
Introduction to Non(-)monotonic Logic

Christian Straßer and Mathieu Beirlaen

Research Group For Non-Monotonic Logic and Formal
Argumentation

http://homepages.ruhr-uni-bochum.de/defeasible-reasoning

Institute for Philosophy II

Ruhr University Bochum

christian.strasser@ruhr-uni-bochum.de
mathieubeirlaen@gmail.com

ESSLLI 2016, Bolzano

http://homepages.ruhr-uni-bochum.de/defeasible-reasoning


To do list day 2

I Upload slides for days 1 and 2

I Upload bibliography on preferential model semantics
(Shoham, KLM) and adaptive logics



1. The adaptive logics framework

D. Batens. Dynamic dialectical logics. In G. Priest and R. Routley and J.
Norman (eds.), Paraconsistent Logic. Essays on the Inconsistent

(Philosophia Verlag, 1989), pp. 187–217.

D. Batens. A universal logic approach to adaptive logics. Logica
Universalis 1:221–242 (2007).

C. Straßer. Adaptive logics for Defeasible Reasoning (Springer, 2014).



Selection semantics: from Shoham to Batens

I Base: classical logic

I Select <-minimal models
relative to a given <

I Base: lower limit logic (LLL)

I Select least abnormal models
relative to
a set of abnormalities, and
an adaptive strategy

General idea: to interpret a premise set ‘as normally as possible’
w.r.t. the set of abnormalities.
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The standard format

Adaptive logics are characterized as triples, consisting of

(i) A lower limit logic LLL with the following properties:

- Reflexivity: Γ ⊆ Cn(Γ)
- Transitivity: if ∆ ⊆ Cn(Γ) then Cn(∆) ⊆ Cn(Γ)
- Monotony: Cn(Γ) ⊆ Cn(Γ ∪∆)
- Compactness: if α ∈ Cn(Γ) then α ∈ Cn(Γ′) for some

finite Γ′ ⊆ Γ

(ii) A set of abnormalities characterized by a logical form F.

(iii) An adaptive strategy

Adaptive logics strengthen their lower limit logic by falsifying
abnormalities ‘as much as possible’ relative to the premises.
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Illustration: the adaptive logic CLuNm (1)

(i) Lower limit: CLuN:

Language L∼: replace ‘¬’ with ‘∼’ in L, and add ‘→’.
Extend the assignment function to atomic and negated formulas.

v(α) = 1 iff va(α) = 1 (where α is an elementary letter)
v(∼α) = 1 iff v(α) = 0 or va(∼α) = 1
v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
v(α→ β) = 1 iff v(α) = 0 or v(β) = 1

CLuN is paraconsistent: α ∧ ∼α 6|= β

(ii) Set of abnormalities: Ω = {α ∧ ∼α | α ∈ L∼}

(iii) Strategy: minimal abnormality

Where M is a CLuN-model: Ab(M) = {α ∈ Ω | M verifies α}
A CLuN-model M of Γ is minimally abnormal iff there is no
CLuN-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Γ |=CLuNm α iff α is verified by all minimally abnormal
CLuN-models of Γ.
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Illustration: the adaptive logic CLuNm (2)
Γ = {p∧r , s → ∼q, q∨∼p, s∧(∼r∨q), (p∧s)→ ∼r ,∼p∨t, q∨t}

p ∼p q ∼q r ∼r s ∼s t ∼t Ab(M)
M1 1 1 1 1 1 1 1 1 1 1 !p, !q, !r , !s, !t
M2 1 1 1 1 1 1 1 1 1 0 !p, !q, !r , !s
M3 1 1 1 1 1 1 1 1 0 1 !p, !q, !r , !s
M4 1 1 1 1 1 1 1 0 1 1 !p, !q, !r , !t
M5 1 1 1 1 1 1 1 0 1 0 !p, !q, !r
M6 1 1 1 1 1 1 1 0 0 1 !p, !q, !r
M7 1 1 0 1 1 1 1 1 1 1 !p, !r , !s, !t
M8 1 1 0 1 1 1 1 1 1 0 !p, !r , !s
M9 1 1 0 1 1 1 1 0 1 1 !p, !r , !t
M10 1 1 0 1 1 1 1 0 1 0 !p, !r
M11 1 0 1 1 1 1 1 1 1 1 !q, !r , !s, !t
M12 1 0 1 1 1 1 1 1 1 0 !q, !r , !s
M13 1 0 1 1 1 1 1 0 1 1 !q, !r , !t
M14 1 0 1 1 1 1 1 0 1 0 !q, !r

Minimally abnormal models of Γ: M10,M14

Γ |=CLuNm t
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Illustration: the adaptive logic CLuNr (1)

Γ = {p∧r , s → ∼q, q∨∼p, s∧(∼r∨q), (p∧s)→ ∼r ,∼p∨t, q∨t}

(i) Lower limit: CLuN

(ii) Set of abnormalities: Ω = {α ∧ ∼α | α ∈ L∼}

(iii) Strategy: reliability

Where ∆ is a finite subset of Ω, Dab(∆) =
∨

∆
A minimal Dab-consequence of Γ is a formula Dab(∆) such that

Γ |=CLuN Dab(∆), and
there is no ∆′ ⊂ ∆ s.t. Γ |=CLuN Dab(∆′).

Minimal Dab-consequences of Γ: r ∧ ∼r , (p ∧ ∼p) ∨ (q ∧ ∼q)

Where Dab(∆1),Dab(∆2), . . . are the minimal Dab consequences of Γ,
U(Γ) = {∆1,∆2, . . .} is the set of formulas that are unreliable w.r.t Γ.

U(Γ) = {p ∧ ∼p, q ∧ ∼q, r ∧ ∼r}

A CLuN-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).
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U(Γ) = {∆1,∆2, . . .} is the set of formulas that are unreliable w.r.t Γ.

U(Γ) = {p ∧ ∼p, q ∧ ∼q, r ∧ ∼r}
A CLuN-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).
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Illustration: the adaptive logic CLuNr (2)

U(Γ) = {p ∧ ∼p, q ∧ ∼q, r ∧ ∼r}
p ∼p q ∼q r ∼r s ∼s t ∼t Ab(M)

M1 1 1 1 1 1 1 1 1 1 1 !p, !q, !r , !s, !t

M2 1 1 1 1 1 1 1 1 1 0 !p, !q, !r , !s

M3 1 1 1 1 1 1 1 1 0 1 !p, !q, !r , !s

M4 1 1 1 1 1 1 1 0 1 1 !p, !q, !r , !t

M5 1 1 1 1 1 1 1 0 1 0 !p, !q, !r

M6 1 1 1 1 1 1 1 0 0 1 !p, !q, !r

M7 1 1 0 1 1 1 1 1 1 1 !p, !r , !s, !t
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M12 1 0 1 1 1 1 1 1 1 0 !q, !r , !s

M13 1 0 1 1 1 1 1 0 1 1 !q, !r , !t

M14 1 0 1 1 1 1 1 0 1 0 !q, !r

Γ |=CLuNr α iff α is verified by
all reliable CLuN-models of Γ.

Reliable: M5,M6,M10,M14

Γ 6|=CLuNr t
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Dynamic proofs for adaptive logics

I Defeasibility via conditional inferences

I 3 generic rules of inference (PREM, RU, RC)

I Withdrawing untenable assumptions by marking (X)

PREM If α ∈ Γ:
...

...

α ∅

1 p ∧ r PREM ∅
2 q ∨ ∼p PREM ∅
3 s → ∼q PREM ∅
4 s ∧ (∼r ∨ q) PREM ∅
5 (p ∧ s)→ ∼r PREM ∅
6 ∼p ∨ t PREM ∅
7 q ∨ t PREM ∅
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Dynamic proofs: the unconditional rule

RU If α1, . . . , αn `CLuN β: α1 ∆1
...

...
αn ∆n

β ∆1 ∪ . . . ∪∆n

1 p ∧ r PREM ∅
2 q ∨ ∼p PREM ∅
3 s → ∼q PREM ∅
4 s ∧ (∼r ∨ q) PREM ∅
5 (p ∧ s)→ ∼r PREM ∅
6 ∼p ∨ t PREM ∅
7 q ∨ t PREM ∅

8 ∼q 3,4; RU ∅
9 t ∨ (q ∧ ∼q) 7,8; RU ∅



Dynamic proofs: the unconditional rule

RU If α1, . . . , αn `CLuN β: α1 ∆1
...

...
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Dynamic proofs: the unconditional rule

RU If α1, . . . , αn `CLuN β: α1 ∆1
...

...
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9 t ∨ (q ∧ ∼q) 7,8; RU ∅



Dynamic proofs: the conditional rule

RC If α1, . . . , αn `CLuN β ∨ Dab(Θ): α1 ∆1

...
...

αn ∆n

β ∆1 ∪ . . . ∪∆n ∪Θ

1 p ∧ r PREM ∅
2 q ∨ ∼p PREM ∅
3 s → ∼q PREM ∅
4 s ∧ (∼r ∨ q) PREM ∅
5 (p ∧ s)→ ∼r PREM ∅
6 ∼p ∨ t PREM ∅
7 q ∨ t PREM ∅
8 ∼q 3,4; RU ∅
9 t ∨ (q ∧ ∼q) 7,8; RU ∅

10 t 9; RC {q ∧ ∼q}
11 t 1,6; RC {p ∧ ∼p}
12 ∼∼s 4; RC {s ∧ ∼s}
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Dynamic proofs: the conditional rule
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Dynamic proofs: marking lines for reliability
Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas
derived at stage s on the condition ∅: Us(Γ) = ∆1 ∪∆2 ∪ . . .

Where ∆ is the condition of line i derived at stage s, line i is
r -marked at s iff ∆ ∩ Us(Γ) 6= ∅.
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11 t 1,6; RC {p ∧ ∼p}

X

12 ∼∼s 4; RC {s ∧ ∼s}

13 (p ∧ ∼p) ∨ (q ∧ ∼q) 1,2,8; RU ∅
14 r ∧ ∼r 1,4,5; RU ∅
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Dynamic proofs: final derivability

A formula α is finally derived from Γ at line i of a proof at a finite
stage s iff

- α is the second element of line i ,
- line i is not marked at stage s, and
- every extension of the proof in which line i is marked, may be

further extended such that line i is unmarked.

Γ `CLuNr α iff α is
finally derived from
Γ at a proof line.

Γ `CLuNr ∼∼s
Γ 6`CLuNr t

...
...

...
9 t ∨ (q ∧ ∼q) 7,8; RU ∅

10 t 9; RC {q ∧ ∼q}X
11 t 1,6; RC {p ∧ ∼p}X
12 ∼∼s 4; RC {s ∧ ∼s}
13 (p ∧ ∼p) ∨ (q ∧ ∼q) 1,2,8; RU ∅
14 r ∧ ∼r 1,4,5; RU ∅

Theorem (Batens, 2007)

Γ `CLuNr α iff Γ |=CLuNr α.
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Dynamic proofs: marking lines for minimal abnormality
Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas
derived from Γ at stage s, Φs(Γ) is the set of minimal choice sets
of {∆1,∆2, . . .}.

Where α is derived at line i of a proof from Γ on condition ∆, line
i is m-marked at stage s iff

(i) there is no ∆′ ∈ Φs(Γ) s.t. ∆′ ∩∆ = ∅, or

(ii) for some ∆′ ∈ Φs(Γ), there is no line at which α is derived on a
condition Θ s.t. ∆′ ∩Θ = ∅.

Φ14(Γ) =
{{p ∧∼p, r ∧∼r},
{q ∧ ∼q, r ∧ ∼r}}

Γ `CLuNm ∼∼s
Γ `CLuNm t

...
...

...
9 t ∨ (q ∧ ∼q) 7,8; RU ∅

10 t 9; RC {q ∧ ∼q}
11 t 1,6; RC {p ∧ ∼p}
12 ∼∼s 4; RC {s ∧ ∼s}
13 (p ∧ ∼p) ∨ (q ∧ ∼q) 1,2,8; RU ∅
14 r ∧ ∼r 1,4,5; RU ∅

Theorem (Batens, 2007)

Γ `CLuNm α iff Γ |=CLuNm α.
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Properties of adaptive logics (Batens, 2007; Straßer, 2014)
Γ ⊆ CnAL(Γ) (Reflexivity)

CnAL(Γ) = CnAL(CnAL(Γ)) (Fixed Point)

If Γ′ ⊆ CnAL(Γ) then CnAL(Γ ∪ Γ′) ⊆ CnAL(Γ) (Cautious Cut)

If Γ′ ⊆ CnAL(Γ) then CnAL(Γ) ⊆ CnAL(Γ ∪ Γ′) (Cautious Monotony)

I The upper limit logic of an adaptive logic:

Γ `ULL α
iff

Γ ∪ {¬A | A ∈ Ω} `LLL α
iff

There is a finite ∆ ⊂ Ω s.t. Γ `LLL α ∨ Dab(∆)

The ULL of CluNr and CLuNm is classical logic.

CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ)

I If Γ is normal (no Dab-formulas are LLL-derivable) then
CnALr(Γ) = CnALm(Γ) = CnULL(Γ)
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2. Variations, pitfalls, subtleties



Modeling defeasible reasoning

I CORRECTIVE:

- ‘As consistently as possible’:

Alternative glutty LLLs,
e.g. CLuNs = CLuN + de Morgan’s laws

- ‘As completely as possible’: gappy LLLs: CLaN(s)

α ∼α
1 1
1 0
0 1
0 0

I AMPLIATIVE:

Inductive

Abduction Conditional

generalization

(IBE) reasoning

Premises Pa1 → Qa1

∀x(Px → Qx) Pa Qa

Pa2 → Qa2

Qan Pa

...
Pam → Qam

Conclusion (RC)

∀x(Px → Qx) Pan Qa

Inhibitor (Ω)

Pai ∧ ¬Qai ¬Pan ¬Qa
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CLuNsx and the flip-flop problem

(i) Lower limit: CLuNs

(ii) Set of abnormalities, attempt 1: Ω = {α ∧ ∼α | α ∈ L∼}
(iii) Strategy: reliability (x = r) or minimal abnormality (x = m)

CLuNs = CLuN + de Morgan laws:

∼∼α iff α

∼(α ∧ β) iff ∼α ∨ ∼β
∼(α ∨ β) iff ∼α ∧ ∼β
∼(α→ β) iff α ∧ ∼β

The problem generalizes: the logic flip-flops between its LLL and ULL

Solution: Restrict Ω as follows:

Ω = {α ∧ ∼α | α is a literal}

Take care when defining abnormalities!
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Combining adaptive logics (1)

Basis: the logic K:

- Enrich L with the modal operator 2

- Add the following:

2(α→ β)→ (2α→ 2β) (K)

If ` α then ` 2α (N)

3α =df ¬2¬α (Df3)

Epistemic reading of the new operators:
3α means ‘it is plausible that α’

The more diamonds prefixed to it, the less plausible a formula

Defeasible step: given 3α, jump to α

¬(p ∧ q)
3p

33q

p
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Combining adaptive logics (2)
The adaptive logic Km:

(i) Lower limit: K

(ii) Sets of abnormalities (where 3i is a sequence of i diamonds):

Ω3
i = {3iα ∧ ¬α}

(iii) Strategy: <-minimal abnormality (V/D Putte & Straßer, 2012)

The lexicographic order <: ∆ < ∆′ iff

〈∆ ∩ Ωi 〉i∈I <lex 〈∆′ ∩ Ωi 〉i∈I iff

(1) there is an i ∈ I such that for all j < i ,
∆ ∩ Ωj = ∆′ ∩ Ωj , and

(2) ∆ ∩ Ωi ⊂ ∆′ ∩ Ωi .

A K-model M of Γ is <-minimally abnormal iff there is no
K-model M ′ of Γ such that Ab(M ′) < Ab(M).

r ∧ ¬(p ∧ q),31¬r ,31p,32q `Km p ∧ ¬q
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A third strategy: normal selections
1 p ∧ q ∧ r PREM ∅
2 (∼p ∨ ∼q) ∧ ∼r PREM ∅
3 ∼p ∨ s PREM ∅
4 ∼q ∨ s PREM ∅
5 ∼p ∨ t PREM ∅
6 ∼r ∨ u PREM ∅
7 s 1,3; RC {p ∧ ∼p}

X

8 s 1,4; RC {q ∧ ∼q}

X

9 t 1,5; RC {p ∧ ∼p}

X

10 u 2,6; RC {r ∧ ∼r}

X

11 (p ∧ ∼p) ∨ (q ∧ ∼q) 1,2; RU ∅
12 r ∧ ∼r 1,2; RU ∅

Reliability: -
Minimal abnormality: s
Normal selections: s, t

Normal selections: line l with condition ∆ is marked at stage s iff
Dab(∆) is derived at s on the condition ∅.

A (finite) set ∆ ⊂ Ω is normal w.r.t. Γ iff Γ 6|= Dab(∆).
Γ |=n α iff for some ∆ ⊂ Ω, Γ |= α ∨ Dab(Dab) while Γ 6|= Dab(∆).
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