The Distributed Ontology, Model and Specification Language (DOL)
Day 2: Basic Structuring with DOL

Oliver Kutz1
Till Mossakowski2

1Free University of Bozen-Bolzano, Italy
2University of Magdeburg, Germany

Tutorial at ESSLLI 2016, Bozen-Bolzano, August 15 – 19
Summary of Day 1

On Day 1 we have:

- Explored the motivation behind DOL looking at several use-cases from ontology engineering
- Introduced the basic ideas and features of DOL
- Introduced some logics we will use during the week
- Introduced the tools to be used: Ontohub and HETS
We will focus today on discussing in parallel use cases for all three logics and giving DOL syntax and semantics for:

- intended consequences (competency questions)
- model finding and refutation of lemmas
- extensions and conservative extensions
- signature morphisms and the satisfaction condition
- refinements / theory interpretations
Intended Consequences

The Law Of Unintended Consequences
Logical Consequence in Prop, FOL and OWL

Logic deals with what follows from what.

J.A. Robinson: Logic, Form and Function.

Logical consequence = Satisfaction in a model is preserved:

\[\varphi_1, \ldots, \varphi_n \models \psi \]

All models of the premises \(\varphi_1, \ldots, \varphi_n \) are models of the conclusion \(\psi \).

Formally: \(M \models \varphi_1 \) and \(\ldots \) and \(M \models \varphi_n \) together imply \(M \models \psi \).

More general form:

\[\Phi \models \psi \quad (\Phi \text{ may be infinite}) \]

\(M \models \varphi \) for all \(\varphi \in \Phi \) implies \(M \models \psi \).
Countermodels in Prop, FOL and OWL

Given a question about logical consequence over Σ-sentences,

$$\Phi \models ? \psi$$

a countermodel is a Σ-model M with

$$M \models \Phi \text{ and } M \not\models \psi$$

A countermodel shows that $\Phi \models ? \psi$ does not hold.
Do you think we should bite?
logic Propositional

spec JohnMary =

 props sunny, weekend, john_tennis, mary_shopping, saturday \%
 declaration of signature

 . sunny /
 weekend => john_tennis \%(when_tennis)\%
 . john_tennis => mary_shopping \%(when_shopping)\%
 . saturday \%(it_is_saturday)\%
 . sunny \%(it_is_sunny)\%
 . mary_shopping \%(mary_goes_shopping)\% \textbf{implied}

end

Full specification at
https://ontohub.org/esslli-2016/Propositional/leisure_structured.dol
A Countermodel

logic Propositional
spec Countermodel =
 props sunny, weekend, john_tennis, mary_shopping,
 saturday %% declaration of signature
 . sunny
 . not weekend
 . not john_tennis
 . not mary_shopping
 . saturday
end

This specification has exactly one model, and hence can be seen as a syntactic description of this model.
Repaired Specification

```prolog
logic Propositional
spec JohnMary =
    props sunny, weekend, john_tennis, mary_shopping, saturday % declaration of signature
    . sunny \ Weekend => john_tennis %(when_tennis)%
    . john_tennis => mary_shopping %(when_shopping)%
    . saturday %(it_is_saturday)%
    . sunny %(it_is_sunny)%
    . saturday => weekend %(sat_weekend)%
    . mary_shopping %(mary_goes_shopping)% %implied
end
```
Intended Consequences in FOL

```
logic CASL.FOL=
spec BooleanAlgebra =
  sort Elem
  ops 0,1 : Elem;
    __ cap __ : Elem * Elem -> Elem, assoc, comm, unit 1;
    __ cup __ : Elem * Elem -> Elem, assoc, comm, unit 0;
  forall x,y,z:Elem
    . x cap (x cup y) = x  %(absorption_def1)%
    . x cup (x cap y) = x  %(absorption_def2)%
    . x cap 0 = 0  %(zeroAndCap)%
    . x cup 1 = 1  %(oneAndCup)%
    . x cap (y cup z) = (x cap y) cup (x cap z)  %distr1_BooleanAlgebra%
    . x cup (y cap z) = (x cup y) cap (x cup z)  %distr2_BooleanAlgebra%
    . exists x' : Elem . x cup x' = 1 /\ x cap x' = 0  %inverse_BooleanAlgebra%
    . x cup x = x  %(idem_cup)  %implied
    . x cap x = x  %(idem_cap)  %implied
end
```

https://ontohub.org/esslli-2016/FOL/OrderTheory_structured.dol
Intended Consequences in OWL

logic OWL

ontology Family1 =

Class: Person

Class: Woman SubClassOf: Person

ObjectProperty: hasChild

Class: Mother

EquivalentTo: Woman and hasChild some Person

Individual: mary Types: Woman Facts: hasChild john

Individual: john

Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean

Mother

end

https://ontohub.org/esslli-2016/OWL/Family_structured.dol
A Countermodel


```owl
logic OWL

ontology Family2 =

  Class: Person

  Class: Woman SubClassOf: Person

  ObjectProperty: hasChild

  Class: Mother

  EquivalentTo: Woman and hasChild some Person

Individual: mary Types: Woman Facts: hasChild john

Individual: john Types: Person

Individual: mary

  Types: Annotations: Implied "true"^^xsd:boolean

Mother

end
```
Extensions
Structuring Using Extensions

logic Propositional

spec JohnMary_TBox = **general rules**

props sunny, weekend, john_tennis, mary_shopping, saturday **declaration of signature**

. sunny \ weekday => john_tennis **when_tennis**
. john_tennis => mary_shopping **when_shopping**
. saturday => weekend **sat_weekend**

end

spec JohnMary_ABox = **specific facts**

JohnMary_TBox **then**

. saturday **it_is_saturday**
. sunny **it_is_sunny**
. mary_shopping **mary_goes_shopping** **implied**

end
logic Propositional
spec JohnMary_variant =
 props sunny, weekend, john_tennis, mary_shopping, saturday % declaration of signature
 . sunny \ weekend => john_tennis %when_tennis%
 . john_tennis => mary_shopping %when_shopping%
 . saturday => weekend %sat_weekend%

then
 . saturday %it_is_saturday%
 . sunny %it_is_sunny%

then %implies
 . mary_shopping %mary_goes_shopping%

end
Implied Extensions in OWL

```owl
ontology Family1 =
    Class: Person
    Class: Woman SubClassOf: Person
    ObjectProperty: hasChild
    Class: Mother
        EquivalentTo: Woman and hasChild some Person
    Individual: john Types: Person
    Individual: mary Types: Woman Facts: hasChild john
then %implies
    Individual: mary Types: Mother
end
```
Conservative Extensions in Prop

logic Propositional
spec Animals =
 props bird, penguin, living
 . penguin => bird
 . bird => living
then %cons
 prop animal
 . bird => animal
 . animal => living
end

In the extension, no “new” facts about the “old” signature follow.
A Non-Conservative Extension

```spec
Animals =
  props bird, penguin, living
  . penguin => bird
then % not a conservative extension
  prop animal
  . bird => animal
  . animal => living
end
```

In the extension, “new” facts about the “old” signature follow, namely

 . bird => living
A Conservative Extension in FOL

logic CASL.FOL=
spec PartialOrder =
 sort Elem
 pred __leq__ : Elem * Elem
 . forall x:Elem. x leq x !(refl)%
 . forall x,y:Elem. x leq y \(\lor \) y leq x => x = y !(antisym)%
 . forall x,y,z:Elem. x leq y \(\lor \) y leq z => x leq z
 !(trans)%
end

spec TotalOrder = PartialOrder then
 . forall x,y:Elem. x leq y \(\lor \) y leq x
 !(dichotomy)%
then %cons
 pred __ < __ : Elem * Elem
 . forall x,y:Elem. x < y <=> (x leq y \(\lor \) !x = y)
 !(<-def)%
end
A Conservative Extension in OWL

logic OWL
ontology Animals1 =
 Class: LivingBeing
 Class: Bird SubClassOf: LivingBeing
 Class: Penguin SubClassOf: Bird
then %cons
 Class: Animal SubClassOf: LivingBeing
 Class: Bird SubClassOf: Animal
end
A Nonconservative Extension in OWL

```
logic OWL
ontology Animals2 =
    Class: LivingBeing
    Class: Bird
    Class: Penguin SubClassOf: Bird
then % not a conservative extension
    Class: Animal SubClassOf: LivingBeing
    Class: Bird SubClassOf: Animal
end
```
Signature Morphisms and the Satisfaction Condition
Definition

Given two propositional signatures Σ_1, Σ_2 a signature morphism is a function $\sigma : \Sigma_1 \rightarrow \Sigma_2$. (Note that signatures are sets.)

Definition

A signature morphism $\sigma : \Sigma_1 \rightarrow \Sigma_2$ induces a sentence translation $\text{Sen}(\Sigma_1) \rightarrow \text{Sen}(\Sigma_2)$, by abuse of notation also denoted by σ, defined inductively by

- $\sigma(p) = \sigma(p)$ (the two σs are different...)
- $\sigma(\bot) = \bot$
- $\sigma(\top) = \top$
- $\sigma(\phi_1 \land \phi_2) = \sigma(\phi_1) \land \sigma(\phi_2)$
- etc.
Model reduction in propositional logic

Definition

A signature morphism $\sigma : \Sigma_1 \rightarrow \Sigma_2$ induces a model reduction function

$$_|_\sigma : \text{Mod}(\Sigma_2) \rightarrow \text{Mod}(\Sigma_1).$$

Given $M \in \text{Mod}(\Sigma_2)$ i.e. $M : \Sigma_2 \rightarrow \{T, F\}$, then $M|_\sigma \in \text{Mod}(\Sigma_1)$ is defined as

$$M|_\sigma(p) := M(\sigma(p))$$

for all $p \in \Sigma_1$, i.e.

$$M|_\sigma = M \circ \sigma$$

If $M'|_\sigma = M$, then M' is called a σ-expansion of M.
Theorem (Satisfaction condition)

Given a signature morphism \(\sigma : \Sigma_1 \rightarrow \Sigma_2 \), \(M_2 \in \text{Mod}(\Sigma_2) \) and \(\phi_1 \in \text{Sen}(\Sigma_1) \), then:

\[
M_2 \models_{\Sigma_2} \sigma(\phi_1) \iff M_2|_\sigma \models_{\Sigma_1} \phi_1
\]

(“truth is invariant under change of notation.”)

Proof.

By induction on \(\phi_1 \).
Definition

Given signatures $\Sigma = (S, F, P), \Sigma' = (S', F', P')$ a signature morphism $\sigma : \Sigma \rightarrow \Sigma'$ consists of

- a map $\sigma^S : S \rightarrow S'$
- a map $\sigma^F_{w,s} : F_{w,s} \rightarrow F'_{\sigma^S(w),\sigma^S(s)}$ for each $w \in S^*$ and each $s \in S$
- a map $\sigma^P_w : P_w \rightarrow P'_{\sigma^S(w)}$ for each $w \in S^*$
Model Reduction in FOL

Definition

Given a signature morphism $\sigma : \Sigma \rightarrow \Sigma'$ and a Σ'-model M', define $M = M' \upharpoonright \sigma$ as

- $M_s = M'_{\sigma^S(s)}$
- $f^M_{w,s} = \sigma^F_{w,s}(f)^{M'}_{\sigma^S(w),\sigma^S(s)}$
- $p^M_{w,s} = \sigma^P_{w}(p)^{M'}_{\sigma^S(w)}$
Sentence Translation in FOL

Definition

Given a signature morphism $\sigma : \Sigma \rightarrow \Sigma'$ and $\phi \in \text{Sen}(\Sigma)$ the translation $\sigma(\phi)$ is defined inductively by:

$$
\sigma(f_{w,s}(t_1 \ldots t_n)) = \sigma^F_w \cdot (f_{\sigma(w),\sigma(s)})(\sigma(t_1) \ldots \sigma(t_n))
$$

$$
\sigma(t_1 = t_2) = \sigma(t_1) = \sigma(t_2)
$$

$$
\sigma(p_w(t_1 \ldots t_n)) = \sigma^P_w(p) \cdot \sigma^s_w(\sigma(t_1) \ldots \sigma(t_n))
$$

$$
\sigma(\phi_1 \land \phi_2) = \sigma(\phi_1) \land \sigma(\phi_2) \quad \text{etc.}
$$

$$
\sigma(\forall x : s.\phi) = \forall x : \sigma^S(s) \cdot (\sigma \uplus x)(\phi)
$$

$$
\sigma(\exists x : s.\phi) = \exists x : \sigma^S(s) \cdot (\sigma \uplus x)(\phi)
$$

where $(\sigma \uplus x) : \Sigma \uplus \{x : s\} \rightarrow \Sigma' \uplus \{x : \sigma(s)\}$ acts like σ on Σ and maps $x : s$ to $x : \sigma(s)$.
Definition (Satisfaction of sentences)

\[M \models t_1 = t_2 \text{ iff } M(t_1) = M(t_2) \]
\[M \models p_w(t_1 \ldots t_n) \text{ iff } (M(t_1), \ldots, M(t_n)) \in p_w^M \]
\[M \models \phi_1 \land \phi_2 \text{ iff } M \models \phi_1 \text{ and } M \models \phi_2 \]
\[M \models \forall x : s.\phi \text{ iff for all } \iota\text{-expansions } M' \text{ of } M, M' \models \phi \]
\[\text{where } \iota : \Sigma \leftrightarrow \Sigma \uplus \{x : s\} \text{ is the inclusion.} \]
\[M \models \exists x : s.\phi \text{ iff there is a } \iota\text{-expansion } M' \text{ of } M \text{ such that } M' \models \phi \]
Satisfaction Condition in FOL

Theorem (satisfaction condition)

For a signature morphism $\sigma : \Sigma \rightarrow \Sigma'$, $\phi \in \text{Sen}(\Sigma)$, $M' \in \text{Mod}(\Sigma')$:

$$M'|_\sigma \models \phi \iff M' \models \sigma(\phi)$$

Proof.

For terms, prove $M'|_\sigma(t) = M'(\sigma(t))$. Then use induction on ϕ. For quantifiers, use a bijective correspondence between ι-expansions M_1 of $M'|_\sigma$ and ι'-expansions M'_1 of M'.

$$\begin{array}{cccc}
M'|_\sigma & \Sigma \xrightarrow{\sigma} \Sigma' & \Downarrow \iota & M' \\
M_1 & \Sigma \uplus \{x : s\} \xrightarrow{\sigma \uplus x} \Sigma'_1 & \Downarrow \iota' & M'_1
\end{array}$$
Signature Morphisms in OWL

Definition

Given two DL signatures $\Sigma_1 = (C_1, R_1, I_1)$ and $\Sigma_2 = (C_2, R_2, I_2)$ a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ consists of three functions

- $\sigma^C : C_1 \to C_2$,
- $\sigma^R : R_1 \to R_2$,
- $\sigma^I : I_1 \to I_2$.
Sentence Translation in OWL

Definition

Given a signature morphism $\sigma : \Sigma_1 \rightarrow \Sigma_2$ and a Σ_1-sentence ϕ, the translation $\sigma(\phi)$ is defined by inductively replacing the symbols in ϕ along σ.
Model Reduction in OWL

Definition

Given a signature morphism $\sigma : \Sigma_1 \rightarrow \Sigma_2$ and a Σ_2-model \mathcal{I}_2, the σ-reduct of \mathcal{I}_2 along σ is the Σ_1-model $\mathcal{I}_1 = \mathcal{I}_2|_\sigma$ defined by

- $\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
- $A^{\mathcal{I}_1} = \sigma^C(A)^{\mathcal{I}_2}$, for $A \in \mathcal{C}_1$
- $R^{\mathcal{I}_1} = \sigma^R(R)^{\mathcal{I}_2}$, for $R \in \mathcal{R}_1$
- $a^{\mathcal{I}_1} = \sigma^I(a)^{\mathcal{I}_2}$, for $a \in \mathcal{I}_1$
Theorem (satisfaction condition)

Given $\sigma : \Sigma_1 \rightarrow \Sigma_2$, $\phi_1 \in Sen(\Sigma_1)$ and $I_2 \in Mod(\Sigma_2)$,

$$I_2|_\sigma \models \phi_1 \iff I_2 \models \sigma(\phi_1)$$

Proof.

Let $I_1 = I_2|_\sigma$. Note that I_1 and I_2 share the universe: $\Delta^{I_1} = \Delta^{I_2}$.

First prove by induction over concepts C that

$$C^{I_1} = \sigma(C)^{I_2}.$$

Then the satisfaction condition follows easily.
Theory Morphisms in Prop, FOL, OWL

Definition

A theory morphism $\sigma : (\Sigma_1, \Gamma_1) \rightarrow (\Sigma_2, \Gamma_2)$ is a signature morphism $\sigma : \Sigma_1 \rightarrow \Sigma_2$ such that

for $M \in \text{Mod}(\Sigma_2, \Gamma_2)$, we have $M|_{\sigma} \in \text{Mod}(\Sigma_1, \Gamma_1)$

Extensions are theory morphisms:

(Σ, Γ) then $(\Delta_\Sigma, \Delta_\Gamma)$

leads to the theory morphism

$(\Sigma, \Gamma) \xrightarrow{\iota} (\Sigma \cup \Delta_\Sigma, \iota(\Gamma) \cup \Delta_\Gamma)$

Proof: $M \models \iota(\Gamma) \cup \Delta_\Gamma$ implies $M|_{\iota} \models \Gamma$ by the satisfaction condition.
Interpretations

Rabbit or Duck?
Interpretations (views, refinements)

- **interpretation** name : O_1 to $O_2 = \sigma$
- σ is a signature morphism (if omitted, assumed to be identity)
- expresses that σ is a theory morphism $O_1 \to O_2$

```plaintext
logic CASL.FOL=
spec RichBooleanAlgebra =
  BooleanAlgebra
then %def
  pred __ <= __ : Elem * Elem;
  forall x,y:Elem 
  . x <= y <=> x cap y = x %leq_def%
end
interpretation order_in_BA :
  PartialOrder to RichBooleanAlgebra
end
```
Recall Family Ontology

```
logic OWL
ontology Family2 =
  Class: Person
  Class: Woman SubClassOf: Person
  ObjectProperty: hasChild
  Class: Mother
    EquivalentTo: Woman and hasChild some Person
  Individual: mary Types: Woman Facts: hasChild john
  Individual: john Types: Person
  Individual: mary
    Types: Annotations: Implied "true"^^xsd:boolean
    Mother
end
```
Interpretation in OWL

```
logic OWL

ontology Family_alt =
    Class: Human
    Class: Female
    Class: Woman EquivalentTo: Human and Female
    ObjectProperty: hasChild
    Class: Mother
        EquivalentTo: Female and hasChild some Human

end

interpretation i : Family_alt to Family2 =
    Human |-> Person, Female |-> Woman

end
```
Criterion for Theory Morphisms in Prop, FOL, OWL

Theorem

A signature morphism \(\sigma : \Sigma_1 \rightarrow \Sigma_2 \) is a theory morphism \(\sigma : (\Sigma_1, \Gamma_1) \rightarrow (\Sigma_2, \Gamma_2) \) iff

\[\Gamma_2 \models_{\Sigma_2} \sigma(\Gamma_1) \]

Proof.

By the satisfaction condition.
Implied extensions (in Prop, FOL, OWL)

The extension must not introduce new signature symbols:

$$(\Sigma, \Gamma) \text{ then } (\emptyset, \Delta_{\Gamma})$$

This leads to the theory morphism

$$(\Sigma, \Gamma) \xrightarrow{\lambda} (\Sigma, \Gamma \cup \Delta_{\Gamma})$$

The implied extension is well-formed if

$$\Gamma \models_{\Sigma} \Delta_{\Gamma}$$

That is, implied extensions are about logical consequence.
Conservative Extensions (in Prop, FOL, OWL)

Definition
A theory morphism \(\sigma : T_1 \rightarrow T_2 \) is consequence-theoretically conservative (ccons), if for each \(\phi_1 \in \text{Sen}(\Sigma_1) \)

\[T_2 \models \sigma(\phi_1) \text{ implies } T_1 \models \phi_1. \]

(no “new” facts over the “old” signature)

Definition
A theory morphism \(\sigma : T_1 \rightarrow T_2 \) is model-theoretically conservative (mcons), if for each \(M_1 \in \text{Mod}(T_1) \), there is a \(\sigma \)-expansion

\[M_2 \in \text{Mod}(T_2) \text{ with } (M_2)|_{\sigma} = M_1 \]
A General Theorem

Theorem

In propositional logic, FOL and OWL, if $\sigma : T_1 \rightarrow T_2$ is mcons, then it is also ccons.

Proof.

Assume that $\sigma : T_1 \rightarrow T_2$ is mcons.

Let ϕ_1 be a formula, such that $T_2 \models_{\Sigma_2} \sigma(\phi_1)$.

Let M_1 be a model $M_1 \in \text{Mod}(T_1)$. By assumption there is a model $M_2 \in \text{Mod}(T_2)$ with $M_2|_{\sigma} = M_1$. Since $T_2 \models_{\Sigma_2} \sigma(\phi_1)$, we have $M_2 \models \sigma(\phi_1)$. By the satisfaction condition $M_2|_{\sigma} \models_{\Sigma_1} \phi_1$. Hence $M_1 \models \phi_1$. Altogether $T_1 \models_{\Sigma_1} \phi_1$.

Some prerequisites

Theorem (Compactness theorem for propositional logic)

If \(\Gamma \models_{\Sigma} \phi \), then \(\Gamma' \models_{\Sigma} \phi \) for some finite \(\Gamma' \subseteq \Gamma \)

Proof.

Logical consequence \(\models_{\Sigma} \) can be captured by provability \(\vdash_{\Sigma} \). Proofs are finite.

Definition

Given a model \(M \in \text{Mod}(\Sigma) \), its **theory** \(\text{Th}(M) \) is defined by

\[
\text{Th}(M) = \{ \varphi \in \text{Sen}(\Sigma) \mid M \models_{\Sigma} \varphi \} \]
Theorem

In propositional logic, if $\sigma : T_1 \rightarrow T_2$ is ccons, then it is also mcons.

Proof.

Assume that $\sigma : T_1 \rightarrow T_2$ is ccons. Let M_1 be a model $M_1 \in \text{Mod}(T_1)$. Assume that M_1 has no σ-expansion to a T_2-model. This means that $T_2 \cup \sigma(\text{Th}(M_1)) \models \bot$. Hence by compactness we have $T_2 \cup \sigma(\Gamma) \models \bot$ for a finite $\Gamma \subseteq \text{Th}(M_1)$. Let $\Gamma = \{\phi_1, \ldots, \phi_n\}$.

Thus $T_2 \cup \sigma(\{\phi_1, \ldots, \phi_n\}) \models \bot$ and hence $T_2 \models \sigma(\phi_1) \land \ldots \land \sigma(\phi_n) \rightarrow \bot$. This means $T_2 \models \sigma(\phi_1 \land \ldots \land \phi_n \rightarrow \bot)$. By assumption $T_1 \models \phi_1 \land \ldots \land \phi_n \rightarrow \bot$. Since $M_1 \in \text{Mod}(T_1)$ and $M_1 \models \phi_i$ ($1 \leq i \leq n$), also $M_1 \models \bot$. Contradiction!
A Counterexample in ALC (ccons, not mcons)

logic OWL.ALC

ontology Service =
 ObjectProperty: provider
 ObjectProperty: input
 ObjectProperty: output
 Class: Webservice SubClassOf: provider some Thing
 and input some Thing and output some Thing

then %ccons
 Class: Array
 Class: Integer DisjointWith: Array
 Class: Webservice SubClassOf: input some Integer
 and input some Array

end

In OWL.SROIQ, this is not even ccons!
A Counterexample in FOL (ccons, not mcons)

logic CASL.FOL=

spec Weak_Nat =

sort Nat

ops 0:Nat succ: Nat -> Nat pred __<__ : Nat*Nat

forall x,y,z : Nat

. x = 0 \/
exists u:Nat . succ(u) = x
. x < succ(y) <=> (x<y \/
 x = y)
. not (x < 0)
. x < y => not (y < x)
. (x < y \/
 y < z) => (x < z)
. x < y \/
 x = y \/
 y < x

then %ccons

op __ + __ : Nat * Nat -> Nat

forall x,y : Nat

. 0 + y = y
. succ(x) + y = succ(x + y) %(+succ)%
. y < succ(x) + y %(succ_great)% end
Definitional Extensions (in Prop, FOL, OWL)

Definition

A theory morphism $\sigma : T_1 \rightarrow T_2$ is **definitional**, if for each $M_1 \in \text{Mod}(T_1)$, there is a unique σ-expansion

$$M_2 \in \text{Mod}(T_2) \text{ with } (M_2)|_\sigma = M_1$$

logic Propositional

spec Person =

```plaintext
  props person, male, female
then %def
  props man, woman
    . man <=> person \& male
    . woman <=> person \& female
end
```

Kutz, Mossakowski

Distributed Ontology, Model and Specification Language (DOL) 2016-08-16 50
Definitional Extensions: Example in OWL

```
logic OWL
ontology Person =
  Class: Person
  Class: Female
then %def
  Class: Woman EquivalentTo: Person and Female
end
```
Summary of DOL Syntax for Extensions

- **O_1 then %mcons O_2, O_1 then %mcons O_2: model-conservative extension**
 - Each O_1-model has an expansion to O_1 then O_2

- **O_1 then %ccons O_2: consequence-conservative extension**
 - O_1 then $O_2 \models \varphi$ implies $O_1 \models \varphi$, for φ in the language of O_1

- **O_1 then %def O_2: definitional extension**
 - Each O_1-model has a unique expansion to O_1 then O_2

- **O_1 then %implies O_2: implied extension**
 - Like %mcons, but O_2 must not extend the signature
Scaling it to the Web

- OMS can be referenced directly by their URL (or IRI)

 `<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl>`

- Prefixing may be used for abbreviation

 `%prefix(co-ode: <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/>)%
 co-ode:pizza.owl`
Exercise for tomorrow

- If you have not done so already, clone the ESSLLI repository on ontohub.org:

git clone git://ontohub.org/esslli-2016.git
Exercise for tomorrow

- if you not have done so already, clone the ESSLLI repository on ontohub.org:
 git clone git://ontohub.org/esslli-2016.git
- Look at the theories
Exercise for tomorrow

- if you not have done so already, clone the ESSLLI repository on ontohub.org:
 git clone git://ontohub.org/esslli-2016.git
- Look at the theories
- (Dis)prove theorems (both with Hets and on Ontohub.org)
Exercise for tomorrow

- if you not have done so already, clone the ESSLLI repository on ontohub.org:
 `git clone git://ontohub.org/esslli-2016.git`
- Look at the theories
- (Dis)prove theorems (both with Hets and on Ontohub.org)
- Write some theory on your own, add intended consequences and prove them