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Summary of Day 2

On Day 2 we have looked at:

intended consequences (competency questions)
model finding and refutation of lemmas
extensions and conservative extensions
signature morphisms and the satisfaction condition
refinements / theory interpretations
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Today

We will focus today on structured OMS:
Assembling OMS from pieces:
Basic OMS, union, translation
Making a large OMS smaller:
module extraction, approximation, reduction, filtering
Non-monotonic reasoning through employing
a closed-world assumption:
minimization, maximization, freeness, cofreeness
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Assembling OMS from
Pieces
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Unions
O1 and O2: union of two stand-alone OMS

Signatures (and axioms) are united
model classes are intersected
difference to extensions: there, O2 needs to be basic

logic CASL.FOL=
spec Magma =
sort Elem; ops 0:Elem; __+__:Elem*Elem->Elem end

spec CommutativeMagma = Magma then
forall x,y:Elem . x+y=y+x end

spec Monoid = Magma then
forall x,y,z:Elem . x+0=x

. x+(y+z) = (x+y)+z end
spec CommutativeMonoid =
CommutativeMagma and Monoid end
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Competency Questions
Revisited
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Competency Questions – Simplified Summary

Let O be an ontology
Capture requirements for O as pairs of scenarios and
competency questions
For each scenario competency question pair S ,Q:

Formalize S , resulting in theory Γ
Formalize Q, resulting in formula ϕ
Check with theorem prover whether O ∪ Γ |= ϕ

When all proofs are successful, your ontology meets the
requirements.
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Competency Questions Revisited

CQ most successful idea for ontology evaluation
Technically, CQ = proof obligations
Language for expressing proof obligations?
Ad hoc handling of CQs

We asked:
How do we keep track of scenarios and competency questions in
a systematic way?

Answer: The DOL constructs of and (union) and %implies
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Competency Questions Workflow

1 The use cases for the ontology are captured in form of scenarios.
Each scenario describes a possible state of the world and raises a
set of competency questions. The answers to these competency
questions should follow logically from the scenario – provided the
knowledge that is supposed to be represented in the ontology.

2 A scenario and its competency questions are formalized or an
existing formalization is refined.

3 The ontology is (further) developed.
4 An automatic theorem prover is used to check whether the

competency questions logically follow from the scenario and the
ontology.

5 Steps (2-4) are repeated until all competency questions can be
proven from the combination of the ontology and their
respective scenarios.
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CQ Example: Family Relations

Ontohub enables the representation and execution of competency
questions with the help of DOL files.

The use case is to enable semantically enhanced searches for a
database, which contains names of people, their gender, and
information about parenthood. Assuming the database contains the
following information:

Amy is female and a parent of Berta and Chris.
Berta is female.
Chris is male and a parent of Dora.
Dora is female.
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CQ Example: Family Relations (continued)

In this case the system should be able to answer the following
questions:

Is Chris a father? (expected: yes)
Is Dora a child of Chris (expected: yes)
Is Chris female? (expected: no)
Is Amy older than Dora? (expected: yes)
Is Berta older than Chris (expected: unknown)
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CQ Example: Input Ontology
The ontology just discussed could be represented as follows.
logic OWL

ontology genealogy =
Class: Male
Class: Female

ObjectProperty: parent_of
Characteristics: Irreflexive, Asymmetric
SubPropertyOf: older_than

Class: Father
EquivalentTo: parent_of some owl:Thing and Male

ObjectProperty: child_of
InverseOf: parent_of

DisjointClasses: Male, Female

ObjectProperty: older_than
Characteristics: Transitive

end
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CQ Example: Scenario Formalisation

ontology scenario =
Class: Male
Class: Female
ObjectProperty: parent_of

Individual: Amy
Types: Female
Facts: parent_of Berta
Facts: parent_of Chris

Individual: Berta
Types: Female

Individual: Chris
Types: Male
Facts: parent_of Dora

Individual: Dora
Types: Female

end
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CQ Example: Competency Questions Formalisation
ontology CCbase = genealogy and scenario
%% Is Chris a father? (expected: yes)
ontology CC1 = CCbase then %implies
{ Individual: Chris
Types: Father }

%% Is Dora a child of Chris (expected: yes)
ontology CC2 = CCbase then %implies
{ Individual: Dora
Facts: child_of Chris }

%% Is Chris female? (expected: no)
%% reformulated: Is Chris not female? (expected: yes)
ontology CC3 = CCbase then %implies
{ Individual: Chris
Types: not Female }

%% Is Amy older than Dora? (expected: yes)
ontology CC4 = CCbase then %implies
{ Individual: Amy
Facts: older_than Dora }

%% Is Berta older than Chris (expected: unknown)
ontology CC5 = CCbase then %satisfiable
{ Individual: Berta
Facts: older_than Chris }
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CQ approach applied to machine diagnosis

Suppose the engine of a car does not perform properly. We want to
decide whether we should

repair the engine,
replace the engine, or
replace auxiliary equipment.
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Some Rules for Machine Diagnosis

The following facts relate symptoms to diagnoses:
(i) If the engine overheats and the ignition is correct, then the

radiator is clogged.
(ii) If the engine emits a pinging sound under load and the ignition

timing is correct, then the cylinders have carbon deposits.
(iii) If power output is low and the ignition timing is correct, then

the piston rings are worn, or the carburetor is defective, or the
air filter is clogged.

(iv) If the exhaust fumes are black, then the carburetor is defective,
or the air filter is clogged.

(v) If the exhaust fumes are blue, then the piston rings are worn, or
the valve seals are worn.

(vi) The compression is low if and only if the piston rings are worn.
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Some Rules for Machine Diagnosis

The following facts relate diagnoses to repair decisions:
(i) If the piston rings are worn, then the engine should be replaced.
(ii) If carbon deposits are present in the cylinders or the carburetor

is defective or valve seals are worn, then the engine should be
repaired.

(iii) If the air filter or radiator is clogged, then that equipment
should be replaced.
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Machine Diagnosis: Input Specification

logic Propositional

%% possible symptoms of an engine that is malfunctioning
spec EngineSymptoms =
props black_exhaust, blue_exhaust, low_power, overheat,

ping, incorrect_timing, low_compression
end

%% diagnosis derived from symptoms
spec EngineDiagnosis = EngineSymptoms then %cons
props carbon_deposits, clogged_filter, clogged_radiator,

defective_carburetor, worn_rings, worn_seals
. overheat /\ not incorrect_timing => clogged_radiator %(diagnosis1)%
. ping /\ not incorrect_timing => carbon_deposits %(diagnosis2)%
. low_power /\ not incorrect_timing =>

worn_rings \/ defective_carburetor \/ clogged_filter
%(diagnosis3)%

. black_exhaust => defective_carburetor \/ clogged_filter %(diagnosis4)%

. blue_exhaust => worn_rings \/ worn_seals %(diagnosis5)%

. low_compression <=> worn_rings %(diagnosis6)%
end
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Machine Diagnosis: Input Specification (cont’d)

%% needed repair, derived from diagnosis
spec EngineRepair = EngineDiagnosis
then %cons
props replace_auxiliary,

repair_engine,
replace_engine

. worn_rings => replace_engine %(rule_replace_engine)%

. carbon_deposits \/ defective_carburetor \/ worn_seals => repair_engine
%(rule_repair_engine)%

. clogged_filter \/ clogged_radiator => replace_auxiliary
%(rule_replace_auxiliary)%

end
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Machine Diagnosis: Scenario Formalisation

Suppose the car owner complains that the engine overheats. Due to
a recent engine check, it is known that the ignition timing is correct.
What should be done to eliminate the problem?

spec MyObservedSymptoms =
EngineSymptoms

then
. overheat %(symptom_overheat)%
. not incorrect_timing %(symptom_not_incorrect_timing)%

end
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Diagnosis Question Formalisation

spec MyRepair =
EngineRepair and MyObservedSymptoms

end

spec Repair =
prop repair
. repair

end

interpretation repair1 : Repair to MyRepair = %cons
repair |-> replace_engine end

interpretation repair2 : Repair to MyRepair = %cons
repair |-> repair_engine end

interpretation repair3 : Repair to MyRepair = %cons
repair |-> replace_auxiliary end

%% only repair3 is a valid interpretation. That is, ’replace_auxiliary’
%% is the required action
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Translations
A translation O with σ renames O along σ

σ is a signature morphism
in practice, σ is a symbol map, from which one can compute a
signature morphism

ontology BankOntology =
Class: Bank Class: Account ... end

ontology RiverOntology =
Class: River Class: Bank ... end

ontology Combined =
BankOntology with Bank |-> FinancialBank
and
RiverOntology with Bank |-> RiverBank
%% necessary disambiguation when uniting OMS

end
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Making large OMS smaller
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Making a large OMS smaller

General problem:
you have an OMS over a large signature Σ and want to
make it smaller. Say, it should be restricted to Σ′ ⊆ Σ.

DOL provides four options:
Module extraction
Approximation
Reduction
Filtering

We will discuss these options for two examples:
the medical ontology SNOMED
the specification of groups
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Module Extraction applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 1:

SNOMED extract Heart, HeartAttack

extract:
SNOMED module (sub-ontology of SNOMED)
capturing the same facts about hearts and heart attacks as
SNOMED itself (SNOMED is a conservative extension of the
module)
signature of the module may contain more than heart and heart
attack

Dual operation: remove (lists the symbols to remove)
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Approximation applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 2:

SNOMED keep Heart, HeartAttack

keep:
captures all logical consequences involving Heart(Attack)

not necessarily a sub-OMS
may involve new axioms in order to capture the SNOMED facts
about hearts and heart attacks
resulting OMS features exactly the two specified entities, heart
and heart attack
finite axiomatization may be hard to compute, if it exists at all

Dual operation: forget (lists the symbols to remove)
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Reduction applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 3:

SNOMED reveal Heart, HeartAttack

reveal:
essentially keeps the whole of SNOMED
provides some export interface consisting of heart and heart
attack only
while symbols are hidden, the semantic effect of sentences (also
those involving these symbols) is kept
useful when interfacing SNOMED with other ontologies, e.g. in
an interpretation.

Dual operation: hide (lists the symbols to remove)
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Filtering applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 4:

SNOMED select Heart, HeartAttack

select:
simply removes all SNOMED axioms that involve other symbols
then heart and heart attack
can be computed easily
might lead to poor ontology, capturing only a small fraction and
only the basic facts of SNOMED’s knowledge about hearts and
heart attacks.

Dual operation: reject (lists the symbols to remove)
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Module Extraction applied to Groups (1)

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
remove inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

The module needs to be enlarged to the whole OMS.
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Module Extraction applied to Groups (2)

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

. exists y:Elem . x+y=0
remove inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. exists y:Elem . x+y=0
Here, adding inv is conservative.
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Approximation applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
forget inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. exists y:Elem . x+y=0

Computing finite interpolants can be hard, even undecidable.
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Reduction applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x . x+(y+z) = (x+y)+z

. x+inv(x)=0
hide inv

Semantics: class of all monoids that can be extended with an
inverse, i.e. class of all groups. The effect is second-order
quantification:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem;
exists inv:Elem->Elem .
forall x,y,z:elem . x+0=x

/\ x+(y+z) = (x+y)+z
/\ x+inv(x)=0
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Filtering applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
reject inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z
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Hide – Extract – Forget – Select
hide/reveal remove/extract forget/keep select/reject

semantic
background

model
reduct

conservative
extension

uniform
interpolation

theory
filtering

relation to
original

interpretable subtheory interpretable subtheory

approach model level theory level theory level theory
level

type of
OMS

elusive flattenable flattenable flattenable

signature
of result

= Σ ≥ Σ = Σ ≥ Σ

change of
logic

possible not possible possible not
possible

application specification ontologies ontologies blending
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Pros and Cons

hide/reveal remove/extract forget/keep select/reject

information
loss

none none minimal large

computability depends good/depends depends easy
signature of
result

= Σ ≥ Σ = Σ = Σ

conceptual
simplicity

simple
(but
unintuitive)

complex farily
simple

simple
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Example for hiding: sorting
Informal specification:
To sort a list means to find a list with the same elements, which is in
ascending order.
Formal requirements specification:
%right_assoc( __::__ )%
logic CASL.FOL=
spec PartialOrder =
sort Elem
pred __leq__ : Elem * Elem
. forall x : Elem . x leq x %(refl)%
. forall x, y : Elem . x leq y /\ y leq x => x = y %(antisym)%
. forall x, y, z : Elem . x leq y /\ y leq z => x leq z %(trans)%

end
spec List = PartialOrder then
free type List ::= [] | __::__(Elem; List)
pred __elem__ : Elem * List
forall x,y:Elem; L,L1,L2:List
. not x elem []
. x elem (y :: L) <=> x=y \/ x elem L

end
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Sorting (cont’d)

spec AbstractSort =
List

then %def
preds is_ordered : List;

permutation : List * List
op sorter : List->List
forall x,y:Elem; L,L1,L2:List
. is_ordered([])
. is_ordered(x::[])
. is_ordered(x::y::L) <=> x leq y /\ is_ordered(y::L)
. permutation(L1,L2) <=>

(forall x:Elem . x elem L1 <=> x elem L2)
. is_ordered(sorter(L))
. permutation(L,sorter(L))

end
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Sorting (cont’d)

We want to show insert sort to enjoy these properties.
Formal design specification:

spec InsertSort = List then
ops insert : Elem*List -> List;

insert_sort : List->List
vars x,y:Elem; L:List
. insert(x,[]) = x::[]
. x leq y => insert(x,y::L) = x::insert(y,L)
. not x leq y => insert(x,y::L) = y::insert(x,L)
. insert_sort([]) = []
. insert_sort(x::L) = insert(x,insert_sort(L))

end
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Correctness

Is insert sort correct w.r.t. the sorting specification?

interpretation correctness :
{ AbstractSort hide is_ordered, permutation }

to { InsertSort hide insert }
end
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Non-monotonicity
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Non-monotonic Reasoning

Non-monotonic reasoning =
more premises may lead to fewer conclusions:
If b is a bird, it can fly.
But if b is a bird and a penguin, it cannot fly.

Non-monotonic reasoning is used in defeasible reasoning, default
reasoning, abductive reasoning, belief revision, reasoning about
subjective probabilities, . . .

BUT: logical consequence Γ |=Σ ϕ is monotonic!

DOL’s way of supporting non-monotonic reasoning:
closed-world assumptions
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Closed-World Assumption

Prop, FOL and OWL employ an open-world semantics
1 predicates may hold for more individuals than specified in the

theory
2 a model may have more individuals than specified in the theory
3 more equations than specified in the theory may hold between

individuals
sometimes, a closed-world semantics is useful

1 predicates only hold for individuals if specified in the theory
2 a model has only those individuals specified in the theory
3 only equations specified in the theory hold between individuals

Minimization (circumscription) addresses 1
Freeness addresses 1-3
Both are non-monotonic operations
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Minimizations (circumscription)

O1 then minimize { O2 }
forces minimal interpretation of non-logical symbols in O2

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Abnormal
Individual: B1 Types: Abnormal }

then
Class: Ontable
Class: BlockNotAbnormal EquivalentTo:
Block and not Abnormal SubClassOf: Ontable

then %implied
Individual: B2 Types: Ontable
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Minimizations

O1 then minimize { O2 }
forces minimal interpretation of non-logical symbols in O2

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Normal
Individual: B2 Types: Normal }

then
Class: Ontable SubClassOf: Block and Normal

then %implied
Individual: B1 Types: not Ontable
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Freeness

free { O }
O1 then free { O }
forces closed-world conditions 1-3

logic OWL
ontology Family_closed =
free {
Class: Person Class: Male < Person
Individual: john Types: Male
Individual: mary Types: Person
}

There is only one model
(up to isomorphism):

maryjohn

person

male
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