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Summary of Day 3

On Day 3 we have looked at:

@ Assembling OMS from pieces:

Basic OMS, union, translation
e Making a large OMS smaller:

module extraction, approximation, reduction, filtering
@ Non-monotonic reasoning through employing

a closed-world assumption:

minimization, maximization, freeness, cofreeness
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Today

We will focus today on:

@ Semantics of structured OMS
e based on institutions

@ Proofs in OMS

e based on entailment systems
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Semantics of OMS

Semantics of OMS
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Semantics of OMS

Institutions (intuition)

Institutions

Signatures

Sentences

Satisfaction = =

> 2’

Mod o
Models —
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Semantics of OMS

Some Basic Category Theory

Our use of category theory is modest, oriented towards
providing easy proofs for very general results.

Definition (Category)

A category C is a graph together with a partial composition
operation defined on edges that match:

iff:A—Bandg: B— C,thenf;g: A— C.
Graph nodes are called objects, graph edges are called morphisms.
Requirements on a category: morphisms behave monoid-like, that is,

e Composition has a neutral element ida: A — A (for each object
A€ |C):
forf:A— B,idsy;f =fand f;idg = f

@ Composition is associative:
(f;g); h=f;(g; h) if both sides are defined
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Semantics of OMS

Categories: Examples

sets and functions

FOL signatures and signature morphisms

OWL signatures and signature morphisms

logical theories and theory morphisms

groups and group homomorphisms 4 idh
general algebras and homomorphisms Ol &Q/D
metric spaces and contractions \ /
topological spaces and continuous maps ' 3 ¢
automata and simulations @)

each pre-order, seen as a graph, is a category %

each monoid is a category with one object
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Semantics of OMS

Opposite Categories

Definition (Opposite category)

Given a category C, its opposite category C has the same objects
and morphism as C, but with all morphisms reversed. That is,

iff:A— BeC, thenf: B— Ae C,

if f;g=nhinC, then g;f = hin C%.
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Semantics of OMS

Functors

Definition (Functor)

Given categories C; and C,, a functor F: C; — C, is a graph
homomorphism F: C; — C, preserving the monoid structure, that is

o Neutral elements are preserved:
F(ida) = idr(a)

for each object A € |C|
@ Composition is preserved:

F(f;g) = F(f): F(g)

foreach f: A— B, g: B— CeC.
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Semantics of OMS

Institutions (formal definition)

An institution Z = (Sign, Sen, Mod, (=5 )sc[sign|) consists of:
@ a category Sign of signatures;
@ a functor Sen: Sign — Set, giving a set Sen(X) of
Y -sentences for each signature ¥ € |Sign|, and a function
Sen(c): Sen(X) — Sen(Y') that yields o-translation of
Y -sentences to Y’-sentences for each o: ¥ — ¥/;
@ a functor Mod: Sign® — Cat, giving a category Mod(X) of
Y -models for each signature ¥ € |Sign|, and a functor
_|e = Mod(0): Mod(X') — Mod(X); for each 0: ¥ — ¥/,
e for each ¥ € |Sign|, a satisfaction relation
Fzy € Mod(X) x Sen(X)
such that for any signature morphism o: ¥ — ¥’, ¥-sentence
¢ € Sen(X) and X’-model M' € Mod(X'):
M =15 o(e) iff M|, Ezs ¢ [Satisfaction condition]
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Semantics of OMS

Sample Institutions

@ Prop, FOL and OWL are institutions
we have proven the satisfaction conditions in lecture 2
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Semantics of OMS

Plenty of Institutions

(*]
(]
]
(]

Lary Moss' logics from his ESSLLI evening talk on Tuesday
first-order, higher-order logic, polymorphic logics
logics of partial functions

modal logic (epistemic logic, deontic logic, description logics,
logics of knowledge and belief, agent logics)

p-calculus, dynamic logic
spatial logics, temporal logics, process logics, object logics
intuitionistic logic

linear logic, non-monotonic logics, fuzzy logics

paraconsistent logic, database query languages
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Semantics of OMS

Working in an Arbitrary Logical System

Many notions and results generalise to an arbitrary institution:
@ logical consequence
@ logical theory

satisfiability
@ conservative extension
@ theory morphism
@ many more ...
In the sequel, fix an arbitrary instution /.
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Semantics of OMS

Weakly inclusive institutions

Definition (adopted from Goguen, Rosu)
A weakly inclusive category is a category having a singled out class of
morphisms (called inclusions) which is closed under identities and

composition. Inclusions hence form a partial order.
An weakly inclusive institution is one with an inclusive signature

category such that
@ the sentence functor preserves inclusions,
@ the inclusion order has a least element (denote (), suprema
(denoted U), infima (denoted N), and differences (denoted \),

@ model categories are weakly inclusive.

M|s means M|, where ¢ : ¥ — Sig(M) is the inclusion.

In the sequel, fix an arbitrary weakly inclusive instution /.
2016-08-18 14
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Semantics of OMS

Semantic domains for OMS in DOL

Flattenable OMS (can be flattened to a basic OMS)
basic OMS
@ extensions, unions, translations
@ approximations, module extractions, filterings (flattenable)
@ combinations of networks (flattenable)
@ semantics: (X, V) (theory-level)
e X: asignature in /, also written Sig(O)
o V: a set of X-sentences, also written Th(O)
Elusive OMS (= non-flattenable OMS)
@ reductions, minimization, maximization, (co)freeness (elusive)
@ semantics: (X, M) (model-level)
e X: a signature in /, also written Sig(O)
o M: a class of X-models, also written Mod(O)
We can obtain the model-level semantics from the theory-level
semantics by taking M = {M € Mod(X) | M = V}.
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Semantics of OMS

Semantics of basic OMS

We assume that [O]pasic = (£, V) for some OMS language based on
I. The semantics consists of

@ a signature X in /
@ a set V¥ of Y-sentences

This direct leads to a theory-level semantics for OMSx:

HO]]rT = HO]] basic

Generally, if a theory-level semantics is given: [O]f = (X, V), this
leads to a model-level semantics as well:

[O]F = (Z.{M € Mod(X) | M = V})
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Semantics of OMS
Semantics of extensions

Ol flattenable IIOl then 02]];— = (Zl U 22, \Ul U wz)

where
o [Oi]} = (X1, V1)
° [[02]]basic = (227 \U2)

O elusive [O; then O,]¥ = (X, U Xy, M)

where
o [Oi]¥ = (1, My)
° I[O2]]basic = (227 \U2)
o M' = {M < MOd(ZlLJZQ) ’ M ): \lfz, M|21 € Ml}
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Semantics of OMS

Semantics of extensions (cont'd)

%mcons (%def, %mono) leads to the additional requirement that

each model in M has a (unique, unique up to
isomorphism) ¥ U ¥X-expansion to a model in M'.

%implies leads to the additional requirements that
Z2 C Z1 and M’ = Ml.

%ccons leads to the additional requirement that

M’ = ¢ implies M |= ¢ for any ¥1-sentence .

%mcons implies %ccons, but not vice versa.
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Semantics of OMS

References to Named OMS

@ Reference to an OMS existing on the Web
o written directly as a URL (or IRI)

@ Prefixing may be used for abbreviation

http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl

co-ode:pizza.owl

Semantics Reference to Named OMS: [iri]r = I'(iri)
where I is a global map of IRIs to OMS denotations
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http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl
http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl
co-ode:pizza.owl

Semantics of OMS
Semantics of unions

0y, O, flattenable [O; and O;]] = (X1 U X2, W1 U W,), where
o [O] = (X, V) (i=1,2)

one of Oy, O, elusive [O; and O,]¥ = (1 U X5, M), where
o [O] = (Zi, M)) (i =1,2)
o M= {M S MOd(Zl UZ2) | M|):I. eM; i= 1,2}
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Semantics of OMS
Semantics of translations

O flattenable Let [O]f = (X, W¥). Then
[0 with o : ¥ — ']T = (¥, 0(¥))

O elusive Let [O]¥ = (X, M). Then
[O with o : ¥ — Y']¥ = (X', M)

where M’ = {M € Mod(Z') | M|, € M}
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Semantics of OMS

Hide — Extract — Forget — Select

hide/reveal | remove/extract] forget/keep | select/rejec
semantic model conservative | uniform theory
background | reduct extension interpolation| filtering
relation to | interpretable| subtheory interpretable| subtheory
original
approach model level | theory level | theory level | theory

level

type of | elusive flattenable flattenable | flattenable
OMS
signature =X >3 = >3
of result
change of | possible not possible | possible not
logic possible
application | specification| ontologies ontologies | blending
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Semantics of OMS

Semantics of reductions

Let [O]¥ = (£, M)
e [O reveal TV = (X', M|x/), where
Ml = {Ml|s | M € M})
e [O hide Y']¥ =[O reveal =\ &'V

M5/ may be impossible to capture by a theory (even if M is).
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Semantics of OMS

Modules

Definition

O’ C Ois a Z-module of (flat) O iff O is a model-theoretic

Y -conservative extension of O’, i.e. for every model M of O, M|x
can be expanded to an O-model.
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Semantics of OMS
Depleting modules

Definition

Let O; and O, be two OMS and X C Sig(O;).
Then O; and O, are X-inseparable (O; =5 0,) iff

Mod(O1)|x = Mod(0,)|x

Definition
O’ C O is a depleting X-module of (flat) O iff O\ O’ =sysig(0) 0.

© Depleting Y_-modules are ¥_-conservative.

© The minimum depleting ¥-module always exists.
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Semantics of OMS

Semantics of module extraction (remove/extract)

Note: O must be flattenablel

Let [O]f = (L, V).

|[O extract Z]_]];- = (22, \IJ2)

where (X5, W,) C (X, V) is the minimum depleting ¥;-module of
(£, V)

[O remove %]} =[O extract ¥\ L]/

Tools can extract other types of module though (i.e. using locality).
However, any two modules will have the same X-consequences.
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Semantics of OMS

Semantics of interpolation (forget/keep)

Note: O must be flattenable!

Let [O]! = (%, V).

[O keep in &' =(X', {p € Sen(Y) |V |= ¢})

Note: any logically equivalent theory will also do).

Challenge: find a finite theory (= uniform interpolant). This is not
always possible, and sometimes theoretically possible but not
computable.

[O forget ']/ =[O keep in X\ T']}
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Semantics of OMS
Semantics of select/reject

Note: O must be flattenable!

Let [O]! = (%, V).

[O select (X', ®)]! = (=, Sen(r) H(V) U )
where ¢ : ¥’ — ¥ is the inclusion

[0 reject (£, &) —(¥ \ =/, Sen(1) *(¥)\ @)
where ¢ : ¥\ ¥’ — X is the inclusion
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Semantics of OMS

Relations among the different notions

Mod(O reveal ¥)

Mod(O extract X)|siz(onx
Mod(O keep X))

Mod(O select ¥)

NN 1
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Semantics of OMS

Semantics of minimizations

Let I[OI]]M = (Zl,Ml)
Let |[Ol then OQ]]IM = (ZQ,MQ)
Then
[O: then minimize O] = (X2, M)

where
M ={M € M, | M is minimal in {M' € My | M'|s, = M|s, }}

Note that in a weakly inclusive institution, inclusion model morphisms
provide a partial order on models.

Dually: maximization.
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Semantics of OMS Proof calculus Heterogeneity

Initial Objects

An object / in a category C is called an initial object, if for each
object A € |C|, there is a unique morphism | — A.

Initital objects in different categories:

@ sets and functions: the empty set
o FOL signatures: the empty signature
@ algebras and homomorphisms: the term algebra

@ models of Horn clauses: the Herbrand model

A\

Initial objects are unique up to isomorphism.
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Semantics of OMS

Semantics of freeness

We only treat the special case of free {O}.
Let [O]¥ = (X, M) Then

[free O]Y = (%, {M € M| M is initial in M})
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Semantics of OMS

Semantics of interpretations

Let I[Ol]]P/I = (Zi,Mi) (’ = 172)

[interpretation IR/ : O; to O, = o]¥
is defined iff
MOd(U)(Mz) Q Ml

Note that this is the same condition as for theory morphisms.
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Proof calculus

Proof calculus
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Proof calculus

Logical Consequences and Refinement of OMS

Definition (Logical Consequences of an OMS)

OEseyp iff X =Sig(0), M =5 ¢ for all M € Mod(O)

Definition (Refinement between two OMS)

O~ 0" iff  Mod(0') C Mod(O)
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Semantics of OMS Proof calculus

Entailment systems

Given an institution Z = (Sign, Sen, Mod, |=), an entailment system
t for Z consists of relations -y C P(Sen(X)) x Sen(X) such that
Q reflexivity: for any ¢ € Sen(X), {¢} s ¢,
© monotonicity: if [ Fs @ and " D T then " k5 ¢,
© transitivity: if [ Fx @; for i € I and T U {p;|i € I} F5 9, then
52,
@ H-translation: if [ Fg ¢, then for any o: X — ¥ in Sign,
o(l) F o(p),
© soundness: if [ 5 ¢ then I =5 .

The entailment system is complete if, in addition,
[ s o implies T 5 .
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Proof calculus

Proof calculus for entailment (Borzyszkowski)

covering some part of DOL

OF o} itier B el
(CR) {OF gitier {vitier b o (basic) P
OF ¢ (LNEe
O, F O, F
(sum1I) LT (sum2) 27 Y
Ol and 02 F (2 Ol and Og F (2
O+ O+
(trans) - i (derive) .—0(90)
O with o - o(y) O hide o F ¢
Soundness means: Ok ¢ implies O = ¢

Completeness means: O = ¢ implies O - ¢
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Proof calculus for refinement (Borzyszkowski)

Proof calculus

(Basic) ————  (Sum)
y 1)~ 1 an 2~
Y. T 0] O; and O @)
O ~ O hide ¢
(Trans) -
O with o ~ O’
: 0~ 0" ifo: O'— 0"
(Derive) - : : :
O hide g ~ O’ IS a conservative extension

Soundness means:

Completeness means:

Kutz, Mossakowski

Ol ~ 02 implies Ol > 02
Op ~~> O, implies O; ~ 05
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Proof calculus

Soundness and Completeness

Theorem (Borzyszkowski, Tarlecki, Diaconescu)

The calculi for structured entailment and refinement are sound.
Under the assumptions that

@ the institution admits Craig-Robinson interpolation,
@ the institution has weak model amalgamation, and

@ the entailment system is complete,

the calculi are also complete.

For refinement, we need an oracle for conservative extensions.
Craig-Robinson interpolation, weak model amalgamation:
technical model-theoretic conditions
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