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Character-based tree estimation

@ distance-based tree estimation has several drawbacks:
e very strong theoretical assumptions - e.g., all characters evolve at the
same rate
e Neighbor Joining and UPGMA produce good but sub-optimal trees
e no solid statistical justification for those algorithms
e distances are black boxes — we get a tree, but we learn nothing about
the history of individual characters

@ character-based tree estimation

e estimates complete scenario (or distribution over scenarios) for each
character

e finds the tree that best explains the observed variation in the data (at
least in theory, that is...)
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Parsimony

Parsimony of a tree

background reading: Ewens and Grant (2005), 15.6

@ suppose a character matrix and a tree are given

@ parsimony score: minimal number of mutations that has to be
assumed to explain the character values at the tips, given the tree
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Parsimony of a tree
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Parsimony

Parsimony reconstruction

Parsimony = 2
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Parsimony reconstruction
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Parsimony

Weighted parsimony reconstruction

o Weighted
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Weighted parsimony reconstruction
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Parsimony

Weighted parsimony reconstruction
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Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min_(w(s, ') +wp(d, s'))
dedaughtersS

@----

- ofe]w] [w[0]=] [w]w]0] [x[<[0] [x[0]«]
Maximum Parsimony ESSLLI 2016 9 /30




Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min (w(s,s") +wp(d,s’))

s’ estates

dedaughters

@---

-OwwHOHH\O\ [«[0] [=[o]=]
Maximum Parsimony

9/30



Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min (w(s,s") +wp(d,s’))

s’ estates

dedaughters

@---

-OwwHOHH\O\ [«[0] [=[o]=]
Maximum Parsimony

9/30



Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min_(w(s, ') +wp(d, s'))
dedaughtersS

@---

-OwwHOHH\O\ [«[0] [=[o]=]
Maximum Parsimony

9/30



Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min_(w(s, ') +wp(d, s'))
dedaughtersS

@---

-OwwHOHH\O\ [«[0] [=[o]=]
Maximum Parsimony

10 / 30



Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min (w(s,s") +wp(d,s’))

s’ estates

dedaughters

@---

-OwwHOHH\O\ [«[0] [=[o]=]
Maximum Parsimony

10 / 30



Dynamic Programming (Sankoff Algorithm)

wp(mother, s) = > min (w(s,s") +wp(d,s’))
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Searching for the best tree

total parsimony score of tree: sum over all characters

note: if weight matrix is symmetric, location of the root doesn't
matter

Sankoff algorithm efficiently computes parsimony score of a given tree

goal: tree which minimizes parsimony score

no efficient way to find the optimal tree — heuristic tree search
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Searching the tree space

How many rooted tree topologies are there?
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Searching the tree space

How many rooted tree topologies are there?

fln+1) = (2n—3)f(n)
(2n —3)!
2n=2(n — 2)!
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How many unrooted tree topologies are there?

n=3
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How many unrooted tree topologies are there?

n=3 n=4
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How many unrooted tree topologies are there?

n=3 n=4 n=5
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Searching the tree space

How many unrooted tree topologies are there?

fn+1) = (2n-3)f(n)
2n — 5)!
fn) = 2”(—3(71 —)3)!
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Searching the tree space

Heuristic tree search

@ tree space is too large to do an exhaustive search if n (number of
taxa) is larger than 12 or so
@ heuristic search:

e start with some tree topology (e.g., Neighbor-Joining tree)

e apply a bunch of local modifications to the current tree

e if one of the modified tree has lower or equal parsimony, move to that
tree

e stop if no further improvement is possible

@ = standard approach for optimization problems in computer science
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Tree modifications

@ three tree modifications commonly in use:

© Nearest Neighbor Interchange (NNI)
@ Tree Bisection and Reconnection (TBR)
© Subtree Pruning and Regrafting (SPR)

@ local modifications are better than arbitrary moves in tree space

because partial parsimony computations can be re-used in modified
tree
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Nearest Neighbor Interchange
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Searching the tree space

Tree Bisection and Reconection
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Searching the tree space

Subtree Pruning and Regrafting
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Searching the tree space

Heuristic tree search

@ NNI is very local — only O(n) possible moves
@ SPR and TBR are more aggressive — O(n?)/O(n?) possible moves

@ NNI search is comparatively fast, but prone to get stuck in local

optima
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Searching the tree space

Running example: SPR search with cognate data

parsimony=1984
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starting with Neighbor Joining tree ...
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Searching the tree space

Running example: SPR search with cognate data
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Searching the tree space

Running example: SPR search with cognate data

parsimony=1975
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Searching the tree space

Running example: SPR search with cognate data
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Searching the tree space

Running example: SPR search with cognate data

parsimony=1969

... Maximum Parsimony tree
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Searching the tree space

Running example: SPR search with cognate data

@ there are actually 16 different trees with minimal parsimony score
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MP tree for WALS characters
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Searching the tree space

MP tree for sound-concept characters
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Searching the tree space

Dollo parsimony

Lithuanian
Russian
Ukrainian Bulgarian
@ previous trees were estimated 4‘—%%@

-Dutch

with a symmetric weight matrix ceman
{celandic

@ if weights are asymmetric, S
location of the root matters

@ extreme case: Dollo Parsimony

o w0 —1)=o00
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Searching the tree space

Maximum Parsimony: Discussion

@ Once we have found the best tree (or, in any event, which is very
close to the best tree), we can reconstruct ancestral states via the
Sankoff algorithm

@ this allows to compute statistics about stability of characters,
frequency and location of parallel changes etc.
= much more informative than distance-based inference
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Searching the tree space

Maximum Parsimony: Discussion

@ disadvantages of MP:
e simulation studies: capacity to recover the true tree is decent but not
overwhelming
e possibility of multiple mutations on a single branch is not taken into
consideration
o all characters are treated equal; no discrimination between stable and
volatile characters
e ties are common, especially if you have few data
e values for weight matrix are ad hoc
e no real theoretical justification
o Why should the true tree minimize the total number of mutations?
@ Rests on a valid intuition: Mutations are unlikely, so assuming fewer
mutations increases the likelihood of the data.
o Likelihood is not formally derived from a probabilistic modell though.

Next step: Maximum Likelihood tree estimation

Gerhard Jager Maximum Parsimony ESSLLI 2016 29 / 30



Searching the tree space

Hands on

@ Install the software Paup*.

@ Go to the directory where you have the put the nexus files and type
> paup4 ielex.bin.nex

@ At Paup's command prompt, type
paup> hsearch.

@ Display tree with
paup> describetree /plot=phylo

@ Save result with
paup> savetree format=newick file = ielex.mp.tre \
brlen=yes

@ Leave Paup* with
paup> q
@ Install Dendroscope or FigTree and load ielex.mp.tre.
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Searching the tree space

Ewens, W. and G. Grant (2005). Statistical Methods in Bioinformatics: An
Introduction. Springer, New York.
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