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0. Intro



Defeasible reasoning and non-monotonic logic

Defeasible reasoning: “jumping to conclusions” which may be
withdrawn in the light of new info

I inconsistent databases

I inductive reasoning

I abductive reasoning (IBE)

I closed world reasoning

I conditional reasoning: “if α, then normally β”
usually
ceteris paribus
. . .

A logic L is monotonic if, for any formula α and set of formulas Γ:

If Γ `L α, then Γ ∪∆ `L α; or

CnL(Γ) ⊆ CnL(Γ ∪∆)
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This course

I General introduction to a selection of key formalisms for doing
non-monotonic logic

I Focus: qualitative methods

I Course overview:

Day 1: Preferential models
Day 2: Adaptive logics
Day 3: Constraining background assumptions (RM)
Day 4: Default logic
Day 5: Formal argumentation

! Disclaimer: last minute changes
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Background (1)

I L is the set of formulas made up of a list of elementary letters
and the connectives ∧,∨,¬ in such a way that:

- Elementary letters p, q, r , . . . are members of L,
- If α and β are members of L, then so are α ∧ β and α ∨ β,
- If α is a member of L, then so is ¬α.

I An assignment is a function va on the set of all elementary letters
into the two-element set {1, 0}.

Each assignment can be extended uniquely to a valuation which is
a function v on the set L into {1, 0} that agrees with the
assignment on elementary letters and behaves in accord with the
standard truth-tables for compound formulas made up using
∧,∨,¬:

v(α) = 1 iff va(α) = 1 (where α is an elementary letter)
v(¬α) = 1 iff v(α) = 0
v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
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Background (2)

α→ β =df ¬α ∨ β
α↔ β =df (α→ β) ∧ (β → α)

Classical consequence is a relation between sets of formulas and
individual formulas:

β is a classical consequence of Γ (Γ |= β) iff there is no valuation v
such that v(Γ) = 1 while v(β) = 0.

Classical consequence as an operation on sets of formulas:
Cn(Γ) = {β : Γ |= β}.
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1. Preferential models á la Shoham

Y. Shoham. A semantical approach to nonmonotonic logics.
In M. Ginsberg (ed.), Readings in Nonmonotonic Reasoning

(Morgan Kaufmann Publishers, 1987), pp. 227-250.



Selecting interpretations: motivation

Bringing nonmonotonic logic closer to standard model theory

A general account of non-monotonic inference in terms of
consequence relations (to do what Tarski did for classical
logic)

Shoham’s idea:

I Interpretations/valuations/models: complete assignments of
values to all formulas in L

I Less interpretations ⇒ more consequences
I Selecting ‘preferrable’ models
I Different criteria of preference give rise to different

consequence relations
I α |∼β: “β is true in all preferred α-models”



Selecting interpretations: motivation

Bringing nonmonotonic logic closer to standard model theory

A general account of non-monotonic inference in terms of
consequence relations (to do what Tarski did for classical
logic)

Shoham’s idea:

I Interpretations/valuations/models: complete assignments of
values to all formulas in L

I Less interpretations ⇒ more consequences
I Selecting ‘preferrable’ models
I Different criteria of preference give rise to different

consequence relations
I α |∼β: “β is true in all preferred α-models”



Selecting interpretations: motivation

Bringing nonmonotonic logic closer to standard model theory

A general account of non-monotonic inference in terms of
consequence relations (to do what Tarski did for classical
logic)

Shoham’s idea:

I Interpretations/valuations/models: complete assignments of
values to all formulas in L

I Less interpretations ⇒ more consequences
I Selecting ‘preferrable’ models
I Different criteria of preference give rise to different

consequence relations
I α |∼β: “β is true in all preferred α-models”



Preferential consequence (Shoham, 1988)

A preferential model is a pair (V , <) where V is a set of
interpretations on the language L, and < is an irreflexive, transitive
relation over V .

- Irreflexivity: for any v ∈ V , v 6< v ,
- Transitivity: for any v1, v2, v3 ∈ V , if v1 < v2 and v2 < v3,

then v1 < v3.

! A set of interpretations, not the set of interpretations!

The demands of irreflexivity and transitivity entail

Asymmetry: for any v ,w ∈ V : if w < v , then v 6< w .

Where V is a set of interpretations, u is a minimal element of V
iff u ∈ V and there is no v ∈ V such that v < u.

Given a preferential model (V , <), β is a preferential consequence
of Γ (Γ |∼β) iff v(β) = 1 for every interpretation v ∈ V that is
minimal among those in V that satisfy Γ.

Compact notation: Γ |∼β iff min<|Γ|V ⊆ |β|V .
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Properties of preferential consequence (1)

Suppose (for a language with elemen-
tary letters p, q, r) that V = {v1, v2},
with v1 < v2

p, q |∼ p? (1)

p |∼ r? (2)

p, q |∼ r? (3)
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Properties of preferential consequence (2)
, Disjunction in the premisses:

If Γ ∪ {α} |∼ γ and Γ ∪ {β} |∼ γ then Γ ∪ {α ∨ β} |∼ γ. (OR)

Proof. Suppose (first) that Γ ∪ {α} |∼ γ and Γ ∪ {β} |∼ γ, and
(second) that Γ ∪ {α ∨ β} 6 |∼ γ. We show that the second
supposition leads to a contradiction.
By the second supposition, there is a minimal α ∨ β-valuation v
such that v(Γ) = v(α ∨ β) = 1 and v(γ) = 0. Since v(α ∨ β) = 1,
we know that v(α) = 1 or v(β) = 1.

I If v(α) = 1, then v is a minimal Γ ∪ {α}-valuation. (Suppose
there is a v ′ < v such that v ′(Γ) = v ′(α) = 1. Then
v ′(α ∨ β) = 1, contradicting the α ∨ β-minimality of v .) But then,
since v(γ) = 0, Γ ∪ {α} 6 |∼ γ, contradicting the first supposition.

I If v(β) = 1, then v is a minimal Γ∪ {β}-valuation. (Suppose there
is a v ′ < v such that v ′(Γ) = v ′(β) = 1. Then v ′(α ∨ β) = 1,
contradicting the α ∨ β-minimality of v .) But then, since
v(γ) = 0, Γ ∪ {β} 6 |∼ γ, contradicting the first supposition.
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Properties of preferential consequence (3)

, Cumulative transitivity (Cut):

If Γ |∼α for all α ∈ ∆ and Γ ∪∆ |∼β, then Γ |∼β. (CT)

Proof. Suppose Γ |∼α for all α ∈ ∆ and Γ 6 |∼β. We show that
Γ ∪∆ 6 |∼β. Since Γ 6 |∼β there is a minimal Γ-valuation v with
v(β) = 0. Since Γ |∼α for all α ∈ ∆, v(α) = 1 for all α ∈ ∆.
Hence v is an Γ ∪∆-valuation. Suppose now that there is an
Γ ∪∆-valuation v ′ < v . Then v ′(Γ) = 1 contradicting the fact that
v is a minimal Γ-valuation. Hence v is a minimal Γ ∪∆-valuation
with v(β) = 0, so Γ ∪∆ 6 |∼β.
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Properties of preferential consequence (4)

? Cautious monotony:

If Γ |∼α for all α ∈ ∆ and Γ |∼β, then Γ ∪∆ |∼β. (CM)

p |∼ q (no minimal p-valuation)
p |∼ r (no minimal p-valuation)
p, q 6 |∼ r

I (CM) fails in general

I (CM) holds for models that satisfy the
smoothness or stopperedness condition:

Smoothness condition:
If v ∈ |Γ|V then (either v ∈ min<|Γ|V or
there is a u < v with u ∈ min<|Γ|V ).
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If v ∈ |Γ|V then (either v ∈ min<|Γ|V or
there is a u < v with u ∈ min<|Γ|V ).
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Summary: preferential consequence

Given a preferential model (V , <), β is a preferential consequence
of Γ (Γ |∼β) iff v(β) = 1 for every interpretation v ∈ V that is
minimal among those in V that satisfy Γ.

I Monotony fails

I Transitivity fails

I Contraposition fails

I Disjunction in the premisses holds

I Cumulative transitivity holds

I Cautious monotony fails (but holds for smooth models)



2. Preferential models á la Kraus, Lehmann, and Magidor

S. Kraus, D. Lehmann, and M. Magidor.
Nonmonotonic reasoning, preferential models and cumulative

logics. Artificial Intelligence 44(1-2), 1990, pp. 167–207.



KLM’s motivation

• Generalization of Shoham’s idea

• Description of Shoham-style models in terms of proof-theoretic
properties

• Additional expressive power added for providing representation
results

• α |∼β means ‘if α, then normally β’ or ‘β is a plausible
consequence of α’

• Concrete elaboration of Shoham’s idea that “different criteria of
preference give rise to different consequence relations” (systems
C, P and R)
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Shoham-models with worlds and states
Equivalently to Shoham’s definitions:

• Let ≺ be a preference relation on worlds w1,w2, . . . ∈W so
that w1 ≺ w2 means that w1 is more normal than w2.
Worlds are complete and respect classical truth-conditions.

Given a preferential model (W ,≺), β is a preferential consequence
of Γ iff β holds at w for all ≺-minimal (‘most normal’, preferred)
Γ-worlds w .

KLM add ‘an additional degree of freedom’:

• S is a set of arbitrary items called states.

• l : S → 2W is a function labelling every state with a
non-empty set of worlds.
≈ worlds a reasoner considers possible in this state

• ≺ now relates states instead of worlds.

• The same set of worlds can appear twice in the ordering as
the label of different states. This adds expressive power to
Shoham’s construction.
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Cumulative consequence (semantically)

A model is a triple 〈S , l ,≺〉 where

- S is a set of states
- l : S → 2W labels states with non-empty sets of worlds
- ≺ is a binary relation on S

A state s ∈ S satisfies α iff for every w ∈ l(s), w |= α.

|α|S is the set of states that satisfy α.

A cumulative model is a model 〈S , l ,≺〉 such that for all α ∈ L,
|α|S satisfies the smoothness condition.

α |∼β (relative to a cumulative model M) iff
s satisfies β whenever s ∈ min≺|α|S .
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Cumulative consequence (illustration)

We are given a language with elementary letters p, q, r and the
following model:

p q r

w1 1 1 1
w2 1 1 0
w3 1 0 1
w4 1 0 0
w5 0 1 1
w6 0 1 0
w7 0 0 1
w8 0 0 0

l(s1) = {w3,w4}
l(s2) = {w1,w2}
l(s3) = {w5}

p |∼ q
q |∼ r
p 6 |∼ r
¬q 6 |∼¬p

Transitivity and contraposition fail.
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Cumulative consequence (proof-theoretically)

A consequence relation |∼ is cumulative iff it contains all instances
of the reflexivity axiom (R) and is closed under the inference rules
of left logical equivalence (LLE), right weakening (RW), cut (CT),
and cautious monotony (CM):

α |∼α (R)

|= α↔ β, α |∼ γ
β |∼ γ

(LLE)

|= α→ β, γ |∼α
γ |∼β

(RW)

α ∧ β |∼ γ, α |∼β
α |∼ γ

(CT)

α |∼β, α |∼ γ
α ∧ β |∼ γ

(CM)

C is the logic characterized by (R), (LLE), (RW), (CT), and (CM).

Theorem (Kraus, Lehmann, & Magidor, 1990)

A consequence relation is a cumulative consequence relation iff it is
defined by some cumulative model.
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Rules (not) derivable in system C

DERIVABLE

α |∼β, β |∼α, α |∼ γ
β |∼ γ

(EQ)

α |∼β, α |∼ γ
α |∼β ∧ γ

(AND)

α |∼β → γ, α |∼β
α |∼ γ

(MPC)

α ∨ β |∼α, α |∼ γ
α ∨ β |∼ γ

NOT DERIVABLE:

|= α→ β, β |∼ γ
α |∼ γ

(MON)

α |∼β → γ

α ∧ β |∼ γ
(EHD)

α |∼β, β |∼ γ
α |∼ γ

(TRA)

α |∼β
¬β |∼¬α

(CPOS)

Note: (EHD) + (RW) makes |∼ monotonic
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Preferential consequence (KLM-semantics)

A preferential model is a triple 〈S , l ,≺〉 where S is a set of states,
l : S →W assigns a world to each state, and ≺ satisfies the
smoothness condition.

• States are labelled by single worlds (not sets of worlds)

• Still more expressive than Shoham’s semantics: the same world
may label different states!

Let L range over two variables p and q. The following model has
no equivalent model in which no label appears twice:
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Preferential consequence (proof-theoretically)
A consequence relation |∼ is preferential iff it satisfies all rules of C
plus the rule of disjunction in the premisses:

α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(OR)

P is the logic characterized by C plus (OR).

Rules derivable in P:

α ∧ β |∼ γ
α |∼β → γ

α ∧ ¬β |∼ γ, α ∧ β |∼ γ
α |∼ γ

α |∼ γ, β |∼ δ
α ∨ β |∼ γ ∨ δ

Note: the first of these rules is the converse of (EHD)

Theorem (Kraus, Lehmann, & Magidor, 1990)

A consequence relation is a preferential consequence relation iff it
is defined by some preferential model.
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Preferential consequence: illustration

I p for ‘penguin’, b for ‘bird’, f for ‘flies’

I Our knowledge base Γ contains

p |∼ b (4)

p |∼¬f (5)

b |∼ f (6)

I Note that:

p 6 |∼ f (7)

p ∧ b |∼¬f (8)

f |∼¬p (9)

b |∼¬p (10)

b ∨ p |∼ f ∧ ¬p (11)
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3. Discussion

“We think a good reasoning system should validate all rules of P”
“Nevertheless, many preferential reasoners lack properties that

seem desirable”
(KLM, 1990)



Rational Monotony fails in P

α |∼ γ, α 6 |∼¬β
α ∧ β |∼ γ

(Rational Monotony)

Counter-example (Lehmann & Magidor, 1992):

p ∨ q ∨ r |∼¬r
p ∨ q ∨ r 6 |∼¬¬q

(p ∨ q ∨ r) ∧ ¬q 6 |∼¬r



Disjunctive Rationality fails in P

α 6 |∼ γ, β 6 |∼ γ
α ∨ β 6 |∼ γ

(Disjunctive Rationality)

Counter-example (Makinson, 1988):

p 6 |∼ r

q 6 |∼ r

p ∨ q |∼ r



Negation Rationality fails in P

α ∧ γ 6 |∼ β, α ∧ ¬γ 6 |∼ β
α 6 |∼ β

(Negation Rationality)

Counter-example (Lehmann & Magidor, 1992):

p 6 |∼ q

¬p 6 |∼ q

> |∼ q



System R: ranked models
A ranked model 〈S , l ,≺〉 is a preferential model for which the
strict partial order ≺ is modular, i.e.

for x , y , z ∈ S : if x 6≺ y and y 6≺ z , then x 6≺ z .

A consequence relation |∼ is ranked iff it satisfies all rules of P
plus the rule of Rational Monotony.

R is the logic characterized by P plus Rational Monotony.

Theorem (Lehmann, & Magidor, 1992)

A consequence relation is a ranked consequence relation iff it is
defined by some ranked model.

Disjunctive Rationality and Negation Rationality are derivable in R.

s3 6≺ s2

s2 6≺ s1

s3 ≺ s1
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Theorem (Lehmann, & Magidor, 1992)

A consequence relation is a ranked consequence relation iff it is
defined by some ranked model.

Disjunctive Rationality and Negation Rationality are derivable in R.

s3 6≺ s2

s2 6≺ s1

s3 ≺ s1
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