COMPUTATIONAL
SEMANTICS: DAY 3

Johan Bos

University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics

Day 1: Exploring Models

Day 2: Meaning Representations
Day 3: Computing Meanings
Day 4: Drawing Inferences

Day 5. Meaning Banking

Questions after yesterday’s lecture

- Quantifier scope
- The | function

Questions: Quantifier Scope

- |s there a difference between
Vxdy LOVE(x,y) and dyVx LOVE(x,y) ?

The satisfaction definition

Mg R(ri, -, m) iff (IH(7),-, T4(r) € F(R),
M,gEmn=m iff 13(m) = I(7),

M, g E —¢ iff not M, g |= o,

M,g = (o ANY) iff M,gFE ¢ and M,g =,

Mg (¢ V) iff M,gF¢ or M,g 1,

M.g = (¢ =) iff notM,g ¢ or M,g =1,

M, g = 3xo iff M,q = ¢, for some x-variant ¢’ of g,
M, g = Vxo iff M,q" = ¢, forall x-variants ¢’ of g.

(1) is F(c) if the term 7 is a constant c, and g(x) if T is a variable x.

Questions: 19-

- The horrible I3 (can’t even typeset it properly in ppt)
- This is a function from terms to entities in the domain
- Recall that terms can be variables or contants

- So basically this function catches two birds with one
stone:

Suppose tis a term.
If t is a variable, then

we use the assignment function g: I(t)=g(t)
If t is a constant, then

we use the interpretation function F: [(t)=F(t)

Analysis Pipeline

Semantic

d text

/se

token
parts of speech

ﬁ%ﬁj
b _mmm m.mﬁ:m
m:m L :_.%MM
3l m:_ m_rm:m_
Emm.m &m_ i Az”_ Eaip { _.u “
i MMMTM_ il
z_u m mm WMM wmm“nm.»nmrmmmm
MT Wh a.mm: - m i

tii: m~mw= u‘.nu

mm_mmmmmm
um.wwmmmmwnu M
iR wu_un_)
LRI

L EH m”

ammm i

! 2 L.w .m e

< WW éﬁ%mm

il

um.ﬁm 3 _: mmﬁ:mmmu w;

ofmaucm‘rmymm

-nl
:‘..
v
0
FOUR

r. i :.
it mmmmmmm

C structure

semantic representation

syntacti

Natural Language Descriptions

TRUE DESCRIPTIONS
- A white rabbit is eating a carrot.
- A rabbit with a carrot.
- A rabbit is nibbling on a carrot.
- Arabbit holding a carrot in its mouth.
- A carrot is being eaten by a rabbit.

FALSE DESCRIPTIONS
- A rabbit without a carrot.
- A brown rabbit is eating an orange carrot.
- Two rabbits are sharing a carrot.
- A carrot is holding a white rabbit.
- A rabbit with orange flowers.

Natural Language Descriptions

TRUE DESCRIPTIONS

FALSE DESCRIPTIONS

Natural Language Descriptions

TRUE DESCRIPTIONS

FALSE DESCRIPTIONS

Description guidelines

- Try to include at least two entities in your description

- Only describe the situation, not what is around it
l.e., not “a girl is looking into a camera”

- Don’t use relative positional information
l.e., not “a cat is standing left of a dog”

S
Goal

- Build first-order meaning representations from natural
language descriptions, using the vocabulary of non-logical
symbols used in the models

- We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way

of constructing meaning representation

S
Goal

- Build first-order meaning representations from natural
language descriptions, using the vocabulary of non-logical
symbols used in the models

- We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way
of constructing meaning representation

- Note:
recent attempts with neural networks skip syntactic
analysis entirely!

S
Goal

- Build first-order meaning representations from natural
language descriptions, using the vocabulary of non-logical
symbols used in the models

- We assume that we need syntax to give structure to the
descriptions, providing us means for a compositional way

of constructing meaning representation
- We will have a closer look at two grammar formalisms:

- phrase structure grammar (DCG)
- combinatory categorial grammar (CCG) TOMORROW

Definite Clause Grammars (Prolog)

S --> np, vp.
np --> det, n.
vp --> tv, np.
vp --> 1v.

vp --> av, vp.

det --> [a]. det --> [the]. det --> [every].
np --> [someone]. np --> [somebody].

av --> [1s]. av --> [are].

n --> [cat]. n --> [dog].

tv --> [eats]. tv --> [eating].

Adding constraints

- aspectual features (VP):
- prp (present participle)
- pap (past participle)
- inf (infinitival)
- pss (passive)
- mood features (S):
- dcl (declarative)
- int (interrogative)
- agreement features (NP):
- sg (singular)
- pl (plural)

Definite Clause Grammars with Features

S --> np, vp.

np --> det, n.

vp([F]) --> tv([F]), np.
vp([F]) --> iv([F]).
vp([M]) --> av([M,A]), vp([A]).

det --> [a]. det --> [the]. det --> [every].

np --> [someone]. np --> [somebody].
av([dcl,prp]) --> [is]. av([dcl,prp]) --> [are].
n --> [cat]. n --> [dog].

tv([dcl]) --> [eats]. tv([prp]) --> [eating].

Eliminating left-recursive rules

DCG can’t handle left-recursive grammars
(because of Prolog’s top-down search strategy it risks

to go in an infinite loop)

The simple cases of left recursion (direct left recursion)
can be eliminated from a DCG

These cases are of the form (X is a non-terminal, Y and Z
are terminal or non-terminal categories):

X --> X, Y. X --> 27, X°.
X --> Z. X -->1].
X -->Y, X’.

left-recursive DCG schema
left-recursion eliminated by

introducing new category and
empty production

Example: italian

np --> det, n.
n -->n, adj.
n --> adj, n.

det --> [una].
n --> [casa].
adj --> [bella].

det --> [la].
n --> [cosa].
adj --> [nuova].

S
Provide DCG analyses

TRUE DESCRIPTIONS
- A white rabbit is eating a carrot.
- A rabbit with a carrot.
- A rabbit is nibbling on a carrot.
- Arabbit holding a carrot in its mouth.
- A carrot is being eaten by a rabbit.

FALSE DESCRIPTIONS
- A rabbit without a carrot.
- A brown rabbit is eating an orange carrot.
- Two rabbits are sharing a carrot.
- A carrot is holding a white rabbit.
- A rabbit with orange flowers.

— —_——

YOU GETA jr NOT SURE IT IS
PARSER A PARSER |
FOR FREE WANT TO USE

WITH

PROLOG!

Non-logical symbols

- Concepts (WordNet)
- Relations (spatial relations only)

partof -> s_part_of
fouch -> s_touch
near -> s_near
support -> s_support

- Inferences
- supportimplies touch
- nearimplies not fouch and not part of
- fouch implies not part of

The big question

- How can we associate a natural language description
like “every cat is drinking milk” with its first-order
translation:

Vx[n_cat_1(x) > Ay [n_milk_1(y) & s_near(x,y)]]?

- Moreover: how can we do this in a systematic way?
We want to make our method scalable to other kinds of
natural language expressions, mcludmg those that we
have never seen before!

Another example

Someone is holding a melon.

dx [n_person_1(x) &
dy [n_melon_2(y) &
1z [n_hand_1(z) &
s_part_of(z,x) &
s_supports(z,y)]]]

Next

- We will have a look at DCG the again
- But now we will specify the lexical semantics
- And we show how composition works
- But first, more about compositionality

Compositionality

- We assume that the meaning representation of a
sentence is composed out of the (partial) meaning
representations of its parts (i.e., the words)

- This principle is known as compositionality, often
misattributed to Frege [Janssen 2012]

Frege

Compositionality

- We assume that the meaning representation of a
sentence is composed out of the (partial) meaning
representations of its parts (i.e., the words)

- This principle is known as compositionality, often
misattributed to Frege [Janssen 2012]

Frege Carnap

Compositionality

- Generally speaking, the motivation for compositionality
IS not for principled, but for practical reasons

- This follows an old wisdom, often attributed to Julius
Caesar, but probably from Philippus of Macedonia
(father of Alexander the Great): compositionality
implements the rule divide et impera [Janssen 2012]

Caesar Philippus

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = ...
‘cat” = ...

‘is” = ...
“drinking” = ...

"milk™ = ...

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = ...

“cat” = CAT(x)

“is” = ...

“drinking” = NEAR(X,y)

“milk” = MILK(y)

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = Vx [..(X) > ...(x)]
“cat” = CAT(x)

‘is” = ...

“drinking” = NEAR(X,Y)

“milk” = MILK(y)

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = Vx[...(X) > ...(X)]
“cat” = CAT(x)

“is” = nothing?

“drinking” = NEAR(X,Y)
“‘milk” = MILK(y)

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > dy [MILK(y) & NEAR(x,y)]]

‘every” = Vx[...(X) > ...(X)]
“cat” = CAT(x)

“is” = nothing?

“drinking” = NEAR(X,Y)
“‘milk” = MILK(y)

Decomposing

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = Vx [...X) > ...(X)]
“cat” = CAT(x)

“is” = nothing?

“drinking” = NEAR(X,y)
“milk” = Jy [MILK(y) & ...(y)]

What do we observe?

- Open spaces for formulas (the ...),
sometimes more than one!

- Variables need to be correctly bound,
sometimes more than one!

- Some lexical items seem to have no
“semantic contribution”

Partial formulas

We will add a couple of new operators to describe partial
formulas:

A @

- The lambda operator A signals missing information
The lambda binds variables (like the quantifiers) and is placed in
front of a formula (like the quantifiers)

- The application operator @ indicates that two pieces of information
need to be combined

Adding lambdas and applications

“every cat is drinking milk” =
VX[CAT(x) > Iy [MILK(y) & NEAR(x,y)]]

‘every” = ApAqVXx [(p@x) > (9@X)]
cat” =~ Ax CAT(x)

“is” =~ Nf f

“drinking” = Ay Ax NEAR(x,Y)

‘milk” = Apdy [MILK(y) & (p@y)]

13

Higher order logic

- lambda-bound variables can also range over non-
entities (i.e. properties and formulas)

- this means that we have left the (relatively safe) domain
of first-order logic

- we will use the lambdas purely as a device to construct
formulas from smaller parts

- it will provide us a way to control free and bound
variables

With a little help of syntactic structure

- Syntax (DCG, CCG, or something else) helps us to
find out what combines with what

- Consider the following (simplified) DCG

S =2 np vp det = [every]
np - detn n - [cat]

np -2 n n =2 [milk]

vp =2 tv np av -2 [is]

Vp =2 av vp tv = [drinking]

- Next step: add semantics

The semantics in the lexicon

det [sem: ApAgVX[(p@X) = (q@X)]] =2 [every]
n [sem: Ax CAT(x)]-=> [cat]

n [sem: AX MILK(x)]=> [milK]

av [sem: Af f]> [is]

tv [sem: AxAy NEAR(x,y)]> [drinking]

The semantics in the rules

s[sem: (X@Y)] = np[sem:X] vp[sem:Y]
np[sem: (X@QY)]=> det[sem:X] n[sem:Y]

np
vp
vp

'sem: AIX(Y@x)]2 n[sem:Y]
'sem: AXX(Y@(X@x))]=2 tv[sem:X] np[sem:Y]

'sem: (X@QY)]~2> av[sem:X] vp[sem:Y]

One picture says more than a thousand
words variables

Butch on his chopper

np = det. n

np

det n

“eve ry” “Cat”

S
np:l[ep@w] = det:p n:y

np:[APAQVX[(p@x) > (a@X)] @ Ay CAT(y)]

det: APAQVX[(p@x) > (q@x)] n: Ay CAT(y)

eve ry “Cat”

[3-conversion

- Consider the application: (Axe@u)
- Here the functoris: Ax@
- And the argumentis: y

- The process of replacing every free occurrence of x in ¢
by y is called
B-conversion
(or B-reduction, or A-conversion)

S
np:l[ep@w] = det:p n:y

np:AQVx[(Ay CAT(y)@x) > (9@x)]

det: APAQVX[(p@x) > (q@x)] n: Ay CAT(y)

eve r-y “Cat”

S
np:l[ep@w] = det:p n:y

np: AQVX[CAT(x) = (q@x)]

det: APAQVX[(p@x) > (q@x)] n: Ay CAT(y)

eve r-y “Cat”

Demo

- ~/doc/tea/ComputationalSemantics % cat esslligrammar.pl
- ~/doc/tea/ComputationalSemantics % cat lexicon.pl
- ~/doc/tea/ComputationalSemantics % cat semdcg.pl

- [semdcg], s(Sem,[a,man,rides,a,bicycle],[]).

Exercise 1

- Not only sentences, also noun phrases.

Exercise 2

- Look at the natural language statements associated with
the images in GRIM

- Pick a frequently occurring verb that is not in the lexicon
already

- Specify the lexical semantics of this verb in

a) no events (pre-Davidsonian)
b) Davidsonian

c) neo-Davidsonian

d) the spatial relations only

' npatural Sema_nu\,
language Parsing

* statemen:%

Model
Extraction

meaning

Planet Semantics

Models

Proofs

Planet Semantics

studies relation between
meanings and situations

Model-Theoretic
Semantics

Proof-Theoretic
Semantics

studies relation between
natural language and meanings studies relation between

meanings and meanings

Proof-Theoretical Semantics

Models

)Jiscourse
emantics

Proofs

Deductive
Inference

Abductive
Inductive Inference Inference

Bt —n-
Computational Semantics

- Day 1: Exploring Models

- Day 2: Meaning Representations

- Day 3: Computing Meanings with DCG

- Day 4: Computing Meanings with CCG

- Day 5: Drawing Inferences and Meaning Banking

