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Computational Semantics 
• Day 1: Exploring Models 
• Day 2: Meaning Representations 
• Day 3: Computing Meanings 
• Day 4: Drawing Inferences 
• Day 5: Meaning Banking 



Questions after yesterday’s lecture 
• Quantifier scope 
•  The I function 



Questions: Quantifier Scope 

•  Is there a difference between  
∀x∃y LOVE(x,y) and ∃y∀x LOVE(x,y)  ? 



The satisfaction definition 



Questions: IgF 

•  The horrible IgF         (can’t even typeset it properly in ppt) 

•  This is a function from terms to entities in the domain 
• Recall that terms can be variables or contants 
• So basically this function catches two birds with one 

stone: 
 
Suppose t is a term.  
If t is a variable, then  
    we use the assignment function g: I(t)=g(t) 
If t is a constant, then 
    we use the interpretation function F: I(t)=F(t)   



segmentation 

POS-tagging 

syntactic structure 

Semantic Analysis Pipeline 

morphological parsing 

syntactic parsing 

semantic parsing 

inference 

parts of speech 

tokenised text 

semantic representation 



Natural Language Descriptions 
  TRUE DESCRIPTIONS 
•  A white rabbit is eating a carrot. 
•  A rabbit with a carrot. 
•  A rabbit is nibbling on a carrot. 
•  A rabbit holding a carrot in its mouth. 
•  A carrot is being eaten by a rabbit. 

 
  FALSE DESCRIPTIONS 
•  A rabbit without a carrot. 
•  A brown rabbit is eating an orange carrot. 
•  Two rabbits are sharing a carrot. 
•  A carrot is holding a white rabbit. 
•  A rabbit with orange flowers. 



Natural Language Descriptions 
  TRUE DESCRIPTIONS 
•  ................ 
•  ................ 

  FALSE DESCRIPTIONS 
•  ................. 
•  ................. 



Natural Language Descriptions 
  TRUE DESCRIPTIONS 
•  ................ 
•  ................ 

  FALSE DESCRIPTIONS 
•  ................. 
•  ................. 



Description guidelines 
•  Try to include at least two entities in your description 
• Only describe the situation, not what is around it 

i.e., not “a girl is looking into a camera” 
• Don’t use relative positional information 

i.e., not “a cat is standing left of a dog” 
 



Goal 
• Build first-order meaning representations from natural 

language descriptions, using the vocabulary of non-logical 
symbols used in the models 

• We assume that we need syntax to give structure to the 
descriptions, providing us means for a compositional way 
of constructing meaning representation 



Goal 
• Build first-order meaning representations from natural 

language descriptions, using the vocabulary of non-logical 
symbols used in the models 

• We assume that we need syntax to give structure to the 
descriptions, providing us means for a compositional way 
of constructing meaning representation 

• Note:  
recent attempts with neural networks skip syntactic 
analysis entirely! 



Goal 
• Build first-order meaning representations from natural 

language descriptions, using the vocabulary of non-logical 
symbols used in the models 

• We assume that we need syntax to give structure to the 
descriptions, providing us means for a compositional way 
of constructing meaning representation 

• We will have a closer look at two grammar formalisms: 
•  phrase structure grammar (DCG) 
•  combinatory categorial grammar (CCG)  TOMORROW 



Definite Clause Grammars (Prolog) 
s	
  -­‐-­‐>	
  np,	
  vp.	
  
np	
  -­‐-­‐>	
  det,	
  n.	
  
vp	
  -­‐-­‐>	
  tv,	
  np.	
  
vp	
  -­‐-­‐>	
  iv.	
  
vp	
  -­‐-­‐>	
  av,	
  vp.	
  
	
  
det	
  -­‐-­‐>	
  [a].	
  det	
  -­‐-­‐>	
  [the].	
  det	
  -­‐-­‐>	
  [every].	
  
np	
  -­‐-­‐>	
  [someone].	
  np	
  -­‐-­‐>	
  [somebody].	
  
av	
  -­‐-­‐>	
  [is].	
  av	
  -­‐-­‐>	
  [are].	
  
n	
  -­‐-­‐>	
  [cat].	
  n	
  -­‐-­‐>	
  [dog].	
  
tv	
  -­‐-­‐>	
  [eats].	
  tv	
  -­‐-­‐>	
  [eating].	
  

Ordinary clauses in Prolog! 
Terminals are in square brackets. 

Left-recursive rules not allowed. 



Adding constraints 
•  aspectual features (VP):  

•  prp (present participle) 
•  pap (past participle) 
•  inf (infinitival) 
•  pss (passive) 

• mood features (S):  
•  dcl (declarative) 
•  int (interrogative)  

•  agreement features (NP): 
•  sg (singular) 
•  pl (plural) 



Definite Clause Grammars with Features 
s	
  -­‐-­‐>	
  np,	
  vp.	
  
np	
  -­‐-­‐>	
  det,	
  n.	
  
vp([F])	
  -­‐-­‐>	
  tv([F]),	
  np.	
  
vp([F])	
  -­‐-­‐>	
  iv([F]).	
  
vp([M])	
  -­‐-­‐>	
  av([M,A]),	
  vp([A]).	
  
	
  
det	
  -­‐-­‐>	
  [a].	
  det	
  -­‐-­‐>	
  [the].	
  det	
  -­‐-­‐>	
  [every].	
  
np	
  -­‐-­‐>	
  [someone].	
  np	
  -­‐-­‐>	
  [somebody].	
  
av([dcl,prp])	
  -­‐-­‐>	
  [is].	
  av([dcl,prp])	
  -­‐-­‐>	
  [are].	
  
n	
  -­‐-­‐>	
  [cat].	
  n	
  -­‐-­‐>	
  [dog].	
  
tv([dcl])	
  -­‐-­‐>	
  [eats].	
  tv([prp])	
  -­‐-­‐>	
  [eating].	
  

Here we use lists to be able to add 

more features. Order is important! 



Eliminating left-recursive rules 
• DCG can’t handle left-recursive grammars  

(because of Prolog’s top-down search strategy it risks  
 to go in an infinite loop) 

•  The simple cases of left recursion (direct left recursion) 
can be eliminated from a DCG 

•  These cases are of the form (X is a non-terminal, Y and Z 
are terminal or non-terminal categories): 
 
  X	
  -­‐-­‐>	
  X,	
  Y.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  X	
  -­‐-­‐>	
  Z,	
  X’.	
  
	
  X	
  -­‐-­‐>	
  Z.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  X’	
  -­‐-­‐>	
  [].	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  X’	
  -­‐-­‐>	
  Y,	
  X’.	
  

	
  

 
 
 
 
left-recursive DCG schema 

 
 
 
 
 
left-recursion eliminated by 
introducing new category and 
empty production 



Example: italian 

np	
  -­‐-­‐>	
  det,	
  n.	
  
n	
  -­‐-­‐>	
  n,	
  adj.	
  
n	
  -­‐-­‐>	
  adj,	
  n.	
  
	
  
det	
  -­‐-­‐>	
  [una].	
  	
  	
  det	
  -­‐-­‐>	
  [la].	
  
n	
  -­‐-­‐>	
  [casa].	
  	
  	
  	
  n	
  -­‐-­‐>	
  [cosa].	
  
adj	
  -­‐-­‐>	
  [bella].	
  adj	
  -­‐-­‐>	
  [nuova].	
  



Provide DCG analyses 
  TRUE DESCRIPTIONS 
•  A white rabbit is eating a carrot. 
•  A rabbit with a carrot. 
•  A rabbit is nibbling on a carrot. 
•  A rabbit holding a carrot in its mouth. 
•  A carrot is being eaten by a rabbit. 

 
  FALSE DESCRIPTIONS 
•  A rabbit without a carrot. 
•  A brown rabbit is eating an orange carrot. 
•  Two rabbits are sharing a carrot. 
•  A carrot is holding a white rabbit. 
•  A rabbit with orange flowers. 



YOU GET A  
PARSER  

FOR FREE    
WITH  

PROLOG! 

NOT SURE IT IS 
A PARSER I 

WANT TO USE 



Non-logical symbols 

• Concepts (WordNet) 
• Relations (spatial relations only) 

 
part of       ->  s_part_of 
touch         ->  s_touch 
near           ->  s_near 
support      ->  s_support 
 

•  Inferences 
•  support implies touch 
•  near implies not touch and not part of 
•  touch  implies not part of 



The big question 

• How can we associate a natural language description 
like “every cat is drinking milk” with its first-order 
translation:  
   ∀x[n_cat_1(x) à ∃y [n_milk_1(y) & s_near(x,y)]]? 

• Moreover: how can we do this in a systematic way? 
We want to make our method scalable to other kinds of 
natural language expressions, including those that we 
have never seen before! 



Another example 

Someone is holding a melon. 
 
∃x [n_person_1(x) &  
      ∃y [n_melon_2(y) &  
            ∃z [n_hand_1(z) &  
                  s_part_of(z,x) &  
                  s_supports(z,y)]]] 
 
 
 



Next 

• We will have a look at DCG the again 
• But now we will specify the lexical semantics 
• And we show how composition works 
• But first, more about compositionality 



Compositionality 
• We assume that the meaning representation of a 

sentence is composed out of the (partial) meaning 
representations of its parts (i.e., the words) 

•  This principle is known as compositionality, often 
misattributed to Frege [Janssen 2012] 

Frege 



Compositionality 
• We assume that the meaning representation of a 

sentence is composed out of the (partial) meaning 
representations of its parts (i.e., the words) 

•  This principle is known as compositionality, often 
misattributed to Frege [Janssen 2012] 

Frege Carnap 



Compositionality 

• Generally speaking, the motivation for compositionality 
is not for principled, but for practical reasons 

•  This follows an old wisdom, often attributed to Julius 
Caesar, but probably from Philippus of Macedonia 
(father of Alexander the Great): compositionality 
implements the rule divide et impera [Janssen 2012] 

Caesar Philippus 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ... 
“cat” ≈ ... 
“is” ≈ ... 
“drinking” ≈ ... 
“milk” ≈ ... 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ... 
“cat” ≈ CAT(x) 
“is” ≈ ... 
“drinking” ≈ NEAR(x,y) 
“milk” ≈ MILK(y) 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ∀x [ ...(x) à  ...(x) ]  
“cat” ≈ CAT(x) 
“is” ≈ ... 
“drinking” ≈ NEAR(x,y) 
“milk” ≈ MILK(y) 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ∀x [ ...(x) à  ...(x) ]  
“cat” ≈ CAT(x) 
“is” ≈ nothing? 
“drinking” ≈ NEAR(x,y) 
“milk” ≈ MILK(y) 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ∀x [ ...(x) à  ...(x) ]  
“cat” ≈ CAT(x) 
“is” ≈ nothing? 
“drinking” ≈ NEAR(x,y) 
“milk” ≈ MILK(y) 



Decomposing 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every” ≈ ∀x [ ...(x) à  ...(x) ]  
“cat” ≈ CAT(x) 
“is” ≈ nothing? 
“drinking” ≈ NEAR(x,y) 
“milk” ≈ ∃y [MILK(y) & ...(y) ] 



What do we observe? 

• Open spaces for formulas (the ...), 
sometimes more than one! 

• Variables need to be correctly bound, 
sometimes more than one! 

• Some lexical items seem to have no  
“semantic contribution” 



Partial formulas 
We will add a couple of new operators to describe partial 
formulas:  
 
           λ     @ 
 

•  The lambda operator λ signals missing information 
The lambda binds variables (like the quantifiers) and is placed in 
front of a formula (like the quantifiers) 

•  The application operator @ indicates that two pieces of information 
need to be combined 



Adding lambdas and applications 

“every cat is drinking milk” ≈  
∀x[CAT(x) à ∃y [MILK(y) & NEAR(x,y)]] 

“every”     ≈ λpλq∀x [ (p@x) à (q@x) ]  
“cat”         ≈ λx CAT(x) 
“is”           ≈ λf f 
“drinking” ≈ λy λx NEAR(x,y) 
“milk”       ≈ λp∃y [MILK(y) & (p@y) ] 



Higher order logic 

•  lambda-bound variables can also range over non-
entities (i.e. properties and formulas) 

•  this means that we have left the (relatively safe) domain 
of first-order logic 

• we will use the lambdas purely as a device to construct 
formulas from smaller parts 

•  it will provide us a way to control free and bound 
variables 



With a little help of syntactic structure  

• Syntax (DCG, CCG, or something else) helps us to  
find out what combines with what 

• Consider the following (simplified) DCG 
 
s à np vp                                     det à [every] 
np à det n                                    n à [cat] 
np à n                                          n à [milk] 
vp à tv np                                     av à [is] 
vp à av vp                                    tv à [drinking] 
 

• Next step: add semantics 



The semantics in the lexicon 

det [sem: λpλq∀x[(p@x) à (q@x)]] à [every] 
n [sem: λx CAT(x)]à [cat] 
n [sem: λx MILK(x)]à [milk] 
av [sem: λf f]à [is] 
tv [sem: λxλy NEAR(x,y)]à [drinking] 
 
 



The semantics in the rules 

s[sem: (X@Y)] à np[sem:X] vp[sem:Y] 
np[sem: (X@Y)]à det[sem:X] n[sem:Y] 
np [sem: ∃x(Y@x)]à n[sem:Y] 
vp [sem: λx(Y@(X@x))]à tv[sem:X] np[sem:Y] 
vp [sem: (X@Y)]à av[sem:X] vp[sem:Y] 
 
 



One picture says more than a thousand 
words variables 



Butch on his chopper 



np à det: n 

np 

det n 

“every” “cat” 



np:[φ@ψ] à det:φ n:ψ 

np: 

det: n: 

“every” “cat” 

λpλq∀x[(p@x) à (q@x)] λy CAT(y) 

[λpλq∀x[(p@x) à (q@x)] @ λy CAT(y)] 
 



β-conversion 
• Consider the application: (λxφ@ψ) 

•  Here the functor is:      λxφ 
•  And the argument is:   ψ 

•  The process of  replacing every free occurrence of x in φ 
by ψ is called  
         β-conversion  
         (or β-reduction, or λ-conversion)   

 



np:[φ@ψ] à det:φ n:ψ 

np: 

det: n: 

“every” “cat” 

λpλq∀x[(p@x) à (q@x)] λy CAT(y) 

λq∀x[(λy CAT(y)@x) à (q@x)] 
 



np:[φ@ψ] à det:φ n:ψ 

np: 

det: n: 

“every” “cat” 

λpλq∀x[(p@x) à (q@x)] λy CAT(y) 

λq∀x[CAT(x) à (q@x)] 
 



Demo 
•  ~/doc/tea/ComputationalSemantics % cat esslligrammar.pl 
•  ~/doc/tea/ComputationalSemantics % cat lexicon.pl 
•  ~/doc/tea/ComputationalSemantics % cat semdcg.pl 

•  [semdcg], s(Sem,[a,man,rides,a,bicycle],[]). 



Exercise 1 
• Not only sentences, also noun phrases. 



Exercise 2 
•  Look at the natural language statements associated with 

the images in GRIM 
• Pick a frequently occurring verb that is not in the lexicon 

already 
• Specify the lexical semantics of this verb in 

 
a) no events (pre-Davidsonian) 
b) Davidsonian 
c) neo-Davidsonian 
d) the spatial relations only 



The Big Picture 
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Planet Semantics 

Proofs 

Models 

Representations 



Planet Semantics 

Proof-Theoretic 
Semantics 

Model-Theoretic 
Semantics 

Representation of  
Semantics 

studies relation between  
natural language and meanings studies relation between  

meanings and meanings 

studies relation between  
meanings and situations 



Proof-Theoretical Semantics 

Proofs 

Models 

Lexical  
Semantics 
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Abductive 
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Deductive 
Inference 



Computational Semantics 
• Day 1: Exploring Models 
• Day 2: Meaning Representations 
• Day 3: Computing Meanings with DCG 
• Day 4: Computing Meanings with CCG 
• Day 5: Drawing Inferences and Meaning Banking 


