Introduction to Non(-)monotonic Logic

Christian Straßer and Mathieu Beirlaen

Research Group For Non-Monotonic Logic and Formal Argumentation

http://homepages.ruhr-uni-bochum.de/defeasible-reasoning
Institute for Philosophy II
Ruhr University Bochum

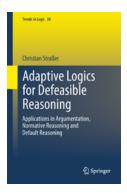
christian.strasser@ruhr-uni-bochum.de mathieubeirlaen@gmail.com

ESSLLI 2016, Bolzano

To do list day 2

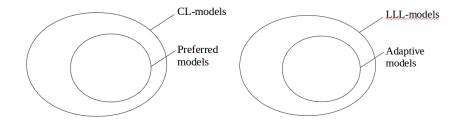
- ▶ Upload slides for days 1 and 2
- ▶ Upload bibliography on preferential model semantics (Shoham, KLM) and adaptive logics

1. The adaptive logics framework



- D. Batens. Dynamic dialectical logics. In G. Priest and R. Routley and J. Norman (eds.), *Paraconsistent Logic. Essays on the Inconsistent* (Philosophia Verlag, 1989), pp. 187–217.
 - D. Batens. A universal logic approach to adaptive logics. *Logica Universalis* 1:221–242 (2007).
 - C. Straßer. Adaptive logics for Defeasible Reasoning (Springer, 2014).

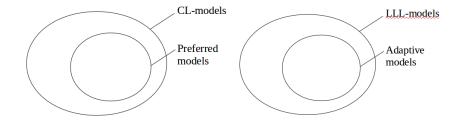
Selection semantics: from Shoham to Batens



- ► Base: classical logic
- ► Select <-minimal models relative to a given <

- ► Base: lower limit logic (LLL)
- ➤ Select least abnormal models relative to a set of abnormalities, and an adaptive strategy

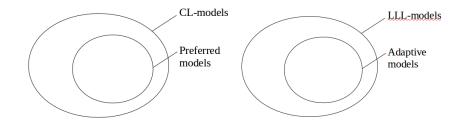
Selection semantics: from Shoham to Batens



- ► Base: classical logic
- ► Select <-minimal models relative to a given <

- ► Base: lower limit logic (LLL)
- ➤ Select least abnormal models relative to a set of abnormalities, and an adaptive strategy

Selection semantics: from Shoham to Batens



- ► Base: classical logic
- ► Select <-minimal models relative to a given <

- ► Base: lower limit logic (LLL)
- Select least abnormal models relative to a set of abnormalities, and an adaptive strategy

General idea: to interpret a premise set 'as normally as possible' w.r.t. the set of abnormalities.

Adaptive logics are characterized as triples, consisting of

Adaptive logics are characterized as triples, consisting of

- (i) A lower limit logic **LLL** with the following properties:
 - Reflexivity: $\Gamma \subseteq Cn(\Gamma)$
 - Transitivity: if $\Delta \subseteq Cn(\Gamma)$ then $Cn(\Delta) \subseteq Cn(\Gamma)$
 - Monotony: $Cn(\Gamma) \subseteq Cn(\Gamma \cup \Delta)$
 - Compactness: if $\alpha \in Cn(\Gamma)$ then $\alpha \in Cn(\Gamma')$ for some finite $\Gamma' \subset \Gamma$

Adaptive logics are characterized as triples, consisting of

- (i) A lower limit logic **LLL** with the following properties:
 - Reflexivity: $\Gamma \subseteq Cn(\Gamma)$
 - Transitivity: if $\Delta \subseteq Cn(\Gamma)$ then $Cn(\Delta) \subseteq Cn(\Gamma)$
 - Monotony: $Cn(\Gamma) \subseteq Cn(\Gamma \cup \Delta)$
 - Compactness: if $\alpha \in Cn(\Gamma)$ then $\alpha \in Cn(\Gamma')$ for some finite $\Gamma' \subset \Gamma$
- (ii) A set of abnormalities characterized by a logical form F.

Adaptive logics strengthen their lower limit logic by falsifying abnormalities 'as much as possible' relative to the premises.

Adaptive logics are characterized as triples, consisting of

- (i) A lower limit logic **LLL** with the following properties:
 - Reflexivity: $\Gamma \subseteq Cn(\Gamma)$
 - Transitivity: if $\Delta \subseteq Cn(\Gamma)$ then $Cn(\Delta) \subseteq Cn(\Gamma)$
 - Monotony: $Cn(\Gamma) \subseteq Cn(\Gamma \cup \Delta)$
 - Compactness: if $\alpha \in Cn(\Gamma)$ then $\alpha \in Cn(\Gamma')$ for some finite $\Gamma' \subset \Gamma$
- (ii) A set of abnormalities characterized by a logical form F.
- (iii) An adaptive strategy

Adaptive logics strengthen their lower limit logic by falsifying abnormalities 'as much as possible' relative to the premises.

(i) Lower limit: **CLuN**:

(i) Lower limit: **CLuN**:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '.

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ \frac{v(\sim\alpha)=1}{v(\alpha\wedge\beta)=1} & \text{iff} & \frac{v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\alpha)=1}{v(\alpha\vee\beta)=1} \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\!\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\!\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

(ii) Set of abnormalities: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\!\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\!\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

- (ii) Set of abnormalities: $\Omega = \{\alpha \land \sim \alpha \mid \alpha \in L^{\sim}\}$
- (iii) Strategy: minimal abnormality

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

- (ii) Set of abnormalities: $\Omega = \{\alpha \land \sim \alpha \mid \alpha \in L^{\sim}\}$
- (iii) Strategy: minimal abnormality

Where M is a **CLuN**-model: $Ab(M) = \{\alpha \in \Omega \mid M \text{ verifies } \alpha\}$

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\!\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\!\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

- (ii) Set of abnormalities: $\Omega = \{\alpha \land \sim \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: minimal abnormality

Where M is a **CLuN**-model: $Ab(M) = \{\alpha \in \Omega \mid M \text{ verifies } \alpha\}$ A **CLuN**-model M of Γ is minimally abnormal iff there is no **CLuN**-model M' of Γ such that $Ab(M') \subset Ab(M)$.

(i) Lower limit: CLuN:

Language L^{\sim} : replace '¬' with ' \sim ' in L, and add ' \rightarrow '. Extend the assignment function to atomic and negated formulas.

```
\begin{array}{lll} v(\alpha)=1 & \text{iff} & v_{\text{a}}(\alpha)=1 \text{ (where } \alpha \text{ is an elementary letter)} \\ v(\sim\!\alpha)=1 & \text{iff} & v(\alpha)=0 \text{ or } v_{\text{a}}(\sim\!\alpha)=1 \\ v(\alpha\wedge\beta)=1 & \text{iff} & v(\alpha)=1 \text{ and } v(\beta)=1 \\ v(\alpha\vee\beta)=1 & \text{iff} & v(\alpha)=1 \text{ or } v(\beta)=1 \\ v(\alpha\to\beta)=1 & \text{iff} & v(\alpha)=0 \text{ or } v(\beta)=1 \end{array}
```

CLuN is paraconsistent: $\alpha \land \sim \alpha \not\models \beta$

- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: minimal abnormality

Where M is a **CLuN**-model: $Ab(M) = \{\alpha \in \Omega \mid M \text{ verifies } \alpha\}$ A **CLuN**-model M of Γ is minimally abnormal iff there is no **CLuN**-model M' of Γ such that $Ab(M') \subset Ab(M)$.

 $\Gamma \models_{\mathbf{CLuN^m}} \alpha$ iff α is verified by all minimally abnormal **CLuN**-models of Γ .

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

 $\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$

	р	\sim p	q	\sim q	r	$\sim r$	s	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p, !q, !r, !s, !t
M_2	1	1	1	1	1	1	1	1	1	0	!p, !q, !r, !s
M_3	1	1	1	1	1	1	1	1	0	1	!p, !q, !r, !s
M_4	1	1	1	1	1	1	1	0	1	1	!p, !q, !r, !t
M_5	1	1	1	1	1	1	1	0	1	0	!p, !q, !r
M_6	1	1	1	1	1	1	1	0	0	1	!p, !q, !r
M_7	1	1	0	1	1	1	1	1	1	1	!p, !r, !s, !t
M_8	1	1	0	1	1	1	1	1	1	0	!p, !r, !s
M_9	1	1	0	1	1	1	1	0	1	1	!p, !r, !t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q, !r, !t
M_{14}	1	0	1	1	1	1	1	0	1	0	!q,!r

 $\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$

	р	\sim p	q	\sim q	r	$\sim r$	5	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p,!q,!r,!s,!t
M_2	1	1	1	1	1	1	1	1	1	0	!p,!q,!r,!s
M_3	1	1	1	1	1	1	1	1	0	1	!p,!q,!r,!s
M_4	1	1	1	1	1	1	1	0	1	1	!p, !q, !r, !t
M_5	1	1	1	1	1	1	1	0	1	0	!p,!q,!r
M_6	1	1	1	1	1	1	1	0	0	1	!p,!q,!r
M_7	1	1	0	1	1	1	1	1	1	1	!p, !r, !s, !t
M_8	1	1	0	1	1	1	1	1	1	0	!p,!r,!s
M_9	1	1	0	1	1	1	1	0	1	1	!p, !r, !t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q,!r,!t
M_{14}	1	0	1	1	1	1	1	0	1	0	!q,!r

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

	р	\sim p	q	\sim q	r	$\sim r$	5	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p,!q,!r,!s,!t
M_2	1	1	1	1	1	1	1	1	1	0	!p,!q,!r,!s
M_3	1	1	1	1	1	1	1	1	0	1	!p,!q,!r,!s
M_4	1	1	1	1	1	1	1	0	1	1	!p, !q, !r, !t
M_5	1	1	1	1	1	1	1	0	1	0	!p,!q,!r
M_6	1	1	1	1	1	1	1	0	0	1	!p, !q, !r
M_7	1	1	0	1	1	1	1	1	1	1	!p,!r,!s,!t
M_8	1	1	0	1	1	1	1	1	1	0	!p,!r,!s
M_9	1	1	0	1	1	1	1	0	1	1	!p,!r,!t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q,!r,!t
M_{14}	1	0	1	1	1	1	1	0	1	0	!q,!r

Minimally abnormal models of Γ : M_{10} , M_{14}

$$\Gamma \models_{CL \cup Nlm} t$$

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{\alpha \land \sim \alpha \mid \alpha \in L^{\sim}\}$
- (iii) Strategy: reliability

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$ A minimal Dab-consequence of Γ is a formula $Dab(\Delta)$ such that $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta)$, and there is no $\Delta' \subset \Delta$ s.t. $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta')$.

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$ A minimal Dab-consequence of Γ is a formula $Dab(\Delta)$ such that $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta)$, and there is no $\Delta' \subset \Delta$ s.t. $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta')$.

Minimal *Dab*-consequences of Γ : $r \wedge \sim r$, $(p \wedge \sim p) \vee (q \wedge \sim q)$

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$ A minimal Dab-consequence of Γ is a formula $Dab(\Delta)$ such that $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta)$, and there is no $\Delta' \subset \Delta$ s.t. $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta')$.

Minimal *Dab*-consequences of Γ : $r \wedge \sim r, (p \wedge \sim p) \vee (q \wedge \sim q)$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab consequences of Γ , $U(\Gamma) = \{\Delta_1, \Delta_2, \ldots\}$ is the set of formulas that are unreliable w.r.t Γ .

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$ A minimal Dab-consequence of Γ is a formula $Dab(\Delta)$ such that $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta)$, and there is no $\Delta' \subset \Delta$ s.t. $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta')$.

Minimal *Dab*-consequences of Γ : $r \wedge \sim r, (p \wedge \sim p) \vee (q \wedge \sim q)$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab consequences of Γ , $U(\Gamma) = \{\Delta_1, \Delta_2, \ldots\}$ is the set of formulas that are unreliable w.r.t Γ .

$$U(\Gamma) = \{p \land \sim p, q \land \sim q, r \land \sim r\}$$

$$\Gamma = \{p \land r, s \rightarrow \sim q, q \lor \sim p, s \land (\sim r \lor q), (p \land s) \rightarrow \sim r, \sim p \lor t, q \lor t\}$$

- (i) Lower limit: CLuN
- (ii) Set of abnormalities: $\Omega = \{ \alpha \land \sim \alpha \mid \alpha \in L^{\sim} \}$
- (iii) Strategy: reliability

Where Δ is a finite subset of Ω , $Dab(\Delta) = \bigvee \Delta$

A minimal Dab-consequence of Γ is a formula $Dab(\Delta)$ such that

 $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta)$, and there is no $\Delta' \subset \Delta$ s.t. $\Gamma \models_{\mathsf{CLuN}} Dab(\Delta')$.

Minimal Dab-consequences of Γ: $r \wedge \sim r$, $(p \wedge \sim p) \vee (q \wedge \sim q)$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab consequences of Γ , $U(\Gamma) = \{\Delta_1, \Delta_2, \ldots\}$ is the set of formulas that are unreliable w.r.t Γ .

$$U(\Gamma) = \{ p \land \sim p, q \land \sim q, r \land \sim r \}$$

A **CLuN**-model M of Γ is reliable iff $Ab(M) \subseteq U(\Gamma)$.

$$U(\Gamma) = \{p \land \sim p, q \land \sim q, r \land \sim r\}$$

	р	\sim p	q	\sim q	r	$\sim r$	S	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p,!q,!r,!s,!t
M_2	1	1	1	1	1	1	1	1	1	0	!p,!q,!r,!s
M_3	1	1	1	1	1	1	1	1	0	1	!p,!q,!r,!s
M_4	1	1	1	1	1	1	1	0	1	1	!p,!q,!r,!t
M_5	1	1	1	1	1	1	1	0	1	0	!p,!q,!r
M_6	1	1	1	1	1	1	1	0	0	1	!p,!q,!r
M ₇	1	1	0	1	1	1	1	1	1	1	!p,!r,!s,!t
<i>M</i> ₈	1	1	0	1	1	1	1	1	1	0	!p,!r,!s
M ₉	1	1	0	1	1	1	1	0	1	1	!p,!r,!t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q,!r,!t
M ₁₄	1	0	1	1	1	1	1	0	1	0	!q,!r

$$U(\Gamma) = \{p \land \sim p, q \land \sim q, r \land \sim r\}$$

	р	\sim p	q	\sim q	r	$\sim r$	5	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p, !q, !r, !s, !t
M_2	1	1	1	1	1	1	1	1	1	0	!p, !q, !r, !s
M_3	1	1	1	1	1	1	1	1	0	1	!p,!q,!r,!s
M_4	1	1	1	1	1	1	1	0	1	1	!p, !q, !r, !t
M_5	1	1	1	1	1	1	1	0	1	0	!p, !q, !r
M_6	1	1	1	1	1	1	1	0	0	1	!p, !q, !r
M_7	1	1	0	1	1	1	1	1	1	1	!p,!r,!s,!t
<i>M</i> ₈	1	1	0	1	1	1	1	1	1	0	!p,!r,!s
M_9	1	1	0	1	1	1	1	0	1	1	!p,!r,!t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q,!r,!t
M_{14}	1	0	1	1	1	1	1	0	1	0	!q,!r

Reliable: M_5, M_6, M_{10}, M_{14}

$$U(\Gamma) = \{p \land \sim p, q \land \sim q, r \land \sim r\}$$

	р	\sim p	q	\sim q	r	$\sim r$	5	\sim s	t	\sim t	Ab(M)
M_1	1	1	1	1	1	1	1	1	1	1	!p, !q, !r, !s, !t
M_2	1	1	1	1	1	1	1	1	1	0	!p, !q, !r, !s
M_3	1	1	1	1	1	1	1	1	0	1	!p,!q,!r,!s
M_4	1	1	1	1	1	1	1	0	1	1	!p, !q, !r, !t
M_5	1	1	1	1	1	1	1	0	1	0	!p, !q, !r
M_6	1	1	1	1	1	1	1	0	0	1	!p, !q, !r
M_7	1	1	0	1	1	1	1	1	1	1	!p,!r,!s,!t
<i>M</i> ₈	1	1	0	1	1	1	1	1	1	0	!p,!r,!s
M_9	1	1	0	1	1	1	1	0	1	1	!p,!r,!t
M_{10}	1	1	0	1	1	1	1	0	1	0	!p,!r
M_{11}	1	0	1	1	1	1	1	1	1	1	!q,!r,!s,!t
M_{12}	1	0	1	1	1	1	1	1	1	0	!q,!r,!s
M_{13}	1	0	1	1	1	1	1	0	1	1	!q,!r,!t
M ₁₄	1	0	1	1	1	1	1	0	1	0	!q,!r

 $\Gamma \models_{\mathbf{CLuN}^r} \alpha \text{ iff } \alpha \text{ is verified by all reliable } \mathbf{CLuN}\text{-models of } \Gamma.$

Reliable: M_5, M_6, M_{10}, M_{14}

 $\Gamma \not\models_{\mathsf{CLuN}^r} t$

Dynamic proofs for adaptive logics

► Defeasibility via *conditional* inferences

Dynamic proofs for adaptive logics

- ► Defeasibility via *conditional* inferences
- ▶ 3 generic rules of inference (PREM, RU, RC)

Dynamic proofs for adaptive logics

- ► Defeasibility via *conditional* inferences
- ▶ 3 generic rules of inference (PREM, RU, RC)
- lacktriangle Withdrawing untenable assumptions by marking (\checkmark)

Dynamic proofs for adaptive logics

- ► Defeasibility via *conditional* inferences
- ▶ 3 generic rules of inference (PREM, RU, RC)
- lacktriangle Withdrawing untenable assumptions by marking (\checkmark)

Dynamic proofs for adaptive logics

- ► Defeasibility via *conditional* inferences
- ▶ 3 generic rules of inference (PREM, RU, RC)
- lacktriangle Withdrawing untenable assumptions by marking (\checkmark)

$$\begin{array}{cccc} \mathsf{PREM} & \mathsf{If} \ \alpha \in \Gamma \text{:} & \vdots & \vdots \\ \hline \alpha & \emptyset & \end{array}$$

RC If
$$\alpha_1, \dots, \alpha_n \vdash_{\mathsf{CLuN}} \beta \lor \mathit{Dab}(\Theta)$$
: $\alpha_1 \quad \Delta_1$

$$\vdots \quad \vdots$$

$$\alpha_n \quad \Delta_n$$

$$\beta \quad \Delta_1 \cup \dots \cup \Delta_n \cup \Theta$$

```
RC If \alpha_1, \dots, \alpha_n \vdash_{\mathsf{CLuN}} \beta \lor \mathit{Dab}(\Theta): \alpha_1 \quad \Delta_1
\vdots \quad \vdots
\alpha_n \quad \Delta_n
\beta \quad \Delta_1 \cup \dots \cup \Delta_n \cup \Theta
```

```
0
                   PREM
   p \wedge r
2 q \lor \sim p PREM
3 s \rightarrow \sim q PREM
4 s \wedge (\sim r \vee q) PREM
5 (p \wedge s) \rightarrow \sim r
                   PREM
6 \sim p \vee t
                   PREM
7 q \lor t
                   PREM
8 \sim q 3,4; RU
                             Ø
9 t \vee (q \wedge \sim q) 7,8; RU
       9: RC \{a \land \sim a\}
10 t
```

```
RC If \alpha_1, \dots, \alpha_n \vdash_{\mathsf{CLuN}} \beta \lor \mathit{Dab}(\Theta): \alpha_1 \quad \Delta_1
\vdots \quad \vdots
\alpha_n \quad \Delta_n
\beta \quad \Delta_1 \cup \dots \cup \Delta_n \cup \Theta
```

```
0
                     PREM
   p \wedge r
2 q \lor \sim p PREM
3 s \rightarrow \sim q PREM
4 s \wedge (\sim r \vee q) PREM
 5 (p \land s) \rightarrow \sim r PREM
 6 \sim p \vee t
                     PREM
7 q \lor t
                     PREM
8 \sim q 3,4; RU
                                Ø
9 t \lor (q \land \sim q) 7,8; RU
                               Ø
        9; RC \{q \land \sim q\}
1,6; RC \{p \land \sim p\}
10 t
11
    t
```

RC If
$$\alpha_1, \dots, \alpha_n \vdash_{\mathsf{CLuN}} \beta \lor \mathsf{Dab}(\Theta)$$
: $\alpha_1 \quad \Delta_1$

$$\vdots \quad \vdots$$

$$\alpha_n \quad \Delta_n$$

$$\beta \quad \Delta_1 \cup \dots \cup \Delta_n \cup \Theta$$

```
PREM
                            Ø
   p \wedge r
2 q \lor \sim p PREM
3 s \rightarrow \sim q PREM
4 s \wedge (\sim r \vee q) PREM
5 (p \land s) \rightarrow \sim r PREM
6 \sim p \lor t PREM
7 q \lor t
                  PREM
8 \sim q 3,4; RU
                            Ø
   t \lor (q \land \sim q) 7,8; RU
                            Ø
10 t
        9; RC \{q \land \sim q\}
      1,6; RC \{p \land \sim p\}
11 t
            4; RC \{s \land \sim s\}
12
```

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived at stage s on the condition \emptyset : $U_s(\Gamma) = \Delta_1 \cup \Delta_2 \cup \ldots$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived at stage s on the condition \emptyset : $U_s(\Gamma) = \Delta_1 \cup \Delta_2 \cup \ldots$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived at stage s on the condition \emptyset : $U_s(\Gamma) = \Delta_1 \cup \Delta_2 \cup \ldots$

1	$p \wedge r$	PREM	Ø
2	$q \lor \sim p$	PREM	Ø
3	$s ightarrow \sim q$	PREM	Ø
4	$s \wedge (\sim r \vee q)$	PREM	Ø
5	$(p \wedge s) \rightarrow \sim r$	PREM	Ø
6	$\sim p \lor t$	PREM	Ø
7	$q \lor t$	PREM	Ø
8	\sim q	3,4; RU	Ø
9	$t\vee (q\wedge {\sim} q)$	7,8; RU	Ø
10	t	9; RC	$\{q \wedge {\sim} q\}$
11	t	1,6; RC	$\{p \wedge \sim p\}$
12	$\sim \sim s$	4; RC	$\{s \wedge {\sim} s\}$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived at stage s on the condition \emptyset : $U_s(\Gamma) = \Delta_1 \cup \Delta_2 \cup \ldots$

```
PREM
    p \wedge r
 2 q \lor \sim p
                                  PREM
 3 s \rightarrow \sim q
                                  PREM
 4 s \wedge (\sim r \vee q)
                                  PREM
 5 (p \wedge s) \rightarrow \sim r
                                  PREM
 6 \sim p \vee t
                                  PREM
 7 q \lor t
                                  PREM
 8 \sim q
                                  3,4; RU
    t \vee (q \wedge \sim q)
                              7,8; RU
10
                                  9; RC \{q \land \sim q\}
                                  1,6; RC \{p \land \sim p\}
11
                                4; RC
                                                \{s \wedge \sim s\}
12 \sim \sim s
13 (p \land \sim p) \lor (q \land \sim q) 1,2,8; RU
```

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived at stage s on the condition \emptyset : $U_s(\Gamma) = \Delta_1 \cup \Delta_2 \cup \ldots$

```
PREM
    p \wedge r
 2 q \lor \sim p
                                   PREM
 3 s \rightarrow \sim q
                                   PREM
 4 s \wedge (\sim r \vee q)
                                   PREM
 5 (p \wedge s) \rightarrow \sim r
                             PREM
 6 \sim p \vee t
                                   PREM
 7 q \lor t
                                   PREM
 8 \sim q
                                   3,4; RU
    t \vee (q \wedge \sim q)
                             7,8; RU
10
                                   9; RC \{q \land \sim q\} \checkmark
                                   1,6; RC \{p \land \sim p\} \checkmark
11 t
                                 4; RC \{s \land \sim s\}
12 \sim \sim s
13 (p \land \sim p) \lor (q \land \sim q) 1,2,8; RU
14 r \wedge \sim r
                                 1.4.5: RU
                                                   0
```

A formula α is finally derived from Γ at line i of a proof at a finite stage s iff

- α is the second element of line *i*,
- line i is not marked at stage s, and
- every extension of the proof in which line i is marked, may be further extended such that line i is unmarked.

A formula α is finally derived from Γ at line i of a proof at a finite stage s iff

- α is the second element of line *i*,
- line i is not marked at stage s, and
- every extension of the proof in which line *i* is marked, may be further extended such that line *i* is unmarked.

 $\Gamma \vdash_{\mathbf{CLuN^r}} \alpha \text{ iff } \alpha \text{ is}$ finally derived from Γ at a proof line.

A formula α is finally derived from Γ at line i of a proof at a finite stage s iff

- α is the second element of line *i*,
- line i is not marked at stage s, and
- every extension of the proof in which line *i* is marked, may be further extended such that line *i* is unmarked.

 $\Gamma \vdash_{\mathbf{CLuN}^r} \alpha \text{ iff } \alpha \text{ is}$ finally derived from Γ at a proof line.

```
\Gamma \vdash_{\mathsf{CLuN}^r} \sim \sim s
\Gamma \not\vdash_{\mathsf{CLuN}^r} t
```

A formula α is finally derived from Γ at line i of a proof at a finite stage s iff

- α is the second element of line i,
- line i is not marked at stage s, and
- every extension of the proof in which line *i* is marked, may be further extended such that line *i* is unmarked.

```
\Gamma \vdash_{\mathbf{CLuN^r}} \alpha \text{ iff } \alpha \text{ is} finally derived from \Gamma at a proof line.
```

```
\Gamma \vdash_{\mathsf{CLuN^r}} \sim \sim s
\Gamma \not\vdash_{\mathsf{CLuN^r}} t
```

Theorem (Batens, 2007)

$$\Gamma \vdash_{\mathbf{CLuN^r}} \alpha \text{ iff } \Gamma \models_{\mathbf{CLuN^r}} \alpha.$$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived from Γ at stage s, $\Phi_s(\Gamma)$ is the set of minimal choice sets of $\{\Delta_1, \Delta_2, \ldots\}$.

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived from Γ at stage s, $\Phi_s(\Gamma)$ is the set of minimal choice sets of $\{\Delta_1, \Delta_2, \ldots\}$.

```
\Phi_{14}(\Gamma) = \{ \{ p \land \sim p, r \land \sim r \}, \\ \{ q \land \sim q, r \land \sim r \} \}
```

```
9 t \vee (q \wedge \sim q)
                                     7.8: RU
10
                                     9: RC
                                                     \{q \land \sim q\}
                                     1,6; RC \{p \land \sim p\}
11
                                                     \{s \wedge \sim s\}
12
                                     4; RC
13
     (p \land \sim p) \lor (q \land \sim q)
                                    1,2,8; RU
14
       r \wedge \sim r
                                     1,4,5; RU
```

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived from Γ at stage s, $\Phi_s(\Gamma)$ is the set of minimal choice sets of $\{\Delta_1, \Delta_2, \ldots\}$.

Where α is derived at line i of a proof from Γ on condition Δ , line i is m-marked at stage s iff

- (i) there is no $\Delta' \in \Phi_s(\Gamma)$ s.t. $\Delta' \cap \Delta = \emptyset$, or
- (ii) for some $\Delta' \in \Phi_s(\Gamma)$, there is no line at which α is derived on a condition Θ s.t. $\Delta' \cap \Theta = \emptyset$.

$$\begin{aligned} & \Phi_{14}(\Gamma) = \\ & \{ \{ p \wedge \sim p, r \wedge \sim r \}, \\ & \{ q \wedge \sim q, r \wedge \sim r \} \} \end{aligned}$$

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived from Γ at stage s, $\Phi_s(\Gamma)$ is the set of minimal choice sets of $\{\Delta_1, \Delta_2, \ldots\}$.

Where α is derived at line i of a proof from Γ on condition Δ , line i is m-marked at stage s iff

- (i) there is no $\Delta' \in \Phi_s(\Gamma)$ s.t. $\Delta' \cap \Delta = \emptyset$, or
- (ii) for some $\Delta' \in \Phi_s(\Gamma)$, there is no line at which α is derived on a condition Θ s.t. $\Delta' \cap \Theta = \emptyset$.

Where $Dab(\Delta_1), Dab(\Delta_2), \ldots$ are the minimal Dab-formulas derived from Γ at stage s, $\Phi_s(\Gamma)$ is the set of minimal choice sets of $\{\Delta_1, \Delta_2, \ldots\}$.

Where α is derived at line i of a proof from Γ on condition Δ , line i is m-marked at stage s iff

- (i) there is no $\Delta' \in \Phi_s(\Gamma)$ s.t. $\Delta' \cap \Delta = \emptyset$, or
- (ii) for some $\Delta' \in \Phi_s(\Gamma)$, there is no line at which α is derived on a condition Θ s.t. $\Delta' \cap \Theta = \emptyset$.

Theorem (Batens, 2007)

$$\Gamma \vdash_{\mathsf{CLuN^m}} \alpha \text{ iff } \Gamma \models_{\mathsf{CLuN^m}} \alpha.$$

 $\Gamma \subseteq Cn_{\mathsf{AL}}(\Gamma)$

 $(\mathsf{Reflexivity})$

$$\Gamma \subseteq Cn_{\mathbf{AL}}(\Gamma)$$
 (Reflexivity)
 $Cn_{\mathbf{AL}}(\Gamma) = Cn_{\mathbf{AL}}(Cn_{\mathbf{AL}}(\Gamma))$ (Fixed Point)

$$\Gamma \subseteq Cn_{\mathbf{AL}}(\Gamma) \qquad \qquad (\mathsf{Reflexivity})$$

$$Cn_{\mathbf{AL}}(\Gamma) = Cn_{\mathbf{AL}}(Cn_{\mathbf{AL}}(\Gamma)) \qquad \qquad (\mathsf{Fixed Point})$$

$$\mathsf{If} \ \Gamma' \subseteq Cn_{\mathbf{AL}}(\Gamma) \ \mathsf{then} \ Cn_{\mathbf{AL}}(\Gamma \cup \Gamma') \subseteq Cn_{\mathbf{AL}}(\Gamma) \qquad \qquad (\mathsf{Cautious Cut})$$

```
\Gamma\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)} Cn_{\mathsf{AL}}(\Gamma)=Cn_{\mathsf{AL}}(Cn_{\mathsf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)} If \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma) then Cn_{\mathsf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)} If \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma) then Cn_{\mathsf{AL}}(\Gamma)\subseteq Cn_{\mathsf{AL}}(\Gamma\cup\Gamma') (Cautious Monotony)
```

$$\Gamma\subseteq Cn_{\textbf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)}$$

$$Cn_{\textbf{AL}}(\Gamma)=Cn_{\textbf{AL}}(Cn_{\textbf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)}$$
 If $\Gamma'\subseteq Cn_{\textbf{AL}}(\Gamma)$ then $Cn_{\textbf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\textbf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)}$ If $\Gamma'\subseteq Cn_{\textbf{AL}}(\Gamma)$ then $Cn_{\textbf{AL}}(\Gamma)\subseteq Cn_{\textbf{AL}}(\Gamma\cup\Gamma') \qquad \text{(Cautious Monotony)}$

► The upper limit logic of an adaptive logic:

$$\Gamma \vdash_{\mathsf{ULL}} \alpha$$
 iff

$$\Gamma\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)}$$

$$Cn_{\mathsf{AL}}(\Gamma) = Cn_{\mathsf{AL}}(Cn_{\mathsf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)}$$
 If $\Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)$ then $Cn_{\mathsf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)}$ If $\Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)$ then $Cn_{\mathsf{AL}}(\Gamma)\subseteq Cn_{\mathsf{AL}}(\Gamma\cup\Gamma') \qquad \text{(Cautious Monotony)}$

► The upper limit logic of an adaptive logic:

$$\Gamma \vdash_{\mathbf{ULL}} \alpha \\
\text{iff} \\
\Gamma \cup \{\neg A \mid A \in \Omega\} \vdash_{\mathbf{LLL}} \alpha$$

```
\Gamma\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad (\mathsf{Reflexivity}) Cn_{\mathsf{AL}}(\Gamma) = Cn_{\mathsf{AL}}(Cn_{\mathsf{AL}}(\Gamma)) \qquad (\mathsf{Fixed Point}) \mathsf{If}\ \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)\ \mathsf{then}\ Cn_{\mathsf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad (\mathsf{Cautious Cut}) \mathsf{If}\ \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)\ \mathsf{then}\ Cn_{\mathsf{AL}}(\Gamma)\subseteq Cn_{\mathsf{AL}}(\Gamma\cup\Gamma') \qquad (\mathsf{Cautious Monotony})
```

► The upper limit logic of an adaptive logic:

$$\begin{array}{c} \Gamma \vdash_{\mathbf{ULL}} \alpha \\ \text{iff} \\ \Gamma \cup \{ \neg A \mid A \in \Omega \} \vdash_{\mathbf{LLL}} \alpha \\ \text{iff} \end{array}$$
 There is a finite $\Delta \subset \Omega$ s.t. $\Gamma \vdash_{\mathbf{LLL}} \alpha \vee \mathit{Dab}(\Delta)$

```
\Gamma\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)} Cn_{\mathsf{AL}}(\Gamma)=Cn_{\mathsf{AL}}(Cn_{\mathsf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)} If \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma) then Cn_{\mathsf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)} If \Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma) then Cn_{\mathsf{AL}}(\Gamma)\subseteq Cn_{\mathsf{AL}}(\Gamma\cup\Gamma') \qquad \text{(Cautious Monotony)}
```

► The upper limit logic of an adaptive logic:

$$\Gamma \vdash_{\mathbf{ULL}} \alpha$$
 iff
$$\Gamma \cup \{ \neg A \mid A \in \Omega \} \vdash_{\mathbf{LLL}} \alpha$$
 iff
$$\text{There is a finite } \Delta \subset \Omega \text{ s.t. } \Gamma \vdash_{\mathbf{LLL}} \alpha \vee \mathit{Dab}(\Delta)$$

The ULL of **CluN**^r and **CLuN**^m is classical logic.

$$\Gamma\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)}$$

$$Cn_{\mathsf{AL}}(\Gamma)=Cn_{\mathsf{AL}}(Cn_{\mathsf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)}$$
 If $\Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)$ then $Cn_{\mathsf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\mathsf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)}$ If $\Gamma'\subseteq Cn_{\mathsf{AL}}(\Gamma)$ then $Cn_{\mathsf{AL}}(\Gamma)\subseteq Cn_{\mathsf{AL}}(\Gamma\cup\Gamma') \qquad \text{(Cautious Monotony)}$

► The upper limit logic of an adaptive logic:

$$\begin{array}{c} \Gamma \vdash_{\mathbf{ULL}} \alpha \\ \text{iff} \\ \Gamma \cup \{ \neg A \mid A \in \Omega \} \vdash_{\mathbf{LLL}} \alpha \\ \text{iff} \end{array}$$
 There is a finite $\Delta \subset \Omega$ s.t. $\Gamma \vdash_{\mathbf{LLL}} \alpha \vee \mathit{Dab}(\Delta)$

The ULL of CluN^r and CLuN^m is classical logic.

$$Cn_{\mathsf{LLL}}(\Gamma) \subseteq Cn_{\mathsf{AL^m}}(\Gamma) \subseteq Cn_{\mathsf{AL^m}}(\Gamma) \subseteq Cn_{\mathsf{ULL}}(\Gamma)$$

$$\Gamma\subseteq Cn_{\textbf{AL}}(\Gamma) \qquad \qquad \text{(Reflexivity)}$$

$$Cn_{\textbf{AL}}(\Gamma)=Cn_{\textbf{AL}}(Cn_{\textbf{AL}}(\Gamma)) \qquad \qquad \text{(Fixed Point)}$$
 If $\Gamma'\subseteq Cn_{\textbf{AL}}(\Gamma)$ then $Cn_{\textbf{AL}}(\Gamma\cup\Gamma')\subseteq Cn_{\textbf{AL}}(\Gamma) \qquad \qquad \text{(Cautious Cut)}$ If $\Gamma'\subseteq Cn_{\textbf{AL}}(\Gamma)$ then $Cn_{\textbf{AL}}(\Gamma)\subseteq Cn_{\textbf{AL}}(\Gamma\cup\Gamma') \qquad \text{(Cautious Monotony)}$

► The upper limit logic of an adaptive logic:

$$\Gamma \vdash_{\mathbf{ULL}} \alpha \\
\text{iff} \\
\Gamma \cup \{\neg A \mid A \in \Omega\} \vdash_{\mathbf{LLL}} \alpha \\
\text{iff}$$

There is a finite $\Delta \subset \Omega$ s.t. $\Gamma \vdash_{\mathsf{LLL}} \alpha \lor \mathsf{Dab}(\Delta)$

The ULL of CluN^r and CLuN^m is classical logic.

$$Cn_{\mathsf{LLL}}(\Gamma) \subseteq Cn_{\mathsf{AL^m}}(\Gamma) \subseteq Cn_{\mathsf{AL^m}}(\Gamma) \subseteq Cn_{\mathsf{ULL}}(\Gamma)$$

▶ If Γ is normal (no *Dab*-formulas are LLL-derivable) then $Cn_{\mathbf{AL^r}}(\Gamma) = Cn_{\mathbf{AL^m}}(\Gamma) = Cn_{\mathbf{ULL}}(\Gamma)$

2. Variations, pitfalls, subtleties

Modeling defeasible reasoning

► CORRECTIVE:

- 'As consistently as possible':

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

▶ CORRECTIVE:

- 'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws
- 'As completely as possible': gappy LLLs: CLaN(s)

α	$\sim \alpha$
1	1
1	0
0	1
0	0

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
n	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	
	generalization	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	
	$Pa_2 o Qa_2$	
	i :	
	$Pa_m o Qa_m$	
Conclusion (RC)		
Inhibitor (Ω)		

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	
	generalization	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	
	$Pa_2 o Qa_2$	
	i :	
	$Pa_m o Qa_m$	
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	
Inhibitor (Ω)		

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	
	generalization	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	
	$Pa_2 o Qa_2$	
	i :	
	$Pa_m o Qa_m$	
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$	

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	Abduction	
	generalization	(IBE)	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	$\forall x (Px \rightarrow Qx)$	
	$Pa_2 o Qa_2$	Qa_n	
	:		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$		
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$		

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	Abduction	
	generalization	(IBE)	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	$\forall x (Px \rightarrow Qx)$	
	$Pa_2 o Qa_2$	Qa _n	
	:		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	Pan	
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$		

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: $\mathsf{CLaN}(s)$

	Inductive	Abduction	
	generalization	(IBE)	
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	$\forall x (Px \rightarrow Qx)$	
	$Pa_2 o Qa_2$	Qa_n	
	:		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	Pan	
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$	$\neg Pa_n$	

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

- 'As completely as possible': gappy LLLs: **CLaN(s)**

α	$\sim \alpha$
1	1
1	0
0	1
0	0

	Inductive	Abduction	Conditional
	generalization	(IBE)	reasoning
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	$\forall x (Px \rightarrow Qx)$	Pa → Qa
	$ extit{Pa}_2 ightarrow extit{Qa}_2$	Qa _n	Pa
	:		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	Pan	
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$	$\neg Pa_n$	

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

- 'As completely as possible': gappy LLLs: **CLaN(s)**

α	$\sim \alpha$
1	1
1	0
0	1
0	0

	Inductive	Abduction	Conditional
	generalization	(IBE)	reasoning
Premises	$Pa_1 o Qa_1$	$\forall x (Px \rightarrow Qx)$	Pa → Qa
	$ extit{Pa}_2 ightarrow extit{Qa}_2$	Qa_n	Pa
	:		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	Pa _n	Qa
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$	$\neg Pa_n$	

► CORRECTIVE:

'As consistently as possible':
 Alternative glutty LLLs,
 e.g. CLuNs = CLuN + de Morgan's laws

α	$\sim \alpha$
1	1
1	0
0	1
0	0

- 'As completely as possible': gappy LLLs: CLaN(s)

	Inductive	Abduction	Conditional
	generalization	(IBE)	reasoning
Premises	$ extit{Pa}_1 ightarrow extit{Qa}_1$	$\forall x (Px \rightarrow Qx)$	Pa → Qa
	$Pa_2 o Qa_2$	Qa_n	Pa
	i :		
	$Pa_m o Qa_m$		
Conclusion (RC)	$\forall x (Px \rightarrow Qx)$	Pa _n	Qa
Inhibitor (Ω)	$Pa_i \wedge \neg Qa_i$	$\neg Pa_n$	$\neg Qa$

(i) Lower limit: CLuNs

CLuNs = CLuN + de Morgan laws:

$$\sim \sim \alpha \text{ iff } \alpha$$

$$\sim (\alpha \land \beta) \text{ iff } \sim \alpha \lor \sim \beta$$

$$\sim (\alpha \lor \beta) \text{ iff } \sim \alpha \land \sim \beta$$

$$\sim (\alpha \to \beta) \text{ iff } \alpha \land \sim \beta$$

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$

CLuNs = CLuN + de Morgan laws:

$$\sim \sim \alpha \text{ iff } \alpha$$

$$\sim (\alpha \land \beta) \text{ iff } \sim \alpha \lor \sim \beta$$

$$\sim (\alpha \lor \beta) \text{ iff } \sim \alpha \land \sim \beta$$

$$\sim (\alpha \to \beta) \text{ iff } \alpha \land \sim \beta$$

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

CLuNs = CLuN + de Morgan laws:

$$\sim \sim \alpha \text{ iff } \alpha$$

$$\sim (\alpha \land \beta) \text{ iff } \sim \alpha \lor \sim \beta$$

$$\sim (\alpha \lor \beta) \text{ iff } \sim \alpha \land \sim \beta$$

$$\sim (\alpha \to \beta) \text{ iff } \alpha \land \sim \beta$$

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

The problem generalizes: the logic flip-flops between its LLL and ULL

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

The problem generalizes: the logic flip-flops between its LLL and ULL Solution: Restrict Ω as follows:

$$\Omega = \{ \alpha \wedge \sim \alpha \mid \alpha \text{ is a literal} \}$$

- (i) Lower limit: CLuNs
- (ii) Set of abnormalities, attempt 1: $\Omega = \{\alpha \land \neg \alpha \mid \alpha \in L^{\sim}\}\$
- (iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

The problem generalizes: the logic flip-flops between its LLL and ULL Solution: Restrict Ω as follows:

$$\Omega = \{ \alpha \wedge \sim \alpha \mid \alpha \text{ is a literal} \}$$

Take care when defining abnormalities!

Basis: the logic \mathbf{K} :

- Enrich L with the modal operator \square

Basis: the logic **K**:

- Enrich L with the modal operator \square
- Add the following:

$$\Box(\alpha \to \beta) \to (\Box \alpha \to \Box \beta) \tag{K}$$
If $\vdash \alpha$ then $\vdash \Box \alpha$

$$\Diamond \alpha =_{\mathsf{df}} \neg \Box \neg \alpha \tag{\mathsf{Df}} \Diamond)$$

Basis: the logic **K**:

- Enrich *L* with the modal operator □
- Add the following:

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta) \tag{K}$$

If
$$\vdash \alpha$$
 then $\vdash \Box \alpha$ (N)

$$\Diamond \alpha =_{\mathsf{df}} \neg \Box \neg \alpha \tag{\mathsf{Df}} \Diamond)$$

Epistemic reading of the new operators:

 $\Diamond \alpha$ means 'it is plausible that α '

Basis: the logic **K**:

- Enrich L with the modal operator \square
- Add the following:

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta) \tag{K}$$

If
$$\vdash \alpha$$
 then $\vdash \Box \alpha$ (N)

$$\Diamond \alpha =_{\mathsf{df}} \neg \Box \neg \alpha \tag{\mathsf{Df}} \Diamond)$$

Epistemic reading of the new operators:

 $\Diamond \alpha$ means 'it is plausible that α '

The more diamonds prefixed to it, the less plausible a formula

Basis: the logic **K**:

- Enrich L with the modal operator \square
- Add the following:

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta) \tag{K}$$

If
$$\vdash \alpha$$
 then $\vdash \Box \alpha$ (N)

$$\Diamond \alpha =_{\mathsf{df}} \neg \Box \neg \alpha \tag{\mathsf{Df}} \Diamond)$$

Epistemic reading of the new operators:

 $\Diamond \alpha$ means 'it is plausible that α '

The more diamonds prefixed to it, the less plausible a formula

Defeasible step: given $\Diamond \alpha$, jump to α

Basis: the logic K:

- Enrich L with the modal operator \square
- Add the following:

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta) \tag{K}$$

If
$$\vdash \alpha$$
 then $\vdash \Box \alpha$ (N)

$$\Diamond \alpha =_{\mathsf{df}} \neg \Box \neg \alpha \tag{\mathsf{Df}} \Diamond)$$

Epistemic reading of the new operators:

 $\Diamond \alpha$ means 'it is plausible that α '

The more diamonds prefixed to it, the less plausible a formula

Defeasible step: given $\Diamond \alpha$, jump to α

The adaptive logic K^m :

(i) Lower limit: K

The adaptive logic K^m :

- (i) Lower limit: K
- (ii) Sets of abnormalities (where \diamondsuit_i is a sequence of i diamonds):

$$\Omega_i^{\diamondsuit} = \{\diamondsuit_i \alpha \land \neg \alpha\}$$

The adaptive logic K^m :

- (i) Lower limit: K
- (ii) Sets of abnormalities (where \Diamond_i is a sequence of i diamonds):

$$\Omega_i^{\diamondsuit} = \{\diamondsuit_i \alpha \land \neg \alpha\}$$

(iii) Strategy:

—-minimal abnormality (V/D Putte & Straßer, 2012)

The adaptive logic K^m :

- (i) Lower limit: K
- (ii) Sets of abnormalities (where \Diamond_i is a sequence of i diamonds):

$$\Omega_i^{\diamondsuit} = \{\diamondsuit_i \alpha \land \neg \alpha\}$$

(iii) Strategy:

—-minimal abnormality (V/D Putte & Straßer, 2012)

The lexicographic order \sqsubseteq : $\Delta \sqsubseteq \Delta'$ iff

$$\langle \Delta \cap \Omega_i \rangle_{i \in I} \mathrel{\sqsubset_{\mathsf{lex}}} \langle \Delta' \cap \Omega_i \rangle_{i \in I} \mathsf{\ iff\ }$$

- (1) there is an $i \in I$ such that for all j < i, $\Delta \cap \Omega_i = \Delta' \cap \Omega_i$, and
- (2) $\Delta \cap \Omega_i \subset \Delta' \cap \Omega_i$.

The adaptive logic K^m :

- (i) Lower limit: K
- (ii) Sets of abnormalities (where \Diamond_i is a sequence of i diamonds):

$$\Omega_i^{\diamondsuit} = \{\diamondsuit_i \alpha \land \neg \alpha\}$$

(iii) Strategy:

—-minimal abnormality (V/D Putte & Straßer, 2012)

The lexicographic order $\sqsubset: \Delta \sqsubset \Delta'$ iff

$$\langle \Delta \cap \Omega_i \rangle_{i \in I} \mathrel{\sqsubset_{\mathsf{lex}}} \langle \Delta' \cap \Omega_i \rangle_{i \in I}$$
 iff

- (1) there is an $i \in I$ such that for all j < i, $\Delta \cap \Omega_j = \Delta' \cap \Omega_j$, and
- (2) $\Delta \cap \Omega_i \subset \Delta' \cap \Omega_i$.

A **K**-model M of Γ is \sqsubseteq -minimally abnormal iff there is no **K**-model M' of Γ such that $Ab(M') \sqsubseteq Ab(M)$.

The adaptive logic K^m :

- (i) Lower limit: K
- (ii) Sets of abnormalities (where \Diamond_i is a sequence of i diamonds):

$$\Omega_i^{\diamondsuit} = \{\diamondsuit_i \alpha \land \neg \alpha\}$$

(iii) Strategy:

—minimal abnormality (V/D Putte & Straßer, 2012)

The lexicographic order \sqsubseteq : $\Delta \sqsubseteq \Delta'$ iff

$$\langle \Delta \cap \Omega_i \rangle_{i \in I} \sqsubseteq_{\mathsf{lex}} \langle \Delta' \cap \Omega_i \rangle_{i \in I}$$
 iff

- (1) there is an $i \in I$ such that for all j < i, $\Delta \cap \Omega_j = \Delta' \cap \Omega_j$, and
- (2) $\Delta \cap \Omega_i \subset \Delta' \cap \Omega_i$.

A **K**-model M of Γ is \sqsubseteq -minimally abnormal iff there is no **K**-model M' of Γ such that $Ab(M') \sqsubseteq Ab(M)$.

$$r \wedge \neg (p \wedge q), \Diamond_1 \neg r, \Diamond_1 p, \Diamond_2 q \vdash_{\mathsf{K}^{\mathsf{m}}} p \wedge \neg q$$


```
PREM
 1 p \land q \land r
 2 (\sim p \lor \sim q) \land \sim r
                                   PREM
 3 \sim p \vee s
                                   PREM
 4 \sim q \vee s
                                    PREM
 5 \sim p \vee t
                                   PREM
 6 \sim r \vee u
                                   PREM
 7 s
                                   1,3; RC \{p \land \sim p\}
 8 s
                                   1,4; RC \{q \land \sim q\}
                                   1,5; RC \{p \land \sim p\}
                                   2,6; RC \{r \land \sim r\}
10
11 (p \land \sim p) \lor (q \land \sim q) 1,2; RU \emptyset
12
      r \wedge \sim r
                                   1.2; RU
```

```
PREM
 1 p \land q \land r
 2 (\sim p \lor \sim q) \land \sim r
                                   PREM
 3 \sim p \vee s
                                   PREM
 4 \sim q \vee s
                                   PREM
 5 \sim p \vee t
                                   PREM
 6 \sim r \vee u
                                   PREM
 7 s
                                   1,3; RC \{p \land \sim p\}
 8 s
                                  1,4; RC \{q \land \sim q\}
                                  1,5; RC \{p \land \sim p\}
                                  2,6; RC \{r \land \sim r\}
10
11 (p \land \sim p) \lor (q \land \sim q) 1,2; RU \emptyset
12
      r \wedge \sim r
                                  1.2; RU
```

Reliability:	-

```
PREM
 1 p \land q \land r
 2 (\sim p \lor \sim q) \land \sim r
                                    PREM
 3 \sim p \vee s
                                    PREM
 4 \sim q \vee s
                                    PREM
 5 \sim p \vee t
                                    PREM
 6 \sim r \vee u
                                    PREM
 7 s
                                    1,3; RC \{p \land \sim p\}
 8 s
                                    1,4; RC \{q \land \sim q\}
                                    1,5; RC \{p \land \sim p\}
                                   2,6; RC \{r \land \sim r\} \checkmark
10
11 (p \land \sim p) \lor (q \land \sim q) 1,2; RU \emptyset
12
      r \wedge \sim r
                                    1.2; RU
```

Reliability:	-
Minimal abnormality:	S

```
PREM
 1 p \land q \land r
 2 (\sim p \lor \sim q) \land \sim r
                                   PREM
 3 \sim p \vee s
                                   PREM
 4 \sim q \vee s
                                   PREM
 5 \sim p \vee t
                                   PREM
 6 \sim r \vee u
                                   PREM
 7 s
                                   1,3; RC \{p \land \sim p\}
 8 s
                                   1,4; RC \{q \land \sim q\}
                                   1,5; RC \{p \land \sim p\}
                                  2,6; RC \{r \land \sim r\}
10
11 (p \land \sim p) \lor (q \land \sim q) 1,2; RU \emptyset
12 r \wedge \sim r
                                  1,2; RU
```

Reliability:	-
Minimal abnormality:	5
Normal selections:	s, t

Normal selections: line l with condition Δ is marked at stage s iff $Dab(\Delta)$ is derived at s on the condition \emptyset .

```
PREM
 1 p \land q \land r
 2 (\sim p \lor \sim q) \land \sim r
                                     PREM
 3 \sim p \vee s
                                     PREM
 4 \sim q \vee s
                                     PREM
 5 \sim p \vee t
                                     PREM
 6 \sim r \vee u
                                     PREM
 7 s
                                     1,3; RC \{p \land \sim p\}
                                     1,4; RC \{q \land \sim q\}
 8 s
                                     1,5; RC \{p \land \sim p\}
                                     2,6; RC \{r \land \sim r\} \checkmark
10
11 (p \land \sim p) \lor (q \land \sim q) 1,2; RU \emptyset
12
                                    1.2; RU
      r \wedge \sim r
```

Reliability:	-
Minimal abnormality:	S
Normal selections:	s, t

Normal selections: line l with condition Δ is marked at stage s iff $Dab(\Delta)$ is derived at s on the condition \emptyset .

A (finite) set $\Delta \subset \Omega$ is normal w.r.t. Γ iff $\Gamma \not\models Dab(\Delta)$.

 $\Gamma \models_n \alpha$ iff for some $\Delta \subset \Omega$, $\Gamma \models \alpha \lor Dab(Dab)$ while $\Gamma \not\models Dab(\Delta)$.