Next

Description Logics: a Nice Family of Logics

Day 5: More Complexity & Justifications

ESSLLI 2016

Uli Sattler and Thomas Schneider

- complexity results: when 3 constructors interact badly and lead to NExpTime-hardness
- justifications: explaining and debugging entailments

 D,
 a fixed set of dominoe types

The Classical Domino Problem 🖌

Definition: A domino system $\mathcal{D} = (D, H, V)$

- set of domino types $D = \{D_1, \ldots, D_d\}$, and
- horizontal and vertical matching conditions $H \subseteq D imes D$ and $V \subseteq D imes D$

A tiling for \mathcal{D} is a (total) function:

```
egin{aligned} t: \mathbb{N} 	imes \mathbb{N} 	o D 	ext{ such that} \ &\langle t(m,n), t(m+1,n) 
angle \in H 	ext{ and} \ &\langle t(m,n), t(m,n+1) 
angle \in V \end{aligned}
```

Domino problem: given \mathcal{D} , has \mathcal{D} a tiling?

It is well-known that this problem is undecidable [Berger66]

University of Manchester

University of Manchester

Almost Encoding the Classical Domino Problem in ALC 🗸

For our reduction, we express various obligations of the domino problem in ${\cal ALC}$ TBox axioms:

(1) each element carries exactly one domino type D_i

 \rightsquigarrow use unary predicate symbol D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d \qquad \% \text{ but not more than one}$ $D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d \qquad \% \ldots$ $\vdots \qquad \vdots$ $D_{d-1} \sqsubseteq \neg D_d$

University o Manchester

Encoding the Classical Domino Problem in \mathcal{ALC} with role chain inclusions \checkmark

(1) for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors & vice versa

 $X \circ Y \sqsubseteq Y \circ X$ and $Y \circ X \sqsubseteq X \circ Y$

- Lemma: Let \mathcal{T}_D be the set of axioms ① to ④. Then \top is satisfiable w.r.t. \mathcal{T}_D iff \mathcal{D} has a tiling.
- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of \mathcal{ALC} with role chain inclusions
- due to Theorem 2, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for D, you can construct a model of \mathcal{T}_D
 - 2. show that, from a model \mathcal{I} of \mathcal{T}_D , you can construct a tiling for D (tricky because elements in \mathcal{I} can have several X- or Y-successors but we can simply take the right ones...)

Almost Encoding the Classical Domino Problem in \mathcal{ALC} V

@ every element has a horizontal (X-) successor and a vertical (Y-) successor

 $\top \sqsubseteq \exists X. \top \sqcap \exists Y. \top$

③ every element satisfies D's horizontal/vertical matching conditions:

Does this suffice?

No: if yes, ALC would be undecidable!

University of Manchester

Let's do this again!

We only need \mathcal{ALC} for 1-3. What other constructors can us help to express 4?

A weak form of counting: $(\leq 1r)^{\mathcal{I}} = \{x \mid \text{there is at most one } y \text{ with } (x,y) \in r^{\mathcal{I}}\}$

• counting and complex roles (role chains and role intersection):

 $\top \sqsubseteq (\leq 1X) \sqcap (\leq 1Y) \sqcap (\exists (X \circ Y) \sqcap (Y \circ X).\top)$

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

 $egin{array}{cccc} & \top & \sqsubseteq & (\leq 1X) \sqcap (\leq 1Y) \ X \circ Y & \sqsubseteq & r \ Y \circ X & \sqsubseteq & r \ & \top & \sqsubset & (< 1r) \end{array}$

• various others...

Are all DLs in ExpTime?

- Next, we will see that consistency of \mathcal{ALCQIO} ontologies, the extension of \mathcal{ALC} with
 - ullet inverse roles r^- with $(r^-)^\mathcal{I}=\{(y,x)\mid (x,y)\in r^\mathcal{I}\}$
 - the weakest number restrictions $(\leq 1r)$ with
 - $(\leq 1r)^{\mathcal{I}} = \{x \mid ext{there is at most } 1 \; y ext{ with } (x,y) \in r^{\mathcal{I}} \}$
 - nominals $\{a\}$ with $(\{a\})^{\mathcal{I}} = \{a^{\mathcal{I}}\}$
 - \Rightarrow is harder, namely NExpTime-hard
 - this is typical phenomenon where
 - combination of otherwise harmless constructors leads to increased complexity

University of Manchester

Domino Problems

Definition: A domino system $\mathcal{D} = (D, H, V)$

- set of domino types $D = \{D_1, \ldots, D_d\}$, and
- horizontal and vertical matching conditions $H \subset D \times D$ and $V \subset D \times D$
- A tiling for \mathcal{D} is a function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ &\langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ &\langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

- Domino problems: \checkmark classical given \mathcal{D} , has \mathcal{D} a tiling?
 - \Rightarrow well-known that this problem is undecidable [Berger66]
 - **Solution** NexpTime given \mathcal{D} , has \mathcal{D} a tiling for $2^n \times 2^n$ square?
 - \Rightarrow well-known that this problem is NExpTime-hard

\mathcal{ALCQIO} is NExpTime-hard

We follow hardness proof recipe:

- \bullet to show that consistency of \mathcal{ALCQIO} ontologies is NExpTime-hard, we
- find a suitable problem $P' \subseteq M'$ that is known to be NExpTime-hard and a reduction from P' to P

The NExpTime version of the domino problem

Reduction of NExpTime Domino Problem to ALCQIO Consistency

To reduce the NExpTime domino problem to \mathcal{ALCQIO} consistency, we need to

- \bullet define a mapping π from domino problems to \mathcal{ALCQIO} ontologies such that
- D has an $2^n imes 2^n$ mapping iff $\pi(D)$ is consistent and
- ullet size of $\pi(D)$ is polynomial in n

Mapping a Domino System into an \mathcal{ALCQIO} Ontology

Again, we express various obligations of the domino problem in ALC axioms:

(1) each element carries exactly one domino type D_i

 \rightsquigarrow use unary predicate symbol D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $\begin{array}{c} D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d & \% \text{ but not more than one} \\ D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d & \% \dots \\ \vdots & \vdots \\ D_{d-1} \sqsubseteq \neg D_d \end{array}$

University of Manchester

Mapping a Domino System into an ALCQIO Ontology

Two things are missing:

- 1. the model must be large enough, namely $2^n \times 2^n$ and
- for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

This will be addressed using a "counting and binding together" trick ...

Mapping a Domino System into an \mathcal{ALCQIO} Ontology

@ every element has a horizontal (X-) successor and a vertical (Y-) successor

 $\top \sqsubseteq \exists X. \top \sqcap \exists Y. \top$

③ every element satisfies *D*'s horizontal/vertical matching conditions:

 $egin{array}{rcl} D_1 & \sqsubseteq & \sqcup & orall X.D & \sqcap & \sqcup & orall Y.D \ & (D_1,D)\in H & & (D_1,D)\in V & & \ D_2 & \sqsubseteq & \sqcup & orall X.D & \sqcap & \sqcup & orall Y.D \ & (D_2,D)\in H & & (D_2,D)\in V & & \ dots & dots & dots & & \ dots & dots & dots & & \ D_d & \sqsubseteq & \sqcup & orall X.D & \sqcap & \sqcup & orall Y.D \ & (D_d,D)\in H & & orall X.D & \sqcap & \sqcup & orall Y.D & \ \end{array}$

Does this suffice? I.e., does D have a $2^n \times 2^n$ tiling iff one D_i is satisfiable w.r.t. ① to ③?

• if yes, we have shown that satisfiability of \mathcal{ALC} is NExpTime-hard

• so no...what is missing?

University Manchest

Mapping a Domino System into an \mathcal{ALCQIO} Ontology

④ counting and binding together

(a) use $A_1, \ldots, A_n, B_1, \ldots, B_n$ as "bits" for binary representation of grid position e.g., (010, 011) is represented by an instance of $\neg A_3, A_2, \neg A_1, \neg B_3, B_2, B_1$

write GCI to ensure that X- and Y-successors are incremented correctly e.g., X-successor of (010, 011) is (011, 011)

(b) use nominals to ensure that there is only one (111...1, 111...1) this implies, with $\top \sqsubseteq (\leq 1 \ X^-.\top) \sqcap (\leq 1 \ Y^-.\top)$ uniqueness of grid positions

Mapping a Domino System into an \mathcal{ALCQIO} Ontology

④ counting and binding together

(a) \tilde{A}_i for "bit A_i is incremented correctly":

$$\top \sqsubseteq \tilde{A}_{1} \sqcap \ldots \sqcap \tilde{A}_{n}$$

$$\tilde{A}_{1} \sqsubseteq (A_{1} \sqcap \forall X. \neg A_{1}) \sqcup (\neg A_{1} \sqcap \forall X. A_{1})$$

$$\tilde{A}_{i} \sqsubseteq (\bigcap_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. \neg A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. A_{i})) \sqcup (\neg \prod_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. \neg A_{i}))$$

$$(\neg \bigcap_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. \neg A_{i})))$$

$$(\text{add the same for the } B_{i} \text{s and } Y)$$

(b) ensure uniqueness of grid positions:

 $A_1 \sqcap \ldots \sqcap A_n \sqcap B_1 \sqcap \ldots \sqcap B_n \sqsubseteq \{o\}$ % top right $(2^n, 2^n)$ is unique $\top \sqsubseteq (\leq 1 X^-.\top) \sqcap (\leq 1 Y^-.\top)$ % everything else is also unique

University of Manchester

So far, we have talked a lot about standard reasoning problems

- consistency
- satisfiability
- entailments
- ... is this all that is relevant?
- Next, we will look at 1 reasoning problem that
 - cannot be polynomially reduced to any of the above standard reasoning problems
 - is relevant when working with a non-trivial ontology
 - ...justifications!

Reduction of NExpTime Domino Problem to \mathcal{ALCQIO} Consistency

Since the NExpTime-domino problem is NExpTime-hard, this implies consistency of \mathcal{ALCQIO} is also NExpTime-hard:

Lemma: let \mathcal{O}_D be ontology consisting of all axioms mentioned in reduction of D:

- ullet D has an $2^n imes 2^n$ tiling iff \mathcal{O}_D is consistent
- \bullet size of \mathcal{O}_{D} is polynomial (quadratic) in
 - the size of \boldsymbol{D} and

-n

University of Manchester

Building Ontologies for Real

Imagine you are building, possibly with your colleagues, an ontology O: non-trivial, with say 500 axioms, or 5,000 (NCI has \geq 300,000)

- (S1) $\mathcal{O} \models C \sqsubseteq \bot$ and you want to know why
- (S2) 27 classes C_i are unsatisfiable w.r.t. \mathcal{O}
 - imagine \mathcal{O} is coherent, but $\mathcal{O} \cup \{\alpha\}$ contains 27 unsatisfiable classes
 - ...even for a very sensible, small, harmless axiom lpha
- (S3) \mathcal{O} is inconsistent
 - imagine \mathcal{O} is consistent, but $\mathcal{O} \cup \{\alpha\}$ is inconsistent
 - ...even for a very sensible, small, harmless axiom lpha
 - ? what do you do?

- ? how do you go about repairing \mathcal{O} ?
- ? which tool support would help you to repair \mathcal{O} ?

Building Ontologies for Real II

Imagine you are building, possibly with your colleagues, an ontology O: non-trivial, with say 500 axioms, or 5,000 (NCI has > 300,000)

(S4) $\mathcal{O} \models \alpha$, and you want to know why

– e.g., so that you can trust ${\cal O}$ and lpha

-e.g., so that you understand how $\mathcal O$ models its domain

? what do you do?

? how do you go about understanding this entailment?

? which tool support would help you to understand this entailment?

? would this tool support be the same/similar to the one to support repair?

University of Manchester

An Example

Consider the following ontology \mathcal{O} with $\mathcal{O} \models C \sqsubseteq \bot$:

$\mathcal{O}:= \{C \sqsubseteq D \sqcap E$	(1)
$D \sqsubseteq A \sqcap \exists r.B_1$	(2)
$E \sqsubseteq A \sqcap orall r.B_2$	(3)
$B_1 \sqsubseteq \neg B_2$	(4)
$D \sqsubseteq \neg E$	(5)
$G \sqsubseteq B \sqcap \exists s.C \}$	(6)

Find a justification for $C \sqsubseteq \bot$ in \mathcal{O} . How many justifications are there?

Justifications

In all scenarios (Si), we clearly want to know at least the reasons for $\mathcal{O} \models \alpha$, which axioms can l/should l

(S1) change so that C' becomes satisfiable w.r.t. \mathcal{O}' ?

(S2) change so that \mathcal{O}' becomes coherent?

(S3) change so that \mathcal{O}' becomes consistent?

(S4) look at to understand $\mathcal{O} \models \alpha$?

Definition: Let \mathcal{O} be an ontology with $\mathcal{O} \models \alpha$. Then $\mathcal{J} \subseteq \mathcal{O}$ is a justification for α in \mathcal{O} if • $\mathcal{J} \models \alpha$ and • \mathcal{J} is minimal, i.e., for each $\mathcal{J}' \subseteq \mathcal{J}$: $\mathcal{J}' \nvDash \alpha$

University of Manchester

More about Justifications

Facts: 1. for each entailment of *O*, there exists at least one justification
2. one entailment can have several justifications in *O*3. justifications can overlap

- 4. let \mathcal{O}' be obtained as follows from \mathcal{O} with $\mathcal{O} \models \alpha$:
 - for each justification \mathcal{J}_i of the n justifications for α in \mathcal{O} , pick some $\beta_i \in \mathcal{J}_i$
 - ullet set $\mathcal{O}':=\mathcal{O}\setminus\{eta_1,\ldots,eta_n\}$

then $\mathcal{O}' \not\models \alpha$, i.e., \mathcal{O}' is a repair of \mathcal{O} .

5. if \mathcal{J} is a justification for α and $\mathcal{O}' \supseteq \mathcal{J}$, then $\mathcal{O}' \models \alpha$. Hence any repair of α must touch all justifications.

6. if $\mathcal{O} \models \alpha$, $\mathcal{O} \models \beta$, and \forall justification \mathcal{J} for $\alpha \exists$ a justification \mathcal{J}' for β with $\mathcal{J}' \subseteq \mathcal{J}$, then repairing β repairs α .

A Naive Black-Box Algorithm to Compute Justifications

Let $\mathcal{O} = \{\beta_1, \ldots, \beta_m\}$ be an ontology with $\mathcal{O} \models \alpha$.

Get1Just(\mathcal{O}, α) Set $\mathcal{J} := \mathcal{O}$ and Out $:= \emptyset$ For each $\beta \in \mathcal{O}$ If $\mathcal{J} \setminus \{\beta\} \models \alpha$ then Set $\mathcal{J} := \mathcal{J} \setminus \{\beta\}$ and Out := Out $\cup \{\beta\}$ Return \mathcal{J}

- Claim: loop invariants: $\mathcal{J} \models \alpha$ and $\mathcal{O} = \mathcal{J} \cup \mathsf{Out}$
 - Get1Just(,) returns 1 justification for α in \mathcal{O}
 - it requires m entailment tests

Other approaches to computing justifications exists, more performant, glass-box (inside reasoner) and black-box (outside).

University of Manchester

More About Justifications

BOs: NCBO BioPortal, a repository of 250 ontologies, very varied, not cherry-picked

- recent, optimised implementation of GetAllJust(\mathcal{O}, α)
 - behave well in practise
 - can compute one justification for all atomic entailments of BOs
 - can compute (almost) all justifications for (almost) all atomic entailments of BOs
- recent surveys show that BOs have entailments
 - with large justifications, e.g., with 37 axioms and
 - with numerous justifications, e.g., one entailment had 837 justifications
 - for which justifications can often be understood well by domain experts
 - $\dots for$ more, see Horridge's dissertation

Linking Justifications to our Scenarios

- (S4) 1 justification suffices, but which? A good, easy one...how to find?
- ${\bf (S1-S3)}$ require the computation of all justifications, possibly for several entailments
 - even for one entailment, search space is exponential
- (S2) requires even more:
 - who wants to look at $x \times 27$ justifications? Where to start?
- \Rightarrow A justification \mathcal{J} (for α) is **root** if there is no justification \mathcal{J}' with $\mathcal{J}' \subsetneq \mathcal{J}$
- start with root justifications, remove/change axioms in them and
- reclassify: you might have repaired several unsatisfiabilities at once!
- Check example on slide 6: both justifications for C ⊑ ⊥ are root, contained in 2 non-root justifications for G ⊑ ⊥
- repairing $C \sqsubseteq \bot$ repairs $G \sqsubseteq \bot$
- University of Mancheste

University of Manchester

Beyond Justifications

- some justification contain superfluous parts
 - that distract the user
- see example on slide 6
- identifying these can help user to focus on the relevant parts
- $-\,{\rm this}$ has led to investigation of laconic and precise justifications
- there are still some hard justifications that need further explanation

e.g., consider
$$O = \{ \begin{array}{cc} P \sqsubseteq \neg M \\ RR \sqsubseteq CM \\ CM \sqsubseteq M \\ RR \equiv \exists h.TS \sqcup \forall v.H \\ \exists v.\top \sqsubseteq M \} \\ \end{array}$$
 with $\mathcal{O} \models P \sqsubseteq \bot$

 this has led to investigation of lemmatised justifications (see next slide) with work in cognitive complexity of justifications

Lemmatised Justifications: an example

bold: axioms in \mathcal{J} ; normal: axioms entailed by \mathcal{J} ; example from [Horridge Dissertation]

Entailment : Person $\sqsubseteq \bot$

$\textbf{Person} \sqsubseteq \neg \textbf{Movie}$

 $\begin{array}{c|c} \top \sqsubseteq \mathsf{Movie} \\ & \forall \mathsf{hasViolenceLevel}. \bot \sqsubseteq \mathsf{Movie} \\ & \forall \mathsf{hasViolenceLevel}. \bot \sqsubseteq \mathsf{RRated} \\ & \mathsf{RRated} \equiv (\exists \mathsf{hasScript}.\mathsf{ThrillerScript}) \sqcup (\forall \mathsf{hasViolenceLevel}.\mathsf{High}) \\ & \mathsf{RRated} \sqsubseteq \mathsf{Movie} \\ & \mathsf{RRated} \sqsubseteq \mathsf{CatMovie} \\ & \mathsf{CatMovie} \sqsubseteq \mathsf{Movie} \\ & \exists \mathsf{hasViolenceLevel}. \top \sqsubseteq \mathsf{Movie} \\ & \mathsf{Domain}(\mathsf{hasViolenceLevel},\mathsf{Movie}) \end{array}$