Algebraic specification and verification with CafeOBJ

Part 5 – Proving and CITP

Norbert Preining

ESSLLI 2016 Bozen, August 2016
The *rank* of a polynomial

\[p = \sum_{k=0}^{n} p_k X^k \]

is the maximum of the exponents of non-zero terms, i.e.,

\[\text{rank}(p) = \max \{ k : p_k \neq 0 \} \]

Assuming the specification of polynomials from the lecture given. Define an operator and necessary equations so that CafeOBJ can compute arbitrary ranks.

Example: In case in integer polynomials:

\texttt{red rank (3 \ast p \ X^2 \ + p \ X^1 \ - p \ 4)}.

should return 2 because \(p_2 = 3 \) is the biggest non-zero coefficient.
A vector space V over a commutative ring R is a set with two operations, vector addition and scalar multiplication. The elements of V are called vectors, the elements of R (the field) scalars. The vector addition operators on two vectors, and the scalar multiplication operates on a scalar and a vector. The operations satisfy the following axioms:

- vector addition is associative and commutative
- there is an identity element for the vector addition
- for every vector there is the additive inverse for the vector addition
- scalar multiplication and field multiplication are compatible (a and b are scalars, \vec{v} a vector): $a(b\vec{v}) = (ab)\vec{v}$
- the identity element of the field is multiplicative identity of the scalar multiplication
- scalar multiplication is distributive with respect to both scalar addition (addition in the field) and vector addition, that is, $(a + b)\vec{v} = (a\vec{v}) + (b\vec{v})$ and $a(\vec{v} + \vec{w}) = (a\vec{v}) + (a\vec{w})$ where a and b are scalars, and \vec{v} and \vec{w} are vectors.
Give a parametrized (parameter is the commutative ring) specification of vector spaces.
Example: With the view INT-AS-CRING from the lecture, the following code

```
open VECTORSPACE(SCALAR <= INT-AS-CRING) .
red ( 3 * 2 * (4 + 3) *v (V:Vector +v W:Vector)) .
```

should give

```
((42 *v V) +v (42 *v W)):Vector
```

as output.
Proving
Proof scores

- proofs of properties by reducing them to true (e.g.)
- usually written between open and close
 statements between the two are temporary and are lost after the close (temporary module)
- usually several modules plus several blocks of open-close
PROOF SCORES

- proofs of properties by reducing them to true (e.g.)
- usually written between open and close
 statements between the two are temporary and are lost after the close (temporary module)
- usually several modules plus several blocks of open-close

Examples

- \(x + (-x) = 0 \) in group theory
- Associativity of + in PNAT
GROUP THEORY

group-theory1.cafe

mod* GROUP {
 [G]
 op 0 : -> G .
 op _+_ : G G -> G { assoc } .
 op -_ : G -> G .
 var X : G .
 eq[0left] : 0 + X = X .
 eq[neginv] : (- X) + X = 0 .
}

open GROUP .
 op a : -> G .
 red a + (- a) .

close
Group theory

\begin{verbatim}
mod* GROUP {
 [G]
 op 0 : \rightarrow G .
 op _+_ : G G \rightarrow G \{ assoc \} .
 op -_ : G \rightarrow G .
 var X : G .
 eq[0left] : 0 + X = X .
 eq[neginv] : (- X) + X = 0 .
}
open GROUP .
 op a : \rightarrow G .
 red a + (- a) .
close
\end{verbatim}

...would be nice – but does not work
GROUP THEORY CONT.

Why?

Let us try to give a proof – can you do it?

Assume we have

\[0 + a = a \quad (1) \]

\[-a + a = 0 \quad (2) \]

\[a + -a = 0 + a + -a \]

by (1) right-to-left

\[= -a + -a + a + -a \]

by (2) right-to-left

\[= -a + 0 + -a \]

by (2)

\[= -a + -a \]

by (1)

\[= 0 \]

by (2)

Why did it not work in CafeOBJ?
Group theory cont.

Why? Let us try to give a proof – can you do it?
GROUP THEORY CONT.

Why? Let us try to give a proof – can you do it? Assume we have

\[0 + a = a \quad (1) \]
\[-a + a = 0 \quad (2) \]

\[a + -a = 0 + a + -a \]
\[= -a + -a + a + -a \] by (1) right-to-left
\[= -a + 0 + -a \] by (2)
\[= -a + -a \] by (1)
\[= 0 \] by (2)
GROUP THEORY CONT.

Why? Let us try to give a proof – can you do it? Assume we have

\[0 + a = a \quad (1) \]
\[-a + a = 0 \quad (2) \]

\[a + -a = 0 + a + -a \quad \text{by (1) right-to-left} \]
\[= - -a + -a + a + -a \quad \text{by (2) right-to-left} \]
\[= - -a + 0 + -a \quad \text{by (2)} \]
\[= - -a + -a \quad \text{by (1)} \]
\[= 0 \quad \text{by (2)} \]

Why did it not work in CafeOBJ?
GROUP THEORY – BETTER PROOF SCORE

group-theory2.cafe

open GROUP .
 op a : -> G .
start a + (- a) .
apply -.0left at (0) .
apply -.neginv with X = - a at [1] .
apply reduce at term .
close
group-theory2.cafe

open GROUP .
 op a : -> G .
start a + (- a) .
apply -.0left at (0) .
apply -.neginv with X = - a at [1] .
apply reduce at term .
close

Still not there – why?
GROUP theory – even better proof score

group-theory3.cafe

open GROUP .
 op a : -> G .
 start a + (- a) .
 apply -.0left at (1) .
 apply -.neginv with X = - a at [1] .
 apply +.neginv with X = a at [2 .. 3] .
 apply reduce at term .
close

Where can we go from here?

Prove that 0 is also right inverse

Algebraic specification and verification with CafeOBJ [5pt]Part 5 - Proving and CITP
GROUP THEORY – EVEN BETTER PROOF SCORE

group-theory3.cafe

open GROUP .
 op a : -> G .
start a + (- a) .
 apply -.0left at (1) .
 apply -.neginv with X = - a at [1] .
 apply +.neginv with X = a at [2 .. 3] .
 apply reduce at term .
close

Where can we go from here?
Where can we go from here?
Prove that 0 is also right inverse
0 IS RIGHT INVERSE

group-theory4.cafe

open GROUP .
 op a : -> G .
-- we have proven the following equation
-- so we can add it
eq[invneg] : a + (- a) = 0 .
start a + 0 .
apply -.neginv with X = a at (2) .
apply +.invneg at [1 .. 2] .
apply reduce at term .
-- and we get a, so (a + 0) = a
close
Associativity of $+$ in PNAT
ASSOCIATIVITY OF +

Recall PNAT

```plaintext
mod! PNAT {
  [Nat]
  op 0 : -> Nat .
  op s : Nat -> Nat .
  op _+_: Nat Nat -> Nat .
  vars X Y : Nat
  eq 0 + Y = Y .
  eq s(X) + Y = s(X + Y) .
}
```
Mathematical proof

Assume that $0 + y = y$ and $s(x) + y = s(x + y)$ for all x and y. How do we show that $(x + y) + z = x + (y + y)$ for all x, y, and z?
Mathematical Proof

Assume that $0 + y = y$ and $s(x) + y = s(x + y)$ for all x and y. How do we show that $(x + y) + z = x + (y + z)$ for all x, y, and z? Proof by induction:

Induction base
Show that $(0 + y) + z = 0 + (y + z)$
Mathematical Proof

Assume that $0 + y = y$ and $s(x) + y = s(x + y)$ for all x and y. How do we show that $(x + y) + z = x + (y + z)$ for all x, y, and z?

Proof by induction:

Induction base
Show that $(0 + y) + z = 0 + (y + z)$

Induction step
Show that if $(x + y) + z = x + (y + z)$, then also $(s(x) + y) + z = s(x) + (y + z)$.

FORMAL PROOF IN CafeOBJ

mod ADD-ASSOC {
 pr(PNAT)
 -- theorem of constants, denote arbitrary values
 ops x y z : -> Nat .
 op addassoc : Nat Nat Nat -> Bool .
 vars X Y Z : Nat
 eq addassoc(X,Y,Z) = ((X + Y) + Z == X + (Y + Z)) .
}

Induction base
open ADD-ASSOC .
red addassoc(0,y,z) .
close
mod ADD-ASSOC {
 pr(PNAT)
 -- theorem of constants, denote arbitrary values
 ops x y z : -> Nat .
 op addassoc : Nat Nat Nat -> Bool .
 vars X Y Z : Nat
 eq addassoc(X,Y,Z) = ((X + Y) + Z == X + (Y + Z)) .
}

Induction base

open ADD-ASSOC .
 red addassoc(0,y,z) .
close
Checking induction base

CafeOBJ> set trace whole on
CafeOBJ> open ADD-ASSOC.
%ADD-ASSOC> red addassoc(0,y,z).

-- reduce in %ADD-ASSOC : (addassoc(0,y,z)):Bool
[1]: (addassoc(0,y,z)):Bool
----> (((0 + y) + z) == (0 + (y + z))):Bool
[2]: (((0 + y) + z) == (0 + (y + z))):Bool
----> ((y + z) == (0 + (y + z))):Bool
[3]: ((y + z) == (0 + (y + z))):Bool
----> ((y + z) == (y + z)):Bool
[4]: ((y + z) == (y + z)):Bool
----> (true):Bool
(true):Bool

(0.000 sec for parse, 4 rewrites(0.000 sec), 12 matches)
%ADD-ASSOC> close
CafeOBJ>
Checking induction step

CafeOBJ> set trace whole off
CafeOBJ> open ADD-ASSOC.
%ADD-ASSOC> red addassoc(x,y,z) implies
 addassoc(s(x),y,z).
-- reduce in %ADD-ASSOC : (addassoc(x,y,z) implies addassoc(s
 (x),y,z)):Bool
(true):Bool
(0.000 sec for parse, 11 rewrites(0.000 sec), 50 matches)
%ADD-ASSOC> close
CafeOBJ>

End of the proof
Automated Theorem Prover – CITP
CITP in CafeOBJ

- (semi-)automated theorem prover based on induction
- original version for Maude by Daniel Gaina and Min Zhang
- ported to CafeOBJ by Toshimi Sawada
- manual available in Japanese (but outdated)
Basic steps with CITP

- define the goal to be proven
- apply tactics, either manually or automatically
- aim is to discharge all generated sub-goals
:apply ((T1 T2 T3 ...))
Commutativity of Peano addition

Define Peano natural numbers

mod! PNAT {
 [PZero PNzNat < PNat]
 op 0 : -> PZero {ctor} .
 op s_ : PNat -> PNzNat {ctor} .
 op _+_ : PNat PNat -> PNat .
 eq 0 + N:PNat = N .
 eq s M:PNat + N:PNat = s(M + N) .
}

Then select/open the theory/module and specify the goals:
open PNAT .
:goal {
eq [lemma-1]: M:PNat + 0 = M:PNat .
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) .}

Give a hint that we are doing induction on M, and try auto-mode:
:ind on (M:PNat)
:auto
Commutativity of Peano addition

Define Peano natural numbers

mod! PNAT {
 [PZero PNzNat < PNat]
 op 0 : -> PZero {ctor} .
 op s_ : PNat -> PNzNat {ctor} .
 op _+_ : PNat PNat -> PNat .
 eq 0 + N:PNat = N .
 eq s M:PNat + N:PNat = s(M + N) .
}

Then select/open the theory/module and specify the goals:

open PNAT .
:goal {
eq [lemma-1]: M:PNat + 0 = M:PNat .
eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) . }

Give a hint that we are doing induction on M, and try auto-mode:

:ind on (M:PNat)
:auto
Commutativity of Peano addition

Define Peano natural numbers

```plaintext
mod! PNAT {
  [ PZero PNzNat < PNat ]
  op 0 : -> PZero {ctor} .
  op s_ : PNat -> PNzNat {ctor} .
  op _+_ : PNat PNat -> PNat .
  eq 0 + N:PNat = N .
  eq s M:PNat + N:PNat = s(M + N) .
}
```

Then select/open the theory/module and specify the goals:

```plaintext
open PNAT .
goal {
  eq [lemma-1]: M:PNat + 0 = M:PNat .
  eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) . }
```

Give a hint that we are doing induction on \(M \), and try auto-mode:

```plaintext
:ind on (M:PNat)
:auto
```
OUTPUT

[si] => :goal{root}
** Generated 2 goals
[ca] => :goal{1}
[ca] discharged: eq [lemma-1]: 0 = 0
...
[ip] => :goal{2-2-1}
[rd] => :goal{2-2-1}
(consumed 0.0400 sec, including 10 rewrites + 46 matches)
** All goals are successfully discharged.
Commutativity of addition

Now add the two lemmas to the theory:

```plaintext
mod! PNAT-L {
  inc(PNAT)
  eq [lemma-1]: M:PNat + 0 = M .
  eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .
}
```
Commutativity of addition

Now add the two lemmas to the theory:

```plaintext
mod! PNAT-L {
  inc(PNAT)
  eq [lemma-1]: M:PNat + 0 = M .
  eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .
}
```

and try to proof commutativity of addition

```plaintext
open PNAT-L .
:goal { eq M:PNat + N:PNat = N:PNat + M:PNat . }
:ind on (M:PNat)
:apply (SI TC RD)
```
Commutativity of addition

Now add the two lemmas to the theory:

```plaintext
mod! PNAT-L {
    inc(PNAT)
    eq [lemma-1]: M:PNat + 0 = M .
    eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .
}
```

and try to prove commutativity of addition

```plaintext
open PNAT-L .
goal { eq M:PNat + N:PNat = N:PNat + M:PNat . }
ind on (M:PNat)
apply (SI TC RD)
```

Not surprisingly:

```plaintext
....
} << proved >>
(consumed 0.0120 sec, including 7 rewrites + 47 matches)
** All goals are successfully discharged.**
Proofs on lists

Use CITP to prove the following facts:
1. associativity of @ operation in NATLIST@
2. nil is right-identity of @
3. add reverse operations and show double reverse is identity
PROOFS ON LISTS

Use CITP to prove the following facts:

1. associativity of \(@@\) operation in NATLIST
2. nil is right-identity of @
3. add reverse operations and show double reverse is identity

ad 1.

```plaintext
open NATLIST.
:goal{eq[@assoc]: (L1:NatList @ L2:NatList) @ L3:NatList
 = L1 @ (L2 @ L3).}
:ind on (L1:NatList).
:apply (SI TC RD).
close
```

ad 2.

```plaintext
open NATLIST.
:goal{eq[@ri]: L:NatList @ nil = L.}
:ind on (L:NatList).
:apply (SI TC RD).
close
```
**Proofs on lists**

Use CITP to prove the following facts:

1. associativity of \@ operation in NATLIST
2. nil is right-identity of \@
3. add reverse operations and show double reverse is identity

ad 1.

```plaintext
open NATLIST .
:goal{eq[@assoc]: (L1:NatList @ L2:NatList) @ L3:NatList
= L1 @ (L2 @ L3) .}
:ind on (L1:NatList) .
:apply (SI TC RD) .
close
```

ad 2.

```plaintext
open NATLIST .
:goal{eq[@ri]: L:NatList @ nil = L .}
:ind on (L:NatList) .
:apply (SI TC RD) .
close
```
Available tactics

- SI simultaneous induction
- CA case analysis after the constructors
- TC theorem of constants
- IP implication
- RD reduction

Additional proof tactics based on case-splitting (not-constructor based):
- :ctf case splitting after Boolean values
- :csp case splitting after a set of (arbitrary) equations
More exercises

Prove rev1(rev1(L)) = L and rev1(L) = rev2(L) for the following module:

```
mod* NATLISTRev {
 pr(NATLIST@A)
 -- variables
 vars L L1 L2 : NatList
 var E : Nat
 -- one argument reverse operation
 op rev1 : NatList -> NatList .
 eq rev1(nil) = nil .
 eq rev1(E | L) = rev1(L) @ (E | nil) .
 -- two arguments reverse operation
 -- auxiliary function for rev2
 eq rev2(L) = sr2(L,nil) .
 eq sr2(nil,L2) = L2 .
 eq sr2(E | L1,L2) = sr2(L1,E | L2) .
}
```
Thanks for the attention