EXPTIME-membership Complexity basics **EXPTIME-membership**

Description Logics: a Nice Family of Logics — Complexity, Part 1 —

Thomas Schneider² Uli Sattler¹

¹School of Computer Science, University of Manchester, UK

²Department of Computer Science, University of Bremen, Germany

ESSLLI, 17 August 2016

Automated reasoning plays an important role for DLs.

- It allows the development of intelligent applications.
- The expressivity of DLs is strongly tailored towards this goal.

Requirements for automated reasoning:

- Decidability of the relevant decision problems
- Low complexity if possible
- Algorithms that perform well in practice

Yesterday & today: 1 & 3

Now: 2

W

DL: Complexity (1)

EXPTIME-membership

Uli Sattler. Thomas Schneider

DL: Complexity (1)

EXPTIME-membership

And now . . .

Complexity basics

Uli Sattler, Thomas Schneider

Cognitive versus Computational Complexity

Consider decision problems for reasoning, e.g. $\mathcal{O} \models^? C \sqsubseteq D$

Cognitive complexity

(more on Friday)

- How hard is it, for a human, to decide or understand (*)?
- interesting, little understood topic
- relevant to provide tool support for ontology engineers

Computational complexity

(today)

- How much time/space is needed to decide (*)?
- interesting, well understood topic
- loads of results thanks to relationships DL FOL ML
- relevant to understand
 - trade-off: expressivity of a DL ↔ complexity of reasoning
 - whether a given algorithm is optimal/can be improved

Complexity basics

Uli Sattler, Thomas Schneider

DL: Complexity (1)

Uli Sattler, Thomas Schneider

DL: Complexity (1)

Decidability

A (decision) problem

- ullet . . . is a subset $P\subseteq M$
- Examples:
 - P = set of all prime numbers, $M = \mathbb{N}$
 - $P = \text{set of triples } (\mathcal{O}, \mathcal{C}, \mathcal{D}) \text{ with } \mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D},$ $M = \text{set of } all \text{ triples } (\mathcal{O}, \mathcal{C}, \mathcal{D}) \text{ from } \mathcal{ALC}$
- think of it as a black box:

$$m \in M$$
 Input Output $m \in P$?

 $M \in P$ Output $M \in P$ $M \in P$ $M \in P$ $M \in P$ $M \in P$

Decidability: *P* is decidable

if there is an algorithm A that implements the black box.

(Programming language and machine model are largely irrelevant)

Computational complexity

Complexity:

measures time/space needed by A in the worst case, depending on the length of the input |m|

- Polynomial time: Number of computation steps is $\leq pol(|m|)$, for some polynomial function pol
- Polynomial space: Number of memory cells used is $\leq pol(|m|)$
- Exponential time: Number of computation steps is $\leq 2^{pol(|m|)}$
- ...

Uli Sattler, *Thomas Schneider* Complexity basics

DL: Complexity (1)

EXPTIME-membership

Uli Sattler, *Thomas Schneider* Complexity basics

DL: Complexity (1)

EXPTIME-membership

Some standard complexity classes

Name	Restriction	Example problem
L NL P	logarithmic space nondeterministic log. space polynomial time	graph connectivity graph accessibility prime numbers
NP PSPACE	nondeterm. polynomial time polynomial space	(propositional) SAT QBF-SAT
EXPTIME NEXPTIME EXPSPACE :	exponential time nondeterm. exponential time exponential space	CTL-SAT
	undecidable	first-order SAT

Reductions

A (polynomial) reduction of $P \subseteq M$ to $P' \subseteq M'$ is a (poly-time computable) function $\pi : M \to M'$ with

$$m \in P$$
 iff $\pi(m) \in P'$

If P reducible to P' then P is "at most as hard" as P'.

If all problems from a complexity class C are reducible to P, then P is hard for C.

Complexity basics **EXPTIME-membership** Complexity basics **EXPTIME-membership**

Determining the complexity

Usually one shows that a problem $P \subseteq M$ is . . .

- in a complexity class C, by
 - designing/finding an algorithm A that solves P,
 - showing that A is sound, complete, and terminating
 - showing that A runs, for every $m \in M$, in at most \mathcal{C} ressources
 - \dots A can be, e.g., a reduction to a problem known to be in $\mathcal C$
- \bullet hard for C, by finding
 - a suitable problem $P' \subset M'$ that is known to be hard for C
 - and a reduction of P' to P
- complete for C, by showing that P is
 - ullet in ${\mathcal C}$ and
 - ullet hard for ${\cal C}$

Worst case: algorithm runs, for all $m \in M$, in at most C resources, e.g., like this on all problems of size 7:

Uli Sattler, Thomas Schneider Complexity basics

Uli Sattler, Thomas Schneider

DL: Complexity (1)

EXPTIME-membership

Uli Sattler, Thomas Schneider Complexity basics

DL: Complexity (1)

EXPTIME-membership

Worst-case complexity

Worst case: algorithm runs, for all $m \in M$, in at most C resources, e.g., or like this on all problems of size 7:

Worst-case complexity

Worst-case complexity

Worst case: algorithm runs, for all $m \in M$, in at most C resources, e.g., or like this on all problems of size 7:

Complexity basics **EXPTIME-membership** Complexity basics **EXPTIME-membership**

Worst-case complexity

Worst case: algorithm runs, for all $m \in M$, in at most \mathcal{C} resources, e.g., or like this on all problems of size 7:

Known complexity results from Days 2–3

- ullet all considered reasoning problems are decidable for \mathcal{ALCQI} because the tableau algorithm is sound, complete, terminating
- consistency of \mathcal{ALC} ontologies is in ExpSpace and so are satisfiability and subsumption w.r.t. ontologies ➤ We can do better: we'll show they are ExpTime-complete
- ullet satisfiability and subsumption of \mathcal{ALC} concepts are in PSPACE
 - ➤ We cannot do better: we'll show that they are PSPACE-hard

Uli Sattler, Thomas Schneider

DL: Complexity (1)

10 EXPTIME-membership

Uli Sattler, Thomas Schneider

DL: Complexity (1)

EXPTIME-membership

Complexity basics

And now . . .

EXPTIME-membership

We start with an **EXPTIME** upper bound for concept satisfiability in \mathcal{ALC} relative to TBoxes.

Complexity basics

EXPTIME-membership

Theorem

The following problem is in **EXPTIME**.

Input: an \mathcal{ALC} concept C_0 and an \mathcal{ALC} TBox \mathcal{T} Question: is there a model $\mathcal{I} \models \mathcal{T}$ with $\mathcal{C}^{\mathcal{I}} \neq \emptyset$?

We'll use a technique known from modal logic: type elimination [Pratt 1978]

The basis is a *syntactic* notion of a *type*.

Complexity basics EXPTIME-membership Complexity basics EXPTIME-membership

Syntactic types

General idea

We assume that

• the input concept C_0 is in NNF

• the input TBox is $\mathcal{T} = \{ \top \sqsubseteq C_{\mathcal{T}} \}$ with $C_{\mathcal{T}}$ in NNF

Let $\operatorname{sub}(C_0, \mathcal{T})$ be the set of subconcepts of C_0 and $C_{\mathcal{T}}$. A type for C_0 and \mathcal{T} is a subset $t \subseteq \operatorname{sub}(C_0, \mathcal{T})$ such that

- 1. $A \in t$ iff $\neg A \notin t$ for all $\neg A \in \text{sub}(C_0, T)$
- 2. $C \sqcap D \in t$ iff $C \in t$ and $D \in t$ for all $C \sqcap D \in \text{sub}(C_0, T)$
- 3. $C \sqcup D \in t$ iff $C \in t$ or $D \in t$ for all $C \sqcup D \in \text{sub}(C_0, T)$
- 4. $C_T \in t$

Intuition:

Types describe domain elements completely, up to sub(C_0 , T).

14

General idea of type elimination for input C_0 , \mathcal{T} :

- Generate all types for C_0 and \mathcal{T} (exponentially many).
- Repeatedly eliminate types that cannot occur in any model of C_0 and \mathcal{T} .
- Check whether some type containing C_0 has survived.
- If yes, return "satisfiable"; otherwise "unsatisfiable".

