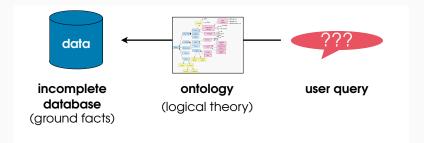
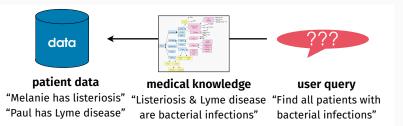
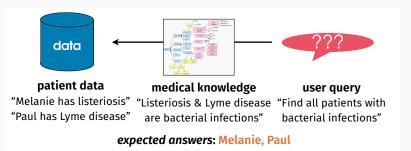
QUERY ANSWERING WITH DESCRIPTION LOGIC ONTOLOGIES

Meghyn Bienvenu (CNRS & Université de Montpellier) Magdalena Ortiz (Vienna University of Technology)











To standardize the terminology of an application domain

- \cdot by adopting a common vocabulary, easy to share information
- meaning of terms is constrained, so less misunderstandings

To **standardize the terminology** of an application domain

- · by adopting a common vocabulary, easy to share information
- meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To **standardize the terminology** of an application domain

- · by adopting a common vocabulary, easy to share information
- meaning of terms is constrained, so less misunderstandings

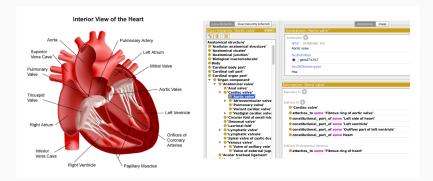
To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To support automated reasoning

- · uncover implicit connections between terms, errors in modelling
- exploit knowledge in the ontology during query answering, to get back a more complete set of answers to queries

General medical ontologies: SNOMED CT (\sim 400,000 terms!), GALEN Specialized ontologies: FMA (anatomy), NCI (cancer), ...

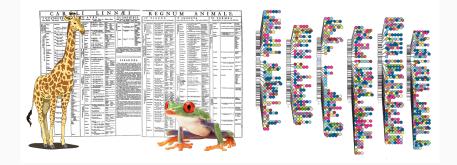


Querying & exchanging medical records (find patients for medical trials)

· myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays)

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/): Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...



Help scientists share, query, & visualize experimental data

APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data

need easy and flexible access to support decision-making

Example industrial projects:

- · Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, & Siemens)

OUR FOCUS: HORN DESCRIPTION LOGICS

Ontologies formulated using description logics (DLs):

- · family of decidable fragments of first-order logic
- basis for OWL web ontology language (W3C)
- · range from fairly simple to highly expressive
- complexity of query answering well understood

Ontologies formulated using description logics (DLs):

- · family of decidable fragments of first-order logic
- basis for OWL web ontology language (W3C)
- · range from fairly simple to highly expressive
- · complexity of query answering well understood

In this tutorial, focus on Horn description logics:

- · **DL-Lite**_{*R*}, \mathcal{EL} , \mathcal{ELHI} , Horn- \mathcal{SHIQ} , ...
- · good computational properties, well suited for OMQA
- · still expressive enough for interesting applications
- basis for OWL 2 QL and OWL 2 EL profiles

Consider various types of queries

- Horn Description Logics
- Basics of OMQA
- · Instance Queries
- · Conjunctive Queries
- Navigational Queries
- · Queries with Negation and Recursion
- · Research Trends in OMQA
- Practical OMQA Systems: Ontop

HORN DESCRIPTION LOGICS

Building blocks of DLs:

· concept names (unary predicates, classes)

IceCream, Pizza, Meat, SpicyDish, Dish, Menu, Restaurant, ...

· role names (binary predicates, properties)

hasIngred, hasCourse, hasDessert, serves, ...

· individual names (constants)

menu32, pastadish17, d3, rest156, r12, ...

(specific menus, dishes, restaurants ...)

 $N_C / N_R / N_I$: set of all concept / role / individual names

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

 $(Ind(\mathcal{A}):$ individuals appearing in ABox $\mathcal{A})$

- finite set of concept assertions A(a) and role assertions r(a, b)
- · IceCream(d_2): dish d_2 is of type IceCream
- · hasDessert(m, d_2): menu m is connected via hasDessert to dish d_2

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

 $(Ind(\mathcal{A}):$ individuals appearing in ABox $\mathcal{A})$

- finite set of concept assertions A(a) and role assertions r(a, b)
- · IceCream(d_2): dish d_2 is of type IceCream
- · hasDessert (m, d_2) : menu m is connected via hasDessert to dish d_2

TBox contains general knowledge about the domain of interest

- finite set of axioms (details on syntax to follow)
- · IceCream is a subclass of Dessert
- hasCourse connects Menus to Dishes
- · every Menu is connected to at least one dish via hasCourse

· conjunction (\Box), disjunction (\Box), negation (\neg)

Dessert □ ¬IceCream Pizza ⊔ PastaDish

· conjunction (\Box), disjunction (\Box), negation (\neg)

Dessert □ ¬IceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists, \forall)

∃hasCourse.⊤	∃contains.Meat	Dish ⊓ ∀contains.¬Meat	
	(⊤acts as a "	wildcard", denotes set of all th	nings)

· conjunction (\Box), disjunction (\Box), negation (\neg)

Dessert □ ¬IceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists, \forall)

∃hasCourse.⊤	∃contains.Meat	Dish ⊓ ∀contains.¬Meat	
	(⊤acts as a "	wildcard", denotes set of all thi	ngs)

 \cdot inverse (-) and composition (.) of roles

hasCourse contains · contains

(use N_R^{\pm} for set of role names and inverse roles)

(use inv(r) to toggle $-: inv(r) = r^-, inv(r^-) = r$)

· conjunction (\Box), disjunction (\Box), negation (\neg)

Dessert □ ¬IceCream Pizza ⊔ PastaDish

· restricted forms of existential and universal quantification (\exists, \forall)

∃hasCourse.⊤	∃contains.Meat	Dish □ ∀contains.¬Meat	
	(⊤acts as a "	wildcard", denotes set of all thir	ngs)

 \cdot inverse (-) and composition (.) of roles

hasCourse contains · contains

(use N_R^{\pm} for set of role names and inverse roles)

(use inv(r) to toggle $-: inv(r) = r^-, inv(r^-) = r$)

Note: set of available constructors depends on the particular DL! 12/29

Concept inclusions $C \sqsubseteq D$ (*C*, *D* possibly complex concepts)

lceCream ⊑ Dessert	Menu ⊑ ∃hasCourse.⊤	Spicy ⊓ Dish ⊑ SpicyDish
--------------------	---------------------	--------------------------

Role inclusions $R \sqsubseteq S$ (*R*, *S* possibly complex roles)

has $lngred \sqsubseteq contains$ ingred $Of^- \sqsubseteq has lngred$ has $Dessert \sqsubseteq has Course$

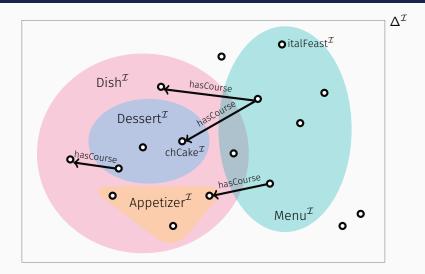
Note: type and syntax of axioms depends on the particular DL!

DL SEMANTICS

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

EXAMPLE: INTERPRETATION



4 concept names: Dish, Dessert, Appetizer, Menu 1 role name: hasCourse 2 individual names: italFeast, chCake

DL SEMANTICS

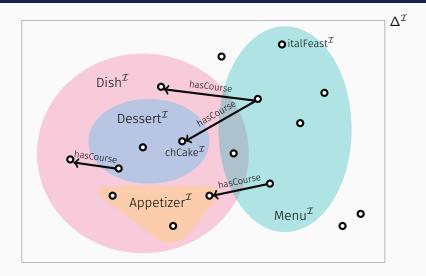
Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Interpretation function $\cdot^{\mathcal{I}}$ extends to complex concepts and roles:

Т	$\Delta^{\mathcal{I}}$
\perp	Ø
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$
$\exists R.C$	$\{d_1 \mid \text{there exists } (d_1, d_2) \in R^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$
∀R.C	$\{d_1 \mid d_2 \in C^{\mathcal{I}} \text{ for all } (d_1, d_2) \in R^{\mathcal{I}}\}$
r ⁻	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}$

BACK TO THE EXAMPLE



Dish ⊓ Menu Dessert ⊓ Appetizer ∃hasCourse.⊤ ∃hasCourse⁻.Dessert

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Satisfaction in an interpretation

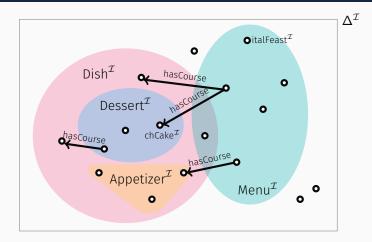
- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Model of a KB \mathcal{K} = interpretation that satisfies all statements in \mathcal{K}

 \mathcal{K} is satisfiable = \mathcal{K} has at least one model

 \mathcal{K} entails α (written $\mathcal{K} \models \alpha$) = every model \mathcal{I} of \mathcal{K} satisfies α

BACK TO THE EXAMPLE



Which of the following assertions / axioms is satisfied in \mathcal{I} ?

Dessert \sqsubseteq Dish Dish \sqcap Menu $\sqsubseteq \bot$ Menu $\sqsubseteq \exists$ hasCourse. \top \exists hasCourse⁻. $\top \sqsubseteq$ Dish Menu(italFeast) hasCourse(italFeast, chCake) Idea: Horn DLs cannot express disjunction (explicitly or implicitly)

 $\cdot\,$ better computational properties than non-Horn DLs $\,$ (more on this later)

SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)

 $\cdot\,$ better computational properties than non-Horn DLs $\,$ (more on this later)

DL-Lite_R

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$ B_1, B_2 either $A \in N_C$ or $\exists R \ (R \in N_R^{\pm})$
- · role inclusions $R_1 \sqsubseteq (\neg)R_2$

 B_1, B_2 either $A \in N_C$ or $\exists R \ (R \in N_R^{\pm})$ $R_1, R_2 \in N_R^{\pm}$

SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)

 $\cdot\,$ better computational properties than non-Horn DLs $\,$ (more on this later)

DL-Lite_R

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$ B_1, B_2 either $A \in N_C$ or $\exists R \ (R \in N_R^{\pm})$
- role inclusions $R_1 \sqsubseteq (\neg)R_2$

```
B_1, B_2 either A \in N_C or \exists R \ (R \in N_R^{\pm})
R_1, R_2 \in N_R^{\pm}
```

\mathcal{EL}

- · allows only \top , \sqcap , and $\exists r.C$ as constructors
- \cdot only concept inclusions in TBox

SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)

 $\cdot\,$ better computational properties than non-Horn DLs $\,$ (more on this later)

DL-Lite_R

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$ B_1, B_2 either $A \in N_C$ or $\exists R \ (R \in N_R^{\pm})$
- role inclusions $R_1 \sqsubseteq (\neg)R_2$

```
B_1, B_2 either A \in N_C or \exists R \ (R \in N_R^{\pm})
R_1, R_2 \in N_R^{\pm}
```

\mathcal{EL}

- · allows only \top , \sqcap , and $\exists r.C$ as constructors
- · only concept inclusions in TBox

\mathcal{ELHI}_{\perp}

- \cdot additionally allows for \perp and inverse roles (r⁻)
- · can also have role inclusions

SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)

 $\cdot\,$ better computational properties than non-Horn DLs $\,$ (more on this later)

DL-Lite_R

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$
- role inclusions $R_1 \sqsubseteq (\neg)R_2$

```
B_1, B_2 either A \in N_C or \exists R \ (R \in N_R^{\pm})
R_1, R_2 \in N_R^{\pm}
```

\mathcal{EL}

- · allows only \top , \sqcap , and $\exists r.C$ as constructors
- · only concept inclusions in TBox

\mathcal{ELHI}_{\perp}

- \cdot additionally allows for \perp and inverse roles (r⁻)
- \cdot can also have role inclusions

Horn-SHIQ

- · limited use of \neg , $\forall r.C$, and number restrictions ($\geq nR.C$, $\leq nR.C$)
- · also have transitivity axioms (e.g. assert contains is transitive)

BASICS OF OMQA

ABOXES VS. DATABASES

ABoxes and databases (DBs) and are syntactically similar:

- ABox = finite set of assertions (unary and binary facts)
- Database = finite set of facts of arbitrary arity

ABoxes and databases (DBs) and are syntactically similar:

- ABox = finite set of assertions (unary and binary facts)
- Database = finite set of facts of arbitrary arity

ABoxes interpreted under open world assumption:

- every assertion in the ABox is assumed to hold (true)
- · assertions not present in the ABox may hold or not (unknown)

Each ABox gives rise to many interpretations (its models)

 $\cdot\,$ models can be infinite, can have infinitely many models

ABoxes and databases (DBs) and are syntactically similar:

- ABox = finite set of assertions (unary and binary facts)
- Database = finite set of facts of arbitrary arity

ABoxes interpreted under open world assumption:

- every assertion in the ABox is assumed to hold (true)
- assertions not present in the ABox may hold or not (unknown)

Each ABox gives rise to many interpretations (its models)

 $\cdot\,$ models can be infinite, can have infinitely many models

Databases interpreted under closed world assumption:

- every fact in the DB is assumed to hold (true)
- every fact not in the DB is assumed not to hold (false)

In other words, each DB corresponds to single finite interpretation

 \cdot domain of the interpretation = set of constants in DB

Database query q of arity n maps

(Boolean query = arity 0)

Database $\mathcal{D} \rightarrow ans(q, \mathcal{D}) = set of$ *n* $-tuples of constants from <math>\mathcal{D}$

Database <mark>query</mark> q	of ar	ity n maps (Boolean query = arity 0)
Database ${\cal D}$	$\sim \rightarrow$	ans(q, D) = set of n-tuples of constants from D
Interpretation ${\mathcal I}$	\rightsquigarrow	ans $(q, \mathcal{I}) =$ set of <i>n</i> -tuples of elements from \mathcal{I}

Database <mark>query</mark> q	of ar	ity <i>n</i> maps (Boolean query = arity 0)
Database ${\cal D}$	$\sim \rightarrow$	ans(q, D) = set of n-tuples of constants from D
Interpretation ${\mathcal I}$	\rightsquigarrow	ans(q, I) = set of n-tuples of elements from I

First-order (FO) query = first-order formula

- \cdot arity of FO query = number of free variables
- \cdot answers = substitutions for free vars that make formula hold
- example: $Dish(x) \land \forall y.(contains(x, y) \to \neg Spicy(y))$

Database <mark>query</mark> q	of ar	ity n maps (Boolean query = arity 0)
Database ${\cal D}$	\rightsquigarrow	ans(q, D) = set of n-tuples of constants from D
Interpretation ${\mathcal I}$	\rightsquigarrow	ans(q, I) = set of n-tuples of elements from I

First-order (FO) query = first-order formula

- \cdot arity of FO query = number of free variables
- \cdot answers = substitutions for free vars that make formula hold
- example: $Dish(x) \land \forall y.(contains(x, y) \to \neg Spicy(y))$

Datalog queries = finite set of Datalog rules + 'goal' relation

- $\cdot\,$ arity of Datalog query = arity of goal relation
- **answers = exhaustively apply rules to DB / interpretation**, collect tuples in goal relation
- example: rules contains(x, z) \leftarrow contains(x, y), contains(y, z) and SpicyDish(x) \leftarrow Dish(x), contains(x, y), Spicy(y)

Solution: adopt certain answer semantics

require tuple to be an answer w.r.t. all models of KB

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a_1, \ldots, a_n) of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a_1, \ldots, a_n) of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

Question: what happens if \mathcal{K} is unsatisfiable?

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a_1, \ldots, a_n) of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in \operatorname{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

Question: what happens if \mathcal{K} is unsatisfiable?

Ontology-mediated query answering (OMQA) = computing certain answers to queries

 $\mathcal{T} = \{ \text{Cake} \sqsubseteq \text{Dessert} | \text{IceCream} \sqsubseteq \text{Dessert} | \text{hasDessert} \sqsubseteq \text{hasCourse} \\ \exists \text{hasCourse} \sqsubseteq \text{Menu} | \exists \text{hasDessert}^- \sqsubseteq \text{Dessert} \} \\ \mathcal{A} = \{ \text{Cake}(d_1) | \text{IceCream}(d_2) | \text{Dessert}(d_3) | \text{hasDessert}(m, d_4) \} \end{cases}$

 $\mathcal{T} = \{ \text{Cake} \sqsubseteq \text{Dessert} | \text{IceCream} \sqsubseteq \text{Dessert} | \text{hasDessert} \sqsubseteq \text{hasCourse} \\ \exists \text{hasCourse} \sqsubseteq \text{Menu} | \exists \text{hasDessert}^- \sqsubseteq \text{Dessert} \} \\ \mathcal{A} = \{ \text{Cake}(d_1) | \text{IceCream}(d_2) | \text{Dessert}(d_3) | \text{hasDessert}(m, d_4) \} \end{cases}$

Certain answers to q w.r.t. \mathcal{K} :

 $\mathcal{T} = \{ \text{Cake} \sqsubseteq \text{Dessert} | \text{IceCream} \sqsubseteq \text{Dessert} | \text{hasDessert} \sqsubseteq \text{hasCourse} \\ \exists \text{hasCourse} \sqsubseteq \text{Menu} | \exists \text{hasDessert}^- \sqsubseteq \text{Dessert} \} \\ \mathcal{A} = \{ \text{Cake}(d_1) | \text{IceCream}(d_2) | \text{Dessert}(d_3) | \text{hasDessert}(m, d_4) \} \end{cases}$

Certain answers to q w.r.t. \mathcal{K} :

 $\cdot d_3 \in \operatorname{cert}(q, \mathcal{K})$

- $d_1 \in \operatorname{cert}(q, \mathcal{K})$ Cake $(d_1) \in \mathcal{A}$, Cake \sqsubseteq Dessert $\in \mathcal{T}$
- $d_2 \in \operatorname{cert}(q, \mathcal{K})$ IceCream(d_2) $\in \mathcal{A}$, IceCream \sqsubseteq Dessert $\in \mathcal{T}$
 - $Dessert(d_3) \in A$
- $d_4 \in \operatorname{cert}(q, \mathcal{K})$ has $\operatorname{Dessert}(m, d_4) \in \mathcal{A}$, has $\operatorname{Dessert}^- \sqsubseteq \operatorname{Dessert} \in \mathcal{T}$

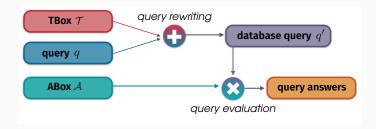
 $\mathcal{T} = \{ \text{Cake} \sqsubseteq \text{Dessert} | \text{IceCream} \sqsubseteq \text{Dessert} | \text{hasDessert} \sqsubseteq \text{hasCourse} \\ \exists \text{hasCourse} \sqsubseteq \text{Menu} | \exists \text{hasDessert}^- \sqsubseteq \text{Dessert} \} \\ \mathcal{A} = \{ \text{Cake}(d_1) | \text{IceCream}(d_2) | \text{Dessert}(d_3) | \text{hasDessert}(m, d_4) \} \end{cases}$

Certain answers to q w.r.t. \mathcal{K} :

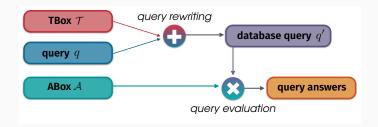
- $d_1 \in \operatorname{cert}(q, \mathcal{K})$ Cake $(d_1) \in \mathcal{A}$, Cake \sqsubseteq Dessert $\in \mathcal{T}$
- $d_2 \in \operatorname{cert}(q, \mathcal{K})$ IceCream(d_2) $\in \mathcal{A}$, IceCream \sqsubseteq Dessert $\in \mathcal{T}$
- $d_3 \in \operatorname{cert}(q, \mathcal{K})$ Dessert $(d_3) \in \mathcal{A}$
- $d_4 \in \operatorname{cert}(q, \mathcal{K})$ has $\operatorname{Dessert}(m, d_4) \in \mathcal{A}$, has $\operatorname{Dessert}^- \sqsubseteq \operatorname{Dessert} \in \mathcal{T}$

The fifth individual m is not a certain answer: can construct model \mathcal{J} of \mathcal{K} in which $m^{\mathcal{J}} \notin \text{Dessert}^{\mathcal{J}}$

Query rewriting: Reduces problem of finding certain answers to standard DB query evaluation (→ exploit existing DB systems)



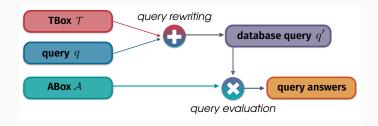
Query rewriting: Reduces problem of finding certain answers tostandard DB query evaluation(→ exploit existing DB systems)



Call $q'(\vec{x})$ a rewriting of $q(\vec{x})$ and \mathcal{T} iff for every ABox \mathcal{A} and tuple \vec{a}

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad \vec{a} \in \operatorname{ans}(q'(\vec{x}), \mathcal{I}_{\mathcal{A}}) \qquad (\mathcal{I}_{\mathcal{A}} = \operatorname{treat} \mathcal{A} \text{ as DB})$$

Query rewriting: Reduces problem of finding certain answers to standard DB query evaluation (→ exploit existing DB systems)



Call $q'(\vec{x})$ a rewriting of $q(\vec{x})$ and \mathcal{T} iff for every ABox \mathcal{A} and tuple \vec{a}

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \iff \vec{a} \in \operatorname{ans}(q'(\vec{x}), \mathcal{I}_{\mathcal{A}})$$
 $(\mathcal{I}_{\mathcal{A}} = \operatorname{treat} \mathcal{A} \text{ as DB})$

Types of rewritings: FO-rewritings (SQL), Datalog rewritings, ...

Saturation: Render explicit (some of) the implicit information contained in the KB, making it available for query evaluation

Saturation: Render explicit (some of) the implicit information contained in the KB, making it available for query evaluation

Simple use of saturation:

(works e.g. for RDFS ontologies)

- use saturation to **'complete' the ABox** by adding those assertions that are logically entailed from the KB
- $\cdot\,$ then evaluate the query over the saturated ABox

Saturation: Render explicit (some of) the implicit information contained in the KB, making it available for query evaluation

Simple use of saturation:

(works e.g. for RDFS ontologies)

- use saturation to **'complete' the ABox** by adding those assertions that are logically entailed from the KB
- $\cdot\,$ then evaluate the query over the saturated ABox

More complex uses:

- **enrich the ABox in other ways** (e.g. add new ABox individuals to witness the existential restrictions $\exists R.C$)
- · combine saturation with query rewriting

View OMQA as a **decision problem** (yes-or-no question):

Problem:	$\mathcal Q$ answering in $\mathcal L$ ($\mathcal Q$ a query language, $\mathcal L$ a DL)
INPUT:	An n -ary query $q \in \mathcal{Q}$, an ABox \mathcal{A} , a \mathcal{L} -TBox \mathcal{T} ,
	and a tuple $\vec{a} \in \operatorname{Ind}(\mathcal{A})^n$
QUESTION:	Does \vec{a} belong to cert($q, (T, A)$)?

View OMQA as a **decision problem** (yes-or-no question):

PROBLEM: \mathcal{Q} answering in \mathcal{L} (\mathcal{Q} a query language, \mathcal{L} a DL)INPUT:An *n*-ary query $q \in \mathcal{Q}$, an ABox \mathcal{A} , a \mathcal{L} -TBox \mathcal{T} ,
and a tuple $\vec{a} \in \operatorname{Ind}(\mathcal{A})^n$ QUESTION:Does \vec{a} belong to $\operatorname{cert}(q, (\mathcal{T}, \mathcal{A}))$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only

- view rest of input as fixed (of constant size)
- motivation: ABox typically much larger than rest of input

Note: use $|\mathcal{A}|$ to denote size of \mathcal{A} (similarly for $|\mathcal{T}|$, |q|, etc.)

We will mention the following standard classes:

P problems solvable in deterministic polynomial time
 NP problems solvable in non-det. polynomial time
 coNP problems whose complement is solvable in
 non-deterministic polynomial time
 LOGSPACE problems solvable in deterministic logarithmic space
 NLOGSPACE problems solvable in non-det. logarithmic space
 PSPACE problems solvable in polynomial space (note: =NPSPACE)
 EXP problems solvable in deterministic exponential time

We will mention the following standard classes:

P problems solvable in deterministic polynomial time
 NP problems solvable in non-det. polynomial time
 coNP problems whose complement is solvable in
 non-deterministic polynomial time
 LOGSPACE problems solvable in deterministic logarithmic space
 NLOGSPACE problems solvable in non-det. logarithmic space
 PSPACE problems solvable in polynomial space (note: =NPSPACE)
 EXP problems solvable in deterministic exponential time

Another less known but important class:

AC₀ problems solvable by uniform family of polynomial-size constant-depth circuits

Relationships between classes:

 $\mathsf{AC}_0 \subsetneq \mathsf{LogSpace} \subseteq \mathsf{NLogSpace} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSpace} \subseteq \mathsf{Exp}$