
Description Logics:
a Nice Family of Logics

Day 5: More Complexity & Justifications

ESSLLI 2016

Uli Sattler and Thomas Schneider

University of
Manchester

1

Next

Some • undecidability results: closing grid makes a DL undecidable

• complexity results: when 3 constructors interact badly and
lead to NExpTime-hardness

• justifications: explaining and debugging entailments

University of
Manchester

2

The Classical Domino Problem ✔

using D?

types
dominoe
of
set
a fixed
D,

can we tile the
first quadrant

University of
Manchester

3

The Classical Domino Problem ✔

Definition: A domino system D = (D,H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D × D and V ⊆ D × D

A tiling for D is a (total) function:

t : N × N → D such that
⟨t(m,n), t(m + 1, n)⟩ ∈ H and
⟨t(m,n), t(m,n + 1)⟩ ∈ V

Domino problem: given D, has D a tiling?

It is well-known that this problem is undecidable [Berger66]

University of
Manchester

4

Almost Encoding the Classical Domino Problem in ALC ✔

For our reduction, we express various obligations of the domino problem in
ALC TBox axioms:

① each element carries exactly one domino type Di

! use unary predicate symbol Di for each domino type and

⊤ ⊑ D1) . . .) Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one
D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...

... ...
Dd−1 ⊑ ¬Dd

University of
Manchester

5

Almost Encoding the Classical Domino Problem in ALC ✔

② every element has a horizontal (X-) successor and a vertical (Y -) successor

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions:

D1 ⊑ !
(D1,D)∈H

∀X.D ⊓ !
(D1,D)∈V

∀Y.D

D2 ⊑ !
(D2,D)∈H

∀X.D ⊓ !
(D2,D)∈V

∀Y.D

... ...
Dd ⊑ !

(Dd,D)∈H
∀X.D ⊓ !

(Dd,D)∈V
∀Y.D

Does this suffice?

No: if yes, ALC would be undecidable!

University of
Manchester

6

Encoding the Classical Domino Problem in ALC with role chain inclusions ✔

④ for each element, its horizontal-vertical-successors coincide with their
vertical-horizontal-successors & vice versa

X ◦ Y ⊑ Y ◦ X and Y ◦ X ⊑ X ◦ Y

Lemma: Let TD be the set of axioms ① to ④.
Then ⊤ is satisfiable w.r.t. TD iff D has a tiling.

• since the domino problem is undecidable, this implies undecidability of
concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions

• due to Theorem 2, all other standard reasoning problems are undecidable, too

• Proof: 1. show that, from a tiling for D, you can construct a model of TD

2. show that, from a model I of TD, you can construct a tiling for D
(tricky because elements in I can have several X- or Y -successors
but we can simply take the right ones...)

University of
Manchester

7

Let’s do this again!

We only need ALC for ①-③.
What other constructors can us help to express ④?

A weak form of counting: (≤ 1r)I = {x | there is at most one y with (x, y) ∈ rI}

• counting and complex roles (role chains and role intersection):

⊤ ⊑ (≤ 1X) ⊓ (≤ 1Y) ⊓ (∃(X ◦ Y) ⊓ (Y ◦ X).⊤)

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

⊤ ⊑ (≤ 1X) ⊓ (≤ 1Y)
X ◦ Y ⊑ r

Y ◦ X ⊑ r

⊤ ⊑ (≤ 1r)

• various others...

University of
Manchester

8

Are all DLs in ExpTime?

Earlier, we have claimed that ALCQI, ALCQO, and ALCIO are all
ExpTime-complete, i.e., as hard/easy as ALC

Next, we will see that consistency of ALCQIO ontologies,
the extension of ALC with

• inverse roles r− with (r−)I = {(y, x) | (x, y) ∈ rI}

• the weakest number restrictions (≤ 1r) with
(≤ 1r)I = {x | there is at most 1 y with (x, y) ∈ rI}

• nominals {a} with ({a})I = {aI}

⇒ is harder, namely NExpTime-hard

• this is typical phenomenon where

– combination of otherwise harmless constructors

leads to increased complexity
University of
Manchester

9

ALCQIO is NExpTime-hard

We follow hardness proof recipe:

• to show that consistency of ALCQIO ontologies is NExpTime-hard, we

– find a suitable problem P ′ ⊆ M ′ that is known to be NExpTime-hard and

– a reduction from P ′ to P

The NExpTime version of the domino problem

University of
Manchester

10

Domino Problems

Definition: A domino system D = (D,H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions
H ⊆ D × D and V ⊆ D × D

A tiling for D is a function:

t : N × N → D such that
⟨t(m,n), t(m + 1, n)⟩ ∈ H and
⟨t(m,n), t(m,n + 1)⟩ ∈ V

Domino problems: ✔ classical given D, has D a tiling?

⇒ well-known that this problem is undecidable [Berger66]

☞ NexpTime given D, has D a tiling for 2n × 2n square?

⇒ well-known that this problem is NExpTime-hard

University of
Manchester

11

Reduction of NExpTime Domino Problem to ALCQIO Consistency

To reduce the NExpTime domino problem to ALCQIO consistency, we need to

• define a mapping π from domino problems to ALCQIO ontologies such that

•D has an 2n × 2n mapping iff π(D) is consistent and

• size of π(D) is polynomial in n

University of
Manchester

12

Mapping a Domino System into an ALCQIO Ontology

Again, we express various obligations of the domino problem in ALC axioms:

① each element carries exactly one domino type Di

! use unary predicate symbol Di for each domino type and

⊤ ⊑ D1) . . .) Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one
D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...

... ...
Dd−1 ⊑ ¬Dd

University of
Manchester

13

Mapping a Domino System into an ALCQIO Ontology

② every element has a horizontal (X-) successor and a vertical (Y -) successor

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions:

D1 ⊑ !
(D1,D)∈H

∀X.D ⊓ !
(D1,D)∈V

∀Y.D

D2 ⊑ !
(D2,D)∈H

∀X.D ⊓ !
(D2,D)∈V

∀Y.D

... ...
Dd ⊑ !

(Dd,D)∈H
∀X.D ⊓ !

(Dd,D)∈V
∀Y.D

Does this suffice?
I.e., does D have a 2n × 2n tiling iff one Di is satisfiable w.r.t. ① to ③?

• if yes, we have shown that satisfiability of ALC is NExpTime-hard

• so no...what is missing?

University of
Manchester

14

Mapping a Domino System into an ALCQIO Ontology

Two things are missing:

1. the model must be large enough, namely 2n × 2n and

2. for each element, its horizontal-vertical-successors coincide with their
vertical-horizontal-successors and vice versa

This will be addressed using a “counting and binding together” trick ...

University of
Manchester

15

Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) use A1, . . . , An, B1, . . . , Bn as “bits” for binary representation of grid position

e.g., (010, 011) is represented by an instance of ¬A3, A2,¬A1,¬B3, B2, B1

write GCI to ensure that X- and Y -successors are incremented correctly

e.g., X-successor of (010, 011) is (011, 011)

(b) use nominals to ensure that there is only one (111. . . 1, 111. . . 1)

this implies, with⊤ ⊑ (≤ 1 X−.⊤)⊓(≤ 1 Y −.⊤) uniqueness of grid positions

University of
Manchester

16

Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) Ãi for “bit Ai is incremented correctly”:

⊤ ⊑ Ã1 ⊓ . . . ⊓ Ãn

Ã1 ⊑ (A1 ⊓ ∀X.¬A1)) (¬A1 ⊓ ∀X.A1)

Ãi ⊑ (⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.¬Ai)) (¬Ai ⊓ ∀X.Ai)))

(¬ ⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.Ai)) (¬Ai ⊓ ∀X.¬Ai))

(add the same for the Bis and Y)

(b) ensure uniqueness of grid positions:

A1 ⊓ . . . ⊓ An ⊓ B1 ⊓ . . . ⊓ Bn ⊑ {o} % top right (2n, 2n) is unique

⊤ ⊑ (≤ 1 X−.⊤) ⊓ (≤ 1 Y −.⊤) % everything else is also unique

University of
Manchester

17

Reduction of NExpTime Domino Problem to ALCQIO Consistency

Since the NExpTime-domino problem is NExpTime-hard, this implies
consistency of ALCQIO is also NExpTime-hard:

Lemma: let OD be ontology consisting of all axioms mentioned in reduction of D:

•D has an 2n × 2n tiling iff OD is consistent

• size of OD is polynomial (quadratic) in

– the size of D and

– n

University of
Manchester

18

Are Standard Reasoning Problems/Services Everything?

So far, we have talked a lot about standard reasoning problems

• consistency

• satisfiability

• entailments

• ...is this all that is relevant?

Next, we will look at 1 reasoning problem that

• cannot be polynomially reduced to any of the above standard reasoning
problems

• is relevant when working with a non-trivial ontology

• ...justifications!

University of
Manchester

19

Building Ontologies for Real

Imagine you are building, possibly with your colleagues, an ontology O:

non-trivial, with say 500 axioms, or 5,000 (NCI has ≥ 300,000)

(S1)O |= C ⊑ ⊥ and you want to know why

(S2) 27 classes Ci are unsatisfiable w.r.t. O

– imagine O is coherent, but O ∪ {α} contains 27 unsatisfiable classes

– ...even for a very sensible, small, harmless axiom α

(S3)O is inconsistent

– imagine O is consistent, but O ∪ {α} is inconsistent

– ...even for a very sensible, small, harmless axiom α

? what do you do?

? how do you go about repairing O?

? which tool support would help you to repair O?

University of
Manchester

20

Building Ontologies for Real II

Imagine you are building, possibly with your colleagues, an ontology O:

non-trivial, with say 500 axioms, or 5,000 (NCI has ≥ 300,000)

(S4)O |= α, and you want to know why

– e.g., so that you can trust O and α

– e.g., so that you understand how O models its domain

? what do you do?

? how do you go about understanding this entailment?

? which tool support would help you to understand this entailment?

? would this tool support be the same/similar to the one to support repair?

University of
Manchester

21

Justifications

In all scenarios (Si), we clearly want to know at least the reasons for O |= α,

which axioms can I/should I

(S1) change so that C ′ becomes satisfiable w.r.t. O′?

(S2) change so that O′ becomes coherent?

(S3) change so that O′ becomes consistent?

(S4) look at to understand O |= α?

Definition: Let O be an ontology with O |= α.
Then J ⊆ O is a justification for α in O if

• J |= α and

• J is minimal, i.e., for each J ′ ! J : J ′ ̸|= α

University of
Manchester

22

An Example

Consider the following ontology O with O |= C ⊑ ⊥:

O := {C ⊑ D ⊓ E (1)
D ⊑ A ⊓ ∃r.B1 (2)
E ⊑ A ⊓ ∀r.B2 (3)
B1 ⊑ ¬B2 (4)
D ⊑ ¬E (5)
G ⊑ B ⊓ ∃s.C} (6)

Find a justification for C ⊑ ⊥ in O.
How many justifications are there?

University of
Manchester

23

More about Justifications

Facts: 1. for each entailment of O, there exists at least one justification

2. one entailment can have several justifications in O

3. justifications can overlap

4. let O′ be obtained as follows from O with O |= α:

• for each justification Ji of the n justifications for α in O,
pick some βi ∈ Ji

• set O′ := O \ {β1, . . . ,βn}

then O′ ̸|= α, i.e., O′ is a repair of O.

5. if J is a justification for α and O′ ⊇ J , then O′ |= α.
Hence any repair of α must touch all justifications.

6. if O |= α, O |= β, and
∀ justification J for α ∃ a justification J ′ for β with J ′ ⊆ J ,
then repairing β repairs α.

University of
Manchester

24

A Naive Black-Box Algorithm to Compute Justifications

Let O = {β1, . . . ,βm} be an ontology with O |= α.

Get1Just(O, α)
Set J := O and Out := ∅
For each β ∈ O

If J \ {β} |= α then
Set J := J \ {β} and Out := Out ∪ {β}

Return J

Claim: • loop invariants: J |= α and O = J ∪ Out

• Get1Just(,) returns 1 justification for α in O

• it requires m entailment tests

Other approaches to computing justifications exists, more performant,
glass-box (inside reasoner) and black-box (outside).

University of
Manchester

25

Linking Justifications to our Scenarios

(S4) 1 justification suffices, but which? A good, easy one...how to find?

(S1-S3) require the computation of all justifications, possibly for several entailments

• even for one entailment, search space is exponential

(S2) requires even more:

• who wants to look at x × 27 justifications? Where to start?

⇒ A justification J (for α) is root if there is no justification J ′ with J ′ ! J

• start with root justifications, remove/change axioms in them and

• reclassify: you might have repaired several unsatisfiabilities at once!

• Check example on slide 6: both justifications for C ⊑ ⊥ are root, contained
in 2 non-root justifications for G ⊑ ⊥

• repairing C ⊑ ⊥ repairs G ⊑ ⊥

University of
Manchester

26

More About Justifications

BOs: NCBO BioPortal, a repository of 250 ontologies, very varied, not cherry-picked

• recent, optimised implementation of GetAllJust(O, α)

– behave well in practise

– can compute one justification for all atomic entailments of BOs

– can compute (almost) all justifications for (almost) all atomic entailments of BOs

• recent surveys show that BOs have entailments

– with large justifications, e.g., with 37 axioms and

– with numerous justifications, e.g., one entailment had 837 justifications

– for which justifications can often be understood well by domain experts

– ...for more, see Horridge’s dissertation

University of
Manchester

27

Beyond Justifications

• some justification contain superfluous parts

– that distract the user

– see example on slide 6

– identifying these can help user to focus on the relevant parts

– this has led to investigation of laconic and precise justifications

• there are still some hard justifications that need further explanation

– e.g., consider O = { P ⊑ ¬M

RR ⊑ CM

CM ⊑ M

RR ≡ ∃h.TS) ∀v.H
∃v.⊤ ⊑ M}

with O |= P ⊑ ⊥

– this has led to investigation of lemmatised justifications (see next slide)
with work in cognitive complexity of justifications

University of
Manchester

28

Lemmatised Justifications: a picture

University of
Manchester

29

Cognitive Complexity of Justifications: snapshot of a survey

1

1See http://tinyurl.com/owlsurvey2012

University of
Manchester

30

Lemmatised Justifications: an example

bold: axioms in J ; normal: axioms entailed by J ; example from [Horridge Dissertation]

University of
Manchester

31

