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Goal for today & tomorrow

Automated reasoning plays an important role for DLs.

It allows the development of intelligent applications.
The expressivity of DLs is strongly tailored towards this goal.

Requirements for automated reasoning:

Decidability of the relevant decision problems
Low complexity if possible
Algorithms that perform well in practice

Yesterday & today: 1 & 3

Now: 2
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Cognitive versus Computational Complexity

Consider decision problems for reasoning, e.g. O |=? C v D ]

Cognitive complexity (more on Friday)
How hard is it, for a human, to decide or understand ] ?
interesting, little understood topic
relevant to provide tool support for ontology engineers

Computational complexity (today)
How much time/space is needed to decide ] ?
interesting, well understood topic
loads of results thanks to relationships DL – FOL – ML
relevant to understand

trade-off: expressivity of a DL↔ complexity of reasoning
whether a given algorithm is optimal/can be improved
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Decidability

A (decision) problem

. . . is a subset P ⊆ M

Examples:
P = set of all prime numbers, M = N
P = set of triples (O,C ,D) with O |= C v D,
M = set of all triples (O,C ,D) from ALC

think of it as a black box:
Input Output

m ∈ M m ∈ P ?
„yes“⇒ m ∈ P
„no“ ⇒ m /∈ P

A

Decidability: P is decidable
if there is an algorithm A that implements the black box.
(Programming language and machine model are largely irrelevant)
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Computational complexity

Input Output
m ∈ M m ∈ P ?

„yes“⇒ m ∈ P
„no“ ⇒ m /∈ P

A

Complexity:
measures time/space needed by A in the worst case,
depending on the length of the input |m|

Polynomial time: Number of computation steps is 6 pol(|m|),
for some polynomial function pol

Polynomial space: Number of memory cells used is 6 pol(|m|)

Exponential time: Number of computation steps is 6 2pol(|m|)

. . .
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Some standard complexity classes

Name Restriction Example problem
L logarithmic space graph connectivity
NL nondeterministic log. space graph accessibility
P polynomial time prime numbers

NP nondeterm. polynomial time (propositional) SAT
PSPACE polynomial space QBF-SAT

EXPTIME exponential time CTL-SAT
NEXPTIME nondeterm. exponential time
EXPSPACE exponential space

...
...

undecidable first-order SAT
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Reductions

Input Output
m ∈ M m ∈ P ?

„yes“⇒ m ∈ P
„no“ ⇒ m /∈ P

A

A (polynomial) reduction of P ⊆ M to P′ ⊆ M′
is a (poly-time computable) function π : M → M′ with

m ∈ P iff π(m) ∈ P′

m∈M π(m) yes
no

yes

noπ π(m)∈ P′ ?

m∈ P ?

If P reducible to P′ then P is “at most as hard” as P′.
If all problems from a complexity class C are reducible to P,
then P is hard for C.
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Determining the complexity

Usually one shows that a problem P ⊆ M is . . .

in a complexity class C, by
designing/finding an algorithm A that solves P,
showing that A is sound, complete, and terminating
showing that A runs, for every m ∈ M, in at most C ressources

. . . A can be, e.g., a reduction to a problem known to be in C

hard for C, by finding
a suitable problem P′ ⊆ M′ that is known to be hard for C
and a reduction of P′ to P

complete for C, by showing that P is
in C and
hard for C
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Worst-case complexity
Worst case: algorithm runs, for all m ∈ M, in at most C resources,
e.g., like this on all problems of size 7:
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Known complexity results from Days 2–3

From the tableau technique, we know that

all considered reasoning problems are decidable for ALCQI
because the tableau algorithm is sound, complete, terminating

consistency of ALC ontologies is in EXPSPACE
and so are satisfiability and subsumption w.r.t. ontologies
ü We can do better: we’ll show they are EXPTIME-complete

satisfiability and subsumption of ALC concepts are in PSPACE
ü We cannot do better: we’ll show that they are PSPACE-hard
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EXPTIME-membership

We start with an EXPTIME upper bound
for concept satisfiability in ALC relative to TBoxes.

Theorem
The following problem is in EXPTIME.
Input: an ALC concept C0 and an ALC TBox T
Question: is there a model I |= T with CI 6= ∅ ?

We’ll use a technique known from modal logic:
type elimination [Pratt 1978]

The basis is a syntactic notion of a type.
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Syntactic types

We assume that

the input concept C0 is in NNF
the input TBox is T = {> v CT } with CT in NNF

Let sub(C0, T ) be the set of subconcepts of C0 and CT .
A type for C0 and T is a subset t ⊆ sub(C0, T ) such that

1. A ∈ t iff ¬A /∈ t for all ¬A ∈ sub(C0, T )
2. C uD ∈ t iff C ∈ t and D ∈ t for all C uD ∈ sub(C0, T )
3. C tD ∈ t iff C ∈ t or D ∈ t for all C tD ∈ sub(C0, T )
4. CT ∈ t

Intuition:
Types describe domain elements completely, up to sub(C0, T ). •
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General idea

General idea of type elimination for input C0, T :

Generate all types for C0 and T (exponentially many).

Repeatedly eliminate types that cannot occur in any model of
C0 and T .

Check whether some type containing C0 has survived.

If yes, return “satisfiable”; otherwise “unsatisfiable”.
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