Phylogenetic trees III Maximum Parsimony

Gerhard Jäger

ESSLLI 2016

Background

Character-based tree estimation

- distance-based tree estimation has several drawbacks:
 - very strong theoretical assumptions e.g., all characters evolve at the same rate
 - Neighbor Joining and UPGMA produce good but sub-optimal trees
 - no solid statistical justification for those algorithms
 - distances are black boxes we get a tree, but we learn nothing about the history of individual characters
- character-based tree estimation
 - estimates complete scenario (or distribution over scenarios) for each character
 - finds the tree that best explains the observed variation in the data (at least in theory, that is...)

Parsimony

background reading: Ewens and Grant (2005), 15.6

- suppose a character matrix and a tree are given
- parsimony score: minimal number of mutations that has to be assumed to explain the character values at the tips, given the tree

6 / 30

Parsimony reconstruction

Parsimony reconstruction

Parsimony reconstruction

Weighted parsimony reconstruction

Weight matrix

	\overline{A}	В	C
A	0	1	2
B	1	0	2
C	2	2	0

Weighted parsimony reconstruction

Weight matrix

	\overline{A}	В	C
A	0	1	2
B	1	0	2
C	2	2	0

Weighted parsimony reconstruction

Weight matrix

	\overline{A}	В	C
A	0	1	2
B	1	0	2
C	2	2	0

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \ = \ \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

$$\mathsf{wp}(\mathsf{mother},s) \quad = \quad \sum_{d \in \mathsf{daughters}} \min_{s' \in \mathsf{states}} (w(s,s') + \mathsf{wp}(d,s'))$$

Searching for the best tree

- total parsimony score of tree: sum over all characters
- note: if weight matrix is symmetric, location of the root doesn't matter
- Sankoff algorithm efficiently computes parsimony score of a given tree
- goal: tree which minimizes parsimony score
- ullet no efficient way to find the optimal tree o heuristic tree search

Searching the tree space

n=2

n=2

n=3

n=2 $\wedge \wedge \wedge \wedge \wedge$

$$f(2) = 1$$

$$f(n+1) = (2n-3)f(n)$$

$$f(n) = \frac{(2n-3)!}{2^{n-2}(n-2)!}$$

```
3
                15
               105
               945
            10395
           135135
          2027025
10
         34459425
11
        654729075
      13749310575
    316234143225
14
         7.9e + 12
15
         2.1e \pm 14
         6.1e + 15
17
         1.9e + 17
         6.3e + 18
19
         2.2e + 20
20
         8.2e + 21
21
         3.1e + 23
22
         1.3e + 25
         5.6e + 26
         2.5e + 28
         1.1e + 30
26
         5.8e \pm 31
27
         2.9e + 33
28
         1.5e + 35
29
         8.6e \pm 36
30
         4.9e + 38
21
         2.9e + 40
32
         1.7e \pm 42
33
         1.1e \pm 44
34
         7.2e + 45
35
         4.8e + 47
36
         3.3e + 49
37
         2.3e + 51
38
         1.7e + 53
39
         1.3e + 55
         1.0e + 57
```

n=3

n=4

n=3 n=4 n=5

$$f(3) = 1$$

$$f(n+1) = (2n-3)f(n)$$

$$f(n) = \frac{(2n-5)!}{2^{n-3}(n-3)!}$$

3 15 105 945 10395 9 135135 2027025 11 34459425 654729075 13749310575 14 316234143225 7.90e + 122.13e + 146.19e + 151.91e + 176.33e + 182.21e + 208.20e + 213.19e + 2323 1.31e + 255.63e + 262.53e + 281.19e + 305.84e + 31 $2.98e \pm 33$ 1.57e + 35 $8.68e \pm 36$ $4.95e \pm 38$ 2.92e + 401.78e + 421.12e + 447.29e + 454.88e + 4737 $3.37e \pm 49$ 2.39e + 5139 1.74e + 53 $1.31e \pm 55$

Heuristic tree search

- tree space is too large to do an exhaustive search if n (number of taxa) is larger than 12 or so
- heuristic search:
 - start with some tree topology (e.g., Neighbor-Joining tree)
 - apply a bunch of local modifications to the current tree
 - if one of the modified tree has lower or equal parsimony, move to that tree
 - stop if no further improvement is possible
- ullet \Rightarrow standard approach for optimization problems in computer science

Tree modifications

- three tree modifications commonly in use:
 - Nearest Neighbor Interchange (NNI)
 - 2 Tree Bisection and Reconnection (TBR)
 - 3 Subtree Pruning and Regrafting (SPR)
- local modifications are better than arbitrary moves in tree space because partial parsimony computations can be re-used in modified tree

Nearest Neighbor Interchange

Gerhard Jäger

Tree Bisection and Reconection

Subtree Pruning and Regrafting

Heuristic tree search

- NNI is very local \rightarrow only $\mathcal{O}(n)$ possible moves
- ullet SPR and TBR are more aggressive $o \mathcal{O}(n^2)/\mathcal{O}(n^3)$ possible moves
- NNI search is comparatively fast, but prone to get stuck in local optima

starting with Neighbor Joining tree ...

Gerhard Jäger

• there are actually 16 different trees with minimal parsimony score

MP tree for WALS characters

MP tree for sound-concept characters

Dollo parsimony

- previous trees were estimated with a symmetric weight matrix
- if weights are asymmetric, location of the root matters
- extreme case: Dollo Parsimony
- $w(0 \to 1) = \infty$

Maximum Parsimony: Discussion

- Once we have found the best tree (or, in any event, which is very close to the best tree), we can reconstruct ancestral states via the Sankoff algorithm
- this allows to compute statistics about stability of characters, frequency and location of parallel changes etc.
 - ⇒ much more informative than distance-based inference

Maximum Parsimony: Discussion

- disadvantages of MP:
 - simulation studies: capacity to recover the true tree is decent but not overwhelming
 - possibility of multiple mutations on a single branch is not taken into consideration
 - all characters are treated equal; no discrimination between stable and volatile characters
 - ties are common, especially if you have few data
 - values for weight matrix are ad hoc
 - no real theoretical justification
 - Why should the true tree minimize the total number of mutations?
 - Rests on a valid intuition: Mutations are unlikely, so assuming fewer mutations increases the likelihood of the data.
 - Likelihood is not formally derived from a probabilistic modell though.

Next step: Maximum Likelihood tree estimation

Hands on

- Install the software Paup*.
- Go to the directory where you have the put the nexus files and type
 paup4 ielex.bin.nex
- At Paup's command prompt, type paup> hsearch.
- Display tree with paup> describetree /plot=phylo
- Save result with paup> savetree format=newick file = ielex.mp.tre \ brlen=yes
- Leave Paup* with paup> q
- Install Dendroscope or FigTree and load ielex.mp.tre.

Ewens, W. and G. Grant (2005). Statistical Methods in Bioinformatics: An Introduction. Springer, New York.