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To do list day 2

» Upload slides for days 1 and 2

» Upload bibliography on preferential model semantics
(Shoham, KLM) and adaptive logics



1. The adaptive logics framework
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Selection semantics: from Shoham to Batens

CL-models LLL-models
Preferred Adaptive
models models
» Base: classical logic » Base: lower limit logic (LLL)
» Select <-minimal models » Select least abnormal models
relative to a given < relative to

a set of abnormalities, and
an adaptive strategy

General idea: to interpret a premise set ‘as normally as possible’
w.r.t. the set of abnormalities.
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Adaptive logics strengthen their lower limit logic by falsifying
abnormalities ‘as much as possible’ relative to the premises.
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(i) Lower limit: CLuN:

Language L™: replace ‘=" with ‘~"in L, and add ‘—".

Extend the assignment function to atomic and negated formulas.
via)=1 iff  va(a) =1 (where « is an elementary letter)
v(~a) =1 iff  v(a)=0or vy(~a)=1
vieng)=1 iff v(a)=1and v(p)=1
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CLuN is paraconsistent: a A ~«a = 3
(ii) Set of abnormalities: Q = {a A ~a | a € L™}

(iii) Strategy: minimal abnormality
Where M is a CLuN-model: Ab(M) = {a € Q| M verifies '}
A CLuN-model M of T is minimally abnormal iff there is no
CLuN-model M’ of T such that Ab(M") C Ab(M).
I EcLunm « iff « is verified by all minimally abnormal
CLuN-models of T.
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Minimally abnormal models of I: Mg, M14
I FcLunm t
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(i) Lower limit: CLuN
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(iii) Strategy: reliability
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Where Dab(A1), Dab(A,), ... are the minimal Dab consequences of T,
U(N) = {A1, Ay, ...} is the set of formulas that are unreliable w.r.t T.

ur)y={pA~p,gA~q,rA~r}
A CLuN-model M of T is reliable iff Ab(M) C U(T).
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» Defeasibility via conditional inferences
» 3 generic rules of inference (PREM, RU, RC)
» Withdrawing untenable assumptions by marking (v')

PREM If o €T

pATr PREM
qV~p PREM
s — ~q PREM

sA(~rVgq) PREM
(pANs)— ~r PREM
~pV t PREM
gVt PREM

~NOo BN
S oo o=



Dynamic proofs: the unconditional rule

RU

If ag,..

S0pFewn B a1 Ay
an A,
15} AiU...UA,
1 pAr PREM 0
2 gV~p PREM 0
3 s ~q PREM 0
4 sA(~rVgq) PREM 0
5 (pAs)—~r PREM
6 ~pVt PREM 0
7 qVvt PREM 0
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pATr PREM
qV ~p PREM
s — ~q PREM

(pAs)— ~r PREM
~pV t PREM
gVt PREM

0
0
0
sA(~rvg) PREM 0
0
0
0
~q 3,4; RU @

O NO Ol WN



Dynamic proofs: the unconditional rule

RU

If ag,.

© 0 NO o1l B~ WD -

cantewn B0 a1 A

an A,

15} AiU...UA,
pAF PREM ()
qV ~p PREM 0
S — ~g PREM ()
sA(~rvg) PREM 0
(pAs)—~r PREM
~pV t PREM
qVvt PREM 0
~q 3,4, RU 0
tV(ga~q) 7,8, RU 0



Dynamic proofs: the conditional rule
RC Ifai,...,anFFcun BY Dab(@): a; Aq

B AU...UA,UB

1 pAr PREM 0
2 gV~p PREM 0
3 s—~q PREM 0
4 sA(~rvq) PREM 0
5 (pAs)—~r PREM 0
6 ~pVt PREM ()
7 gVt PREM 0
8 ~gq 34;RU 0
9 0

tV(gAn~qg) 7,8 RU
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B AU...UA,UB

tv(gAn~q) 78 RU
t 9; RC

1 pAr PREM 0
2 gV~p PREM 0
3 s—~q PREM 0
4 sA(~rvq) PREM 0
5 (pAs)—~r PREM 0
6 ~pVt PREM 0
7 gVt PREM 0
8 ~gq 34;RU 0
9 0
0 {

[y

qA~q}
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Dynamic proofs: the conditional rule
RC Ifai,...,anFFcun BY Dab(@): a; Aq

B AU...UA,UB

1 pAr PREM

2 gVep PREM 0

3 s—~q PREM ()

4 sA(~rVgq) PREM 0

5 (pAs)—~r PREM 0

6 ~pVt PREM 0

7 gVt PREM ()

8 ~gq 34;RU 0

9 tVv(gAn~q) 7,8 RU 0
10 t 9; RC {g N ~q}
11 ¢t 1,6; RC {pA~p}

12 ~~s 4; RC {s A\ ~s}
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Where Dab(A1), Dab(A3), ... are the minimal Dab-formulas
derived at stage s on the condition : Us(I) = A1 UAU. ..

Where A is the condition of line i derived at stage s, line / is

r-marked at s iff AN Us(l) # 0.

o ~No o1k wnN =

pAr
qV~p

s — ~q
sA(~rVq)
(pAS)— ~r
~pVt
qVt

~q
tV(qA~q)
t

t

~~S

PREM
PREM
PREM
PREM
PREM
PREM
PREM
3,4; RU
7,8; RU
9: RC
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Dynamic proofs: final derivability

A formula « is finally derived from I at line / of a proof at a finite
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- « is the second element of line /,

- line i is not marked at stage s, and

- every extension of the proof in which line i is marked, may be
further extended such that line i is unmarked.
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Dynamic proofs: marking lines for minimal abnormality

Where Dab(A1), Dab(A>), ... are the minimal Dab-formulas
derived from I at stage s, ®(I') is the set of minimal choice sets

of {Al, Az, .. }
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Where Dab(A1), Dab(A>), ... are the minimal Dab-formulas
derived from I at stage s, ®4(I") is the set of minimal choice sets

of {Al, AQ, .. }

Where « is derived at line i of a proof from I on condition A, line

i is m-marked at stage s iff
(i) thereis no A’ € d4() s.t. A'NA =0, or
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Properties of adaptive logics (Batens, 2007; StraBer, 2014)

I C Cnar(l) (Reflexivity)

Cnar(T) = CnaL(Cnar(T)) (Fixed Point)

If I C Cnar(T) then Cna(TUT") C Cnar(T) (Cautious Cut)
If " C Cnar(T) then Cna(l) € Cna(TUT")  (Cautious Monotony)

» The upper limit logic of an adaptive logic:
iff
FU{ﬁA | AEQ} FLL o
iff
There is a finite A C Q s.t. [ b oV Dab(A)
The ULL of CluN" and CLuN™ is classical logic.

Cn|_|_|_(F) Q CnALr(F) g CnALm(F) Q CnULL(F)

» If [ is normal (no Dab-formulas are LLL-derivable) then
CnALr(I') = CHALm(r) = CHULL(F)



2. Variations, pitfalls, subtleties
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CLuNs* and the flip-flop problem

(i) Lower limit: CLuNs
(ii) Set of abnormalities, attempt 1: Q ={a A ~a |a € L™}

(iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

1 p PREM
2 ~p PREM 0
3 qVr PREM ()
4 ~gq PREM ()
5 r 3,4, RC {gA~q}
6 (gA~q)V((pAr)A~(pAT)) 1-4RU 0

The problem generalizes: the logic flip-flops between its LLL and ULL

Solution: Restrict €2 as follows:

Q={aA~a]|ais a literal}

Take care when defining abnormalities!
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- Add the following:
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If - o then F O« (N)
Ca =g4r "0« (Df<>)

Epistemic reading of the new operators:
<Oa means ‘it is plausible that o
The more diamonds prefixed to it, the less plausible a formula
Defeasible step: given $a, jump to «
—~(p A q)
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OOq
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The adaptive logic K™:
(i) Lower limit: K
(ii) Sets of abnormalities (where <; is a sequence of i diamonds):

QY = {Cja A —a}
(iii) Strategy: C-minimal abnormality (V/D Putte & StraBer, 2012)

The lexicographic order C: A A’ iff
(ANQ)ier Ciex (A" N Qi)ies iff
(1) thereis an i € I such that for all j < i,
AﬂQj :A/ﬂQj, and
(2) ANQ; Cc A'NQ;.

A K-model M of T is C-minimally abnormal iff there is no
K-model M’ of T such that Ab(M') C Ab(M).
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The adaptive logic K™:
(i) Lower limit: K
(ii) Sets of abnormalities (where <; is a sequence of i diamonds):

QY = {Cja A —a}
(iii) Strategy: C-minimal abnormality (V/D Putte & StraBer, 2012)

The lexicographic order C: A A’ iff
(ANQ)ier Ciex (A" N Qi)ies iff
(1) thereis an i € I such that for all j < i,
AﬂQj :A/ﬂQj, and
(2) ANQ; Cc A'NQ;.

A K-model M of T is C-minimally abnormal iff there is no
K-model M’ of T such that Ab(M') C Ab(M).
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A third strategy: normal selections

PAgATr
(~pV~q) A~r
~pVs

~q\Vs

~pVt

~rVu

PREM
PREM
PREM
PREM
PREM
PREM
1,3; RC
1,4; RC
1,5; RC
2,6; RC
1,2; RU
1,2; RU

S eSS

{p A ~p}
{g A ~q}
{p A ~p}
{rAe~r}




A third strategy: normal selections

PAgATr
(~pV~q) A~r
~pVs

~q\Vs

~pVt

~rVu

PREM
PREM
PREM
PREM
PREM
PREM

1,3; RC
1,4; RC
1,5; RC
2,6; RC
1,2; RU
1,2; RU

S eSS

{pA~p}v
{gA~aq}v
{pA~p}v
{rA\er}v

Reliability




A third strategy: normal selections

PAGAT PREM 0

(~pV ~q)A~r PREM 0

~pVs PREM 0

~qVs PREM 0

~pV t PREM 0

~r\Vou PREM 0

s 1,3; RC {pA~p}
s 1,4, RC {gA~q}
t 1,5, RC {pA~p}v
u 2,6; RC {rA~r}v/
(pA~P)V(gA~q) L2;RU 0

rA~r 12;RU 0

Reliability: -

Minimal abnormality:

S




A third strategy: normal selections

1 pAgATr PREM 0
2 (~pV~g)A~r PREM 0
3 ~pVs PREM 0
4 ~qVs PREM 0
5 ~pVit PREM
6 ~rVu PREM 0
7 1,3; RC {pA~p}
8 1,4, RC {qgA~q}

s
s
9 t 1,5, RC  {pA~p}
u 2,6; RC {rA~r}v/
11 (pA~p)V(gA~qg) 12;RU 0
12 rA~r 1,2, RU 0

Reliability: -
Minimal abnormality: | s
Normal selections: s, t

Normal selections: line / with condition A is marked at stage s iff
Dab(A) is derived at s on the condition {.



A third strategy: normal selections

1 pAgATr PREM 0
2 (~pV~g)A~r PREM 0
3 ~pVs PREM 0
4 ~qVs PREM 0
5 ~pVt PREM 0
6 ~rVu PREM 0
7 s 1,3; RC {pA~p}
8 s 1,4, RC {gA~q}
9 ¢t 15, RC  {pA~p}
10 wu 2,6; RC {rA~r}v
11 (pA~p)V(gA~qg) 12;RU 0
12 rA~r 1,2, RU 0
Reliability: -
Minimal abnormality: | s
Normal selections: s, t

Normal selections: line / with condition A is marked at stage s iff
Dab(A) is derived at s on the condition {.

A (finite) set A C Q is normal w.r.t. T iff [ [~ Dab(A).

=, a iff for some A C Q, I = a V Dab(Dab) while T' = Dab(A).



