COMPUTATIONAL SEMANTICS: DAY 4

Johan Bos
University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics

- Day 1: Exploring Models
- Day 2: Meaning Representations
- Day 3: Computing Meanings with DCG
- Day 4: Computing Meanings with CCG
- Day 5: Drawing Inferences and Meaning Banking

Exercise 2 (homework)

- Look at the natural language statements associated with the images in GRIM
- Pick a frequently occurring verb that is not in the lexicon already
- Specify the lexical semantics of this verb in
 - a) no events (pre-Davidsonian)
 - b) Davidsonian
 - c) neo-Davidsonian
 - d) the spatial relations only

Questions after yesterday's lecture

- Some of the "white cats" were black... Why?
- Subsume lambdas from left to right?
 E.g., what do you get after beta-converting

 $\lambda x \lambda y HEY(y,x)@z$

Combinatory Categorial Grammar

- CCG is a lexicalised theory of grammar
 - Many different lexical categories
 - Few grammar rules (based on combinatory logic)
 - Covers complex cases of coordination and long-distance dependencies
- Not just theory, also used in practice
 - OpenCCG (Baldridge, White)
 - CCGbank (Hockenmaier)
 - C&C supertagger and parser (Clark, Curran)
 - Groningen Meaning Bank

Basic Categories

S	sentence
NP	noun phrase
N	noun
PP	prepositional phrase

Note: The category S comes with a feature to distinguish between various sentence mood and verb phrase forms.

Examples: S_{dcl} (declarative sentence)

S_{ng}\NP (present participle)

Functor Categories

The direction of the slash determines where the argument appears: forward slash (/): on its right; backward slash (\): on its left

NP/N	determiner
N/N	adjective
S _{dcl} \NP	verb phrase (declarative mood)
(S _{pt} \NP)/NP	transitive verb (present participle)
$(S_X \setminus NP) \setminus (S_X \setminus NP)$	adverb
(N\N)/NP	preposition (modifying noun)

Example Lexicon

Word Category boy: N everything: NP the: NP/N eats: S_{dcl}\NP eats: (S_{dcl}\NP)/NP quickly: $(S_X \setminus NP) \setminus (S_X \setminus NP)$

Application

Forward >

Backward <

Composition

(Generalised) Forward >B

(Generalised) Backward <B

Crossed Composition

(Generalised) Forward >Bx

(Generalised) Backward <Bx

Type Raising

Forward >T

Backward <T

Substitution

Forward >S

Backward <S

Crossed Substitution

Forward >Sx

Backward **<Sx**

Combinatory Rules of CCG

Forward Application (>)

Backward Application (<)

Forward Composition (>B)

to sell
$$(S_{to}NP)/(S_bNP)$$
 $(S_bNP)/NP$ $>B$ $(S_{to}NP)/NP$

Forward Composition (>B)

Backward Composition (<B)

$$\begin{array}{c|c} \textbf{...} & \textbf{John asked} & \textbf{curiously} \\ & \textbf{S}_{dcl} \setminus \textbf{S}_{ynq} & \textbf{S}_{dcl} \setminus \textbf{S}_{dcl} \\ \hline & \textbf{S}_{dcl} \setminus \textbf{S}_{ynq} & \textbf{S}_{dcl} \cdot \textbf{S}_{dcl} \end{array}$$

Backward Composition (<B)

$$\frac{\text{did}}{(S_{dcl}\backslash NP)/(S_b\backslash NP)} \frac{\text{not}}{(S_{dcl}\backslash NP)/(S_{dcl}\backslash NP)} = \frac{(S_{dcl}\backslash NP)/(S_b\backslash NP)}{(S_{dcl}\backslash NP)/(S_b\backslash NP)}$$

Backward Crossed Composition (<Bx)

$$\frac{\text{did}}{(S_{dcl} \backslash NP)/(S_b \backslash NP)} \frac{\text{not}}{(S_{dcl} \backslash NP) \backslash (S_{dcl} \backslash NP)} = \frac{(S_{dcl} \backslash NP)/(S_b \backslash NP)}{(S_{dcl} \backslash NP)/(S_b \backslash NP)}$$

Backward Crossed Composition (<Bx)

$$\frac{Y/Z}{X/Z}$$
 $\times XY$

CCG rule schemata (1)

Type Raising (>T) and Coordination (<>)

Substitution (S), "parasitic gap"

Which paper did the professor read ... without understanding ...?

$$\frac{Y/Z}{X/Z} (XY)/Z < Sx$$

CCG rule schemata (2)

Bluebird

Starling

Thrush

Raymond Smullyan to mock a mocking bird

CCG parsing

- top-down vs bottom-up
- CYK parsing (John Cocke, Daniel Younger, Tadao Kasami)
- worst case running time: cubic on length of input string (DCG are exponential)

Α	white	rabbit	eats	carrots
0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
	1 - 2	1 - 3	1 - 4	1 - 5
		2 - 3	2 - 4	2 - 5
			3 - 4	3 - 5
				4 - 5

CYK parsing

Α	white	rabbit	eats	carrots
0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
	1 - 2	1 - 3	1 - 4	1 - 5
		2 - 3	2 - 4	2 - 5
			3 - 4	3 - 5
				4 - 5

CYK parsing (S=1)

Α	white	rabbit	eats	carrots
0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
NP/N				
	1 - 2	1 - 3	1 - 4	1 - 5
	N/N			
		2 - 3	2 - 4	2 - 5
		N		
			3 - 4	3 - 5
			(S\NP)/NP	
				4 - 5
CVK parair	NP			
CYK parsir	iy (3	— ı <i>)</i>		

	Α	white	rabbit	eats	carrots
	0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
	NP/N	NP/N			
		1 - 2	1 - 3	1 - 4	1 - 5
		N/N	N		
			2 - 3	2 - 4	2 - 5
			N	fail	
				3 - 4	3 - 5
				(S\NP)/NP	S\NP
					4 - 5
CYK parsing (S=3)					NP
CINP	ai Sii	iy (S	-3)		

	Α	white	rabbit	eats	carrots
	0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
	NP/N	NP/N	NP NP		
		1 - 2	1 - 3	1 - 4	1 - 5
		N/N	N	fail	
			2 - 3	2 - 4	2 - 5
			N	fail	fail
				3 - 4	3 - 5
				(S\NP)/NP	S\NP
					4 - 5
CVV	oroin	\a \C	-21		NP
CYK p	arsin	iy (5	-3)		

	Α	white	rabbit	eats	carrots
	0 - 1	0 - 2	0 - 3 NP	0 - 4	0 - 5
	NP/N	NP/N	NP NP		
		1 - 2	1 - 3	1 - 4	1 - 5
		N/N	N	fail	
			2 - 3	2 - 4	2 - 5
			N	fail	fail
				3 - 4	3 - 5
				(S\NP)/NP	S\NP
					4 - 5
CYK parsing (S=4)					NP
CINP	arsin	ig (5	- 4)		

Α	white	rabbit	eats	carrots
0 - 1	0 - 2	0 - 3	0 - 4	0 - 5
NP/N	NP/N	NP NP	fail	
	1 - 2	1 - 3	1 - 4	1 - 5
	N/N	N	fail	fail
		2 - 3	2 - 4	2 - 5
		N	fail	fail
			3 - 4	3 - 5
			(S\NP)/NP	S\NP
				4 - 5
arein	2 / 2	-1)		NP

CYK parsing (S=4)

Α	white	rabbit	eats	carrots
0 - 1 NP/N	0 - 2 NP/N	0 - 3 NP NP	0 - 4 fail	0 - 5
	1 - 2	1 - 3	1 - 4	1 - 5
	N/N	N	fail	fail
		2 - 3	2 - 4	2 - 5
		N	fail	fail
			3 - 4	3 - 5
			(S\NP)/NP	S\NP
				4 - 5
arein	a (S	-5)		NP

CYK parsing (S=5)

	Α	white	rabbit	eats	carrots
	0 - 1	0 - 2	0 - 3 NP	0 - 4	0 - 5
	NP/N	NP/N	NP NP	faii	S
		1 - 2	1 - 3	1 - 4	1 - 5
		N/N	N	fail	fail
			2 - 3	2 - 4	2 - 5
			N	fail	fail
				3 - 4	3 - 5
				(S\NP)/NP	S\NP
					4 - 5
CYK parsing (S=5)					NP
CYKP	arsin	ig (5	=5)		

Provide CCG analyses

TRUE DESCRIPTIONS

- A white rabbit is eating a carrot.
- A rabbit with a carrot.
- A rabbit is nibbling on a carrot.
- A rabbit holding a carrot in its mouth.
- A carrot is being eaten by a rabbit.

FALSE DESCRIPTIONS

- A rabbit without a carrot.
- A brown rabbit is eating an orange carrot.
- Two rabbits are sharing a carrot.
- A carrot is holding a white rabbit.
- A rabbit with orange flowers.

Category	Partial DRS	Example
N	λx DOG(x)	dog
NP/N	λρλq∃x[(p@x)&(q@x)]	а
S\NP	λp(p@λyBARK(y))	barked

CCG: lexical semantics

Application (> and <)

Y: ψ X\Y: φ < X: (φ@ψ)

Application (> and <)

Composition (>B and <B)

X/Y: ϕ Y/Z: ψ >B X/Z: $\lambda x.(\phi@(\psi@x))$

Composition (>B and <B)

```
NP/N: a N: dog S\NP: barked

λρ λq ∃x[(p@x)&(q@x)] λz DOG(z)

------>

NP: a dog

λq ∃x[(λz DOG(z)@x)&(q@x)]

------<

S: a dog barked
```

```
NP/N: a N: dog S\NP: barked

λρ λq ∃x[(p@x)&(q@x)] λz DOG(z)

------>

NP: a dog

λq ∃x[(λz DOG(z)@x)&(q@x)]

------<

S: a dog barked
```

```
NP/N: a N: dog S\NP: barked

λρ λq ∃x[(p@x)&(q@x)] λz DOG(z)

------>

NP: a dog

λq ∃x[DOG(x)&(q@x)]

-------<

S: a dog barked
```

Boxer demo

DirectPoll!

Computational Semantics Quiz

- 1. What event semantics representation does Boxer use?
 - a) Davidsonian
 - b) neo-Davidsonian
 - c) Hobbsian
- 2. (λxWALK(x)@vincent) is
 - a) a funny email address
 - b) a well-formed lambda-expression
 - c) a first-order formula
- 3. The expression $(\lambda x LOVES(x,x)@vincent)$
 - a) can be reduced to LOVES(vincent, vincent)
 - b) can be reduced to LOVES(vincent,x)
 - c) cannot be reduced

Exercise 2

- Look at the natural language statements associated with the images in GRIM
- Pick a frequently occurring verb that is not in the lexicon already
- Specify the lexical semantics of this verb in
 - a) no events (pre-Davidsonian)
 - b) Davidsonian
 - c) neo-Davidsonian
 - d) the spatial relations only

Planet Semantics

Planet Semantics

Proof-Theoretical Semantics

Computational Semantics

- Day 1: Exploring Models
- Day 2: Meaning Representations
- Day 3: Computing Meanings with DCG
- Day 4: Computing Meanings with CCG
- Day 5: Drawing Inferences and Meaning Banking

