X = 0 .

}
open GROUP .
op a : -> G .
red a + ( - a ) .

close

…would be nice – but does not work
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Group theory cont.
Why?

Let us try to give a proof – can you do it? Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)

𝑎+−𝑎 = 0+𝑎+−𝑎 by (1) right-to-left
= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?
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Group theory cont.
Why? Let us try to give a proof – can you do it? Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)
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= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?
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Group theory – better proof score

group-theory2.cafe
open GROUP .
op a : -> G .
start a + ( - a ) .
apply -.0left at (0) .
apply -.neginv with X = - a at [1] .
apply reduce at term .

close

Still not there – why?
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Group theory – even better proof score

group-theory3.cafe
open GROUP .
op a : -> G .
start a + ( - a ) .
apply -.0left at (1) .
apply -.neginv with X = - a at [1] .
apply +.neginv with X = a at [2 .. 3] .
apply reduce at term .

close

Where can we go from here?
Prove that 0 is also right inverse
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0 is right inverse

group-theory4.cafe
open GROUP .
op a : -> G .
-- we have proven the following equation
-- so we can add it
eq[invneg] : a + ( - a ) = 0 .
start a + 0 .
apply -.neginv with X = a at (2) .
apply +.invneg at [1 .. 2] .
apply reduce at term .
-- and we get a, so (a + 0) = a

close

Algebraic specification and verification with CafeOBJ [5pt]Part 2 – Advanced topics 46/81



Associativity of + in PNAT
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Associativity of +

Recall PNAT
mod! PNAT {
[Nat]
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat
eq 0 + Y = Y .
eq s(X) + Y = s(X + Y) .

}
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Mathematical proof

Assume that 0 +𝑦 = 𝑦 and 𝑠(𝑥) +𝑦 = 𝑠(𝑥+𝑦) for all 𝑥 and 𝑦.
How do we show that (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+𝑦) for all 𝑥, 𝑦, and 𝑧?

Proof by induction:

Induction base
Show that (0 +𝑦)+ 𝑧 = 0+ (𝑦+ 𝑧)

Induction step
Show that if (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+ 𝑧), then also
(𝑠(𝑥) +𝑦)+ 𝑧 = 𝑠(𝑥) + (𝑦+ 𝑧).
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Formal proof in CafeOBJ

mod ADD-ASSOC {
pr(PNAT)
-- theorem of constants, denote arbitrary values
ops x y z : -> Nat .
op addassoc : Nat Nat Nat -> Bool .
vars X Y Z : Nat
eq addassoc(X,Y,Z) = ((X + Y) + Z == X + (Y + Z)) .

}

Induction base
open ADD-ASSOC .
red addassoc(0,y,z) .

close
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Checking induction base

CafeOBJ> set trace whole on
CafeOBJ> open ADD-ASSOC .
%ADD-ASSOC> red addassoc(0,y,z) .
-- reduce in %ADD-ASSOC : (addassoc(0,y,z)):Bool
[1]: (addassoc(0,y,z)):Bool
---> (((0 + y) + z) == (0 + (y + z))):Bool
[2]: (((0 + y) + z) == (0 + (y + z))):Bool
---> ((y + z) == (0 + (y + z))):Bool
[3]: ((y + z) == (0 + (y + z))):Bool
---> ((y + z) == (y + z)):Bool
[4]: ((y + z) == (y + z)):Bool
---> (true):Bool
(true):Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 12 matches)
%ADD-ASSOC> close
CafeOBJ>
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Checking induction step

CafeOBJ> set trace whole off
CafeOBJ> open ADD-ASSOC .
%ADD-ASSOC> red addassoc(x,y,z) implies

addassoc(s(x),y,z) .
-- reduce in %ADD-ASSOC : (addassoc(x,y,z) implies addassoc(s

(x),y,z)):Bool
(true):Bool
(0.000 sec for parse, 11 rewrites(0.000 sec), 50 matches)
%ADD-ASSOC> close
CafeOBJ>

End of the proof
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Observational Transition Systems
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System specification with OTS

describe the system as state machine (automaton)

one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.
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CloudSync
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CloudSync in images

Cl
ou

d state

stamp

idle

𝑛

pc
-1

state idle
stamp 𝑘
tmp 0

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0
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CloudSync in images

Cl
ou

d state

stamp

busy

𝑛

pc
-1

state gotvalue

stamp 𝑘
tmp 𝑛

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: gotvalue
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CloudSync in images

Cl
ou

d state

stamp

busy

𝑘

pc
-1

state update

stamp 𝑘
tmp 𝑘

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: update assuming 𝑘 ≥ 𝑛
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CloudSync in images

Cl
ou

d state

stamp

idle

𝑘

pc
-1

state idle
stamp 𝑘
tmp 0

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: gotoidle
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Specification

ClLabel: {idlecl,busy}

mod! CLLABEL {
[ClLabelLt < ClLabel]
ops idlecl busy : -> ClLabelLt {constr} .
eq (L1:ClLabelLt = L2:ClLabelLt) = (L1 == L2) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 2 – Advanced topics 60/81



Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}

mod! PCLABEL {
[PcLabelLt < PcLabel]
ops idlepc gotvalue updated : -> PcLabelLt {constr} .
eq (L1:PcLabelLt = L2:PcLabelLt) = (L1 == L2) .

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ

mod! CLSTATE {
pr(PAIR(NAT, CLLABEL{sort Elt -> ClLabel})*{

sort Pair -> ClState, op fst -> fst.clstate,
op snd -> snd.clstate })

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ

mod! PCSTATE {
pr(3TUPLE(NAT, NAT,

PCLABEL{sort Elt -> PcLabel})*
{sort 3Tuple -> PcState})

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)

mod! PCSTATES {
pr(MULTISET(PCSTATE{sort Elt -> PcState})*

{sort MultiSet -> PcStates})
}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)
State: ClState× PcStates

mod! STATE {
pr(PAIR(CLSTATE{sort Elt -> ClState},PCSTATES

{sort Elt -> PcStates})*{sort Pair -> State})
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value

mod! GETVALUE { pr(STATE)
trans[getvalue]:
<
< ClVal:Nat , idlecl > ,
( <<PcVal:Nat; OldClVal:Nat; idlepc>> S:PcStates)

> =>
<
< ClVal , busy > ,
( <<PcVal; ClVal; gotvalue>> S)

> .
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value

mod! UPDATE { pr(STATE)
trans[update]:
<
< ClVal:Nat , busy > ,
(<<PcVal:Nat;GotClVal:Nat;gotvalue>> S:PcStates)
> =>
if PcVal <= GotClVal then
< <ClVal,busy> ,(<<GotClVal;GotClVal;updated>> S)>

else
< <PcVal,busy> , (<< PcVal;PcVal;updated >> S) >

fi .
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
GotoIdle: both PC and Cloud go back to idle

mod! GOTOIDLE {pr(STATE)
trans[gotoidle]:
<
< ClVal:Nat ,busy > ,
( <<PcVal:Nat;OldClVal:Nat;updated >> S:PcStates)
> =>
< <ClVal, idlecl> , ( <<PcVal; OldClVal; idlepc>> S) > .

}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
GotoIdle: both PC and Cloud go back to idle

mod! GOTOIDLE {pr(STATE)
trans[gotoidle]:
<
< ClVal:Nat ,busy > ,
( <<PcVal:Nat;OldClVal:Nat;updated >> S:PcStates)
> =>
< <ClVal, idlecl> , ( <<PcVal; OldClVal; idlepc>> S) > .

}
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CloudSync

Final specification is combination of the three transitions
(included modules are shared!)

mod! CLOUD {
pr(GETVALUE + UPDATE + GOTOIDLE)

}

Goal
If PC is in updated state, then the values of the Cloud and the PC
agree.
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Verification

Hoare style proof

1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition
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How to prove ∀𝑆

Question
How to prove a statement like

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

?

Answer
Show it for any element of a covering set of state expressions.
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Covering set

most general: 𝑆 (state variable) – every state is an instance of 𝑆

more general {𝑆1,… ,𝑆𝑛} such that

∀𝑆∃𝑆𝑖 ∶ 𝑆 = 𝜎(𝑆𝑖)

i.e., every state term is an instance of one of the elements of the
covering set
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Proving with covering sets

Requirements for proving Hoare style
all transitions and predicates have to be applicable to terms of the
covering set

Covering set
ops s1 s2 s3 s4 t1 t2 t3 t4 : -> State .
ops M N K : -> Nat . var PCS : PcStates .
eq s1 = < < N, idlecl > , ( << M; K; idlepc >> PCS ) > .
eq s2 = < < N, idlecl > , ( << M; K; gotvalue >> PCS ) > .
eq s3 = < < N, idlecl > , ( << M; K; updated >> PCS ) > .
eq t1 = < < N, busy > , ( << M; K; idlepc >> PCS ) > .
eq t2 = < < N, busy > , ( << M; K; gotvalue >> PCS ) > .
eq t3 = < < N, busy > , ( << M; K; updated >> PCS ) > .
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Initial predicates

cl-is-idle: Cloud is initially idle

op cl-is-idle-name : -> PredName .
eq[cl-is-idle] : apply(cl-is-idle-name,S:State) =

( snd(fst(S)) = idlecl ) .
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Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle

op pcs-are-idle-name : -> PredName .
eq[pcs-are-idle] : apply(pcs-are-idle-name,S:State) =

zero-gotvalue(S) and zero-updated(S) .
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Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle
init: cl-is-idle & pcs-are-idle

mod! INITIALSTATE {
pr(INITPREDS)
op init-name : -> PredNameSeq .
eq init-name = cl-is-idle-name pcs-are-idle-name .
pred init : State .
eq init(S:State) = apply(init-name, S) .

}
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Invariant predicates

goal: all PCs in updated state agree with Cloud

if Cloud is idle then all PCs, too

only at most one PC is out of the idle state

all PCs in gotvalue state have their tmp value equal to the Cloud value

if Cloud is in busy state, then the value of the Cloud and the gotvalue
of the Pcs agree
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Hoare style in term reduction

initial step
red init(s1) implies invariant(s1) . -- OK
red init(s2) implies invariant(s2) . -- OK
red init(s3) implies invariant(s3) . -- OK
red init(t1) implies invariant(t1) . -- OK
red init(t2) implies invariant(t2) . -- OK
red init(t3) implies invariant(t3) . -- OK
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Hoare style in term reduction

induction step search predicate
op inv-condition : State State -> Bool .
eq inv-condition(S, SS) =

(not (
S =(*,1)=>+ SS
suchThat
(not

((invariant(S) implies invariant(SS))
== true)

)
)

) .
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Hoare style in term reduction

induction step
red inv-condition(s1, SS) . -- OK
red inv-condition(s2, SS) . -- OK
red inv-condition(s3, SS) . -- OK
red inv-condition(t1, SS) . -- OK
--> The following condition does not reduce directly
--> to true, we will deal with it later on
red inv-condition(t2, SS) . -- BAD
red inv-condition(t3, SS) . -- OK

Rest of the invariant condition with case distinctions
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Lab Time

Given a sorted list ℓ, the function insert(𝑥, ℓ) computes the
sorted version of 𝑥 ∣ ℓ. For instance,

insert(5, 2 ∣ 4 ∣ 6 ∣ nil) = 2 ∣ 4 ∣ 5 ∣ 6 ∣ nil
insert(7, 2 ∣ 4 ∣ 6 ∣ nil) = 2 ∣ 4 ∣ 6 ∣ 7 ∣ nil

Implement insert : Nat NatList -> NatList.

use insert to implement the insertion sort algorithm (isort).
Hint:

isort(3 ∣ 2 ∣ 1 ∣ nil) = insert(3, insert(2, insert(1,nil))) = 1 ∣ 2 ∣ 3 ∣ nil
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