Goal for today & tomorrow

Automated reasoning plays an important role for DLs.

Description Logics: a Nice Family of Logics @ It allows the development of intelligent applications.

— Complexity, Part 1 — @ The expressivity of DLs is strongly tailored towards this goal.
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Complexity basics Complexity basics
And now . .. Cognitive versus Computational Complexity

Consider decision problems for reasoning, e.g. O |=? CcLC DJ @

Cognitive complexity (more on Friday)
@ How hard is it, for a human, to decide or understand @?
@ Complexity basics @ interesting, little understood topic

@ relevant to provide tool support for ontology engineers

Computational complexity (today)

@ How much time/space is needed to decide @?

interesting, well understood topic

loads of results thanks to relationships DL — FOL — ML

relevant to understand

o trade-off: expressivity of a DL <+ complexity of reasoning
@ e whether a given algorithm is optimal/can be improved @)
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Complexity basics

Decidability

A (decision) problem

@ ... isasubset PC M

@ Examples:

e P = set of all prime numbers, M = N

o P = set of triples (O, C, D) with O = C C D,
M = set of all triples (O, C, D) from ALC

@ think of it as a black box:
Input Output _ ,yes" = me P
meM ~ M
A .no'" = méeP

Decidability: P is decidable
if there is an algorithm A that implements the black box.

(Programming language and machine model are largely irrelevant) @
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Some standard complexity classes

Name Restriction Example problem

L logarithmic space graph connectivity
NL nondeterministic log. space  graph accessibility
P polynomial time prime numbers

NP nondeterm. polynomial time  (propositional) SAT
PSpPace polynomial space QBF-SAT

ExpTIME  exponential time CTL-SAT

NExpTIME nondeterm. exponential time
ExPSPACE  exponential space

undecidable first-order SAT
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Complexity basics

Computational complexity

Input Output _ ,yes" = meg P
m E M \ “
A .no" = meP

Complexity:
measures time/space needed by A in the worst case,
depending on the length of the input |m|

@ Polynomial time: Number of computation steps is < pol(|m|),
for some polynomial function pol

@ Polynomial space: Number of memory cells used is < pol(|m|)
o Exponential time: Number of computation steps is < 2P°/(Iml)

o ...
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Complexity basics

Reductions

Input Output _ ,yes" = me€ P
meM
~.,no" =>mégP
A
A (polynomial) reduction of P C M to P’ C M’
is a (poly-time computable) function 7 : M — M’ with

meP iff x(m)eP

meP? yes
yes
meM m(m) >
—»» T no no
>

If P reducible to P’ then P is “at most as hard” as P’.

If all problems from a complexity class C are reducible to P,
then P is hard for C.
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Complexity basics EXPTIME-membership Complexity basics EXPTIME-membership

Determining the complexity Worst-case complexity

Usually one shows that a problem P C M is ... Worst case: algorithm runs, for all m € M, in at most C resources,

.g., like thi Il probl f size 7:
@ in a complexity class C, by €-8., [1€ TS on alf probiems of size

300

e designing/finding an algorithm A that solves P,

e showing that A is sound, complete, and terminating

250

e showing that A runs, for every m € M, in at most C ressources

A can be, e.g., a reduction to a problem known to be in C 200

e hard for C, by finding
e a suitable problem P’ C M’ that is known to be hard for C

e and a reduction of P’ to P 100
e complete for C, by showing that P is 50
e inC and e
I S N I I I S N S e R
o hard forc @ ° P1 P2 P3 P4 P5 P& P7 P8 PS P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P21 @
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Worst-case complexity Worst-case complexity
Worst case: algorithm runs, for all m € M, in at most C resources, Worst case: algorithm runs, for all m € M, in at most C resources,
e.g.,or like this on all problems of size 7: e.g.,or like this on all problems of size 7:
300 300
250 250

150

Lo

=

100 [—

SD I
0

PL P2 P3 P4 P5 P& P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P21 @ PL PZ P3 P4 P5 P& P7 P8 P9 PO P11 P12 P13 P14 P15 P16 P17 P18 P19 P21 @
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Complexity basics EXPTIME-membership Complexity basics EXPTIME-membership

Worst-case complexity Known complexity results from Days 2-3

Worst case: algorithm runs, for all m € M, in at most C resources,
e.g.,or like this on all problems of size 7:

From the tableau technique, we know that

300

@ all considered reasoning problems are decidable for ALCOT

250

because the tableau algorithm is sound, complete, terminating

200

e consistency of ALC ontologies is in ExPSPACE
and so are satisfiability and subsumption w.r.t. ontologies

150

» \We can do better: we'll show they are ExpTiME-complete

100

@ satisfiability and subsumption of ALC concepts are in PSpACE
» \We cannot do better: we'll show that they are PSpace-hard

50

Y Y
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And now ... EXPTIME-membership

We start with an ExPTIME upper bound
for concept satisfiability in ALC relative to TBoxes.

The following problem is in ExPTIME.
Input: an ALC concept Cy and an ALC TBox T

© EXPTIME-membership Question: is there a model Z = T with CZ # 07

We'll use a technique known from modal logic:
type elimination [Pratt 1978]

The basis is a syntactic notion of a type.

Y Y
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EXPTIME-membership

Syntactic types

We assume that

@ the input concept Cp is in NNF
e the input TBox is 7 = {T C Gz} with Gy in NNF

Let sub(Cp, 7") be the set of subconcepts of Cy and Cy.
A type for Cy and T is a subset t C sub(Cy, T) such that

1. Aet iff nAét for all =A € sub(Cp, T)
2. CNDetiff CetandDet forall CMD € sub(Cy,T)
3. CuDetiff CetorDet forall CUD € sub(Gy,T)
4. Cret

Intuition:
Types describe domain elements completely, up to sub(Cy, 7). e @
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General idea

EXPTIME-membership

General idea of type elimination for input Cy, 7T

@ Generate all types for Cy and T

@ Repeatedly eliminate types that cannot occur in any model of

Cp and T.

(exponentially many).

@ Check whether some type containing Cp has survived.

o If yes, return “satisfiable”; otherwise “unsatisfiable”.
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